Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics
Abstract
:1. Introduction
2. The Impact of Microplastics on Aquatic Organisms
2.1. Phenotypic Changes in Aquatic Organisms Following Microplastic Ingestion
Microplastic Type | Microplastic Size | Microplastic Concentration | Exposure Time | Phenotype | Experiment Model | Reference |
---|---|---|---|---|---|---|
polystyrene | 15 μm | 1 × 106/L | 14, 21 days | feeding time, foraging time, swimming speed, histopathological changes | Sebastes schlegelii | [41] |
polystyrene, polyethylene acrylate | fiber: 0.7–5.0 mm fragment: 2.5–3.0 mm pellet: 4.9–5.0 mm | fiber: 55–76 particles fragment: 15 particles pellet: 15 particles | 6 weeks | buccal cavity, jaw structure | Carassius auratus | [42] |
polyethylene, polyvinyl chloride, polystyrene | 250–1000 μm | 0.05 g | 10 min, 24, 48, 72, 96 h | length, body depth, mass, survival probability | Ambassis dussumieri | [32] |
powdered plastics | 100 μm | 10, 20, 40, 60, 80, 100, 200, 250 mg/L | 24, 96 h | antioxidant system, photosynthetic activity, growth | Chlorella vulgaris | [46] |
polystyrene | 1 μm | 0.85, 8.5, 85, 850, 8500 μg/L | 24, 48 h, 6, 7 days | offspring reproduction/growth inhibition, oxidative stress | Brachionus calyciflorus, Ceriodaphnia dubia, Heterocypris incongruens | [47] |
polypropylene, low-density polyethylene | 125–1000 μm | 0.75, 8.25 μg/L | 21 days | micronucleated erythrocytes | Cyprinus carpio | [48] |
polystyrene | 3 μm | 0.05, 0.25, 1.25, 6 mg/L | 7 days | photosynthetic pigments, oxidative stress, antioxidant system | Egeria densa | [49] |
polypropylene | 11.86–44.62 μm | 250, 500, 750 mg/g | 28 days | oxidative stress, antioxidant system, digestive system, histopathological changes | Pomacea paludosa | [50] |
polyester, polyethylene | 100–400 μm | 31.3, 62.5, 125 L, 250, 500, 1000, 2000 μg/L, 4 mg/L | 48 h, 8 days | mortality, reproductive output, body size | Ceriodaphnia dubia | [45] |
polystyrene, polymethyl methacrylate | 10, 50, 80, 230 μm | 0.1, 1, 5, 50 mg/L | 10–72 min post-fertilization | embryo development, fertilized eggs, offspring developmental defects | Sphaerechinus granularis | [43] |
polypropylene | 11.86–44.62 μm | 100, 500, 1000 mg/kg of dry food | 96 h, 14 days | antioxidant system, oxidative stress, histopathological changes, transmission of nerve impulses | Oreochromis mossambicus | [51] |
polypropylene | 10–27 μm | 10, 22.5, 45, 90, 100, 1000, 5000, 10,000, 20,000 microplastics/mL | 0, 10, 28, 42 days | mortality, dry weight, egestion time, number of neonates | Hyalella azteca | [52] |
polyethylene | <400 μm | 0.01, 0.02, 0.04, 0.08 g/mL | 30, 60 min | feeding rates, morphology, hydranth numbers | Hydra attenuata | [53] |
polypropylene, polyvinyl chloride | <236 μm | 5, 10, 50, 100, 250, 500 mg/L | 1–11 days | photosynthetic pigments, photosynthetic activity, rapid light-response curves | Chlorella pyrenoidosa, Microcystis flos-aquae | [54] |
polystyrene | 300–600 nm | 5, 25, 50, 100 mg/L | 12, 24 h, 1–10 days | growth, photosynthetic pigments, photosynthetic activity, lipid peroxidation | Chlamydomonas reinhardtii | [55] |
polystyrene | 50 μm | 10, 103, 105 particles/L | 24, 48, 72 h | growth, antioxidant system, photosynthetic activity | Chlorella marine, Nannochloropsis oculata, Phaeodactylum tricornutum, Chlorella vulgaris, Tetradesmus obliquus | [56] |
polystyrene | 1, 12 μm | 0.1, 1, 10 mg/L | NA | viability, oxidative stress, antioxidant system, photosynthetic activity, metabolic activity, lipid peroxidation, membrane integrity | Scenedesmus obliquus | [57] |
2.2. Impact of Microplastic Ingestion on Gene Expression and Function in Aquatic Organisms
2.2.1. Functional Implications of Differentially Expressed Genes in Aquatic Organisms Exposed to Microplastics
2.2.2. Gene Expression Changes in Aquatic Organisms Following Microplastic Exposure
2.2.3. Functional Analysis and Gene Expression Influenced by Microplastics in Aquatic Organisms
3. Synergistic Effects of Microplastics and Pollutants on Aquatic Organisms
3.1. Phenotypic Alterations in Marine Organisms Due to Microplastic and Pollutant Ingestion
3.2. Combined Effects of Microplastics and Pollutants on Gene Expression and Function in Aquatic Organisms
3.2.1. Function of Differentially Expressed Genes Resulting from Microplastic and Pollutant Ingestion in Aquatic Organisms
3.2.2. Gene Expression Alterations Due to the Ingestion of Microplastics and Pollutants by Aquatic Organisms
3.2.3. Modulation of Gene Function and Expression by Microplastics and Pollutants in Aquatic Organisms
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bishop, G.; Styles, D.; Lens, P.N. Recycling of European plastic is a pathway for plastic debris in the ocean. Environ. Int. 2020, 142, 105893. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Wei, Y.; Dong, J.; Zhao, P.; Wang, Y.; Pan, X.; Wang, J. Separation and characterization of microplastic and nanoplastic particles in marine environment. Environ. Pollut. 2022, 297, 118773. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Xiong, X.; Zhang, Y.; Wu, C.; Xu, X.; Sun, C.; Shi, H. Global transportation of plastics and microplastics: A critical review of pathways and influences. Sci. Total Environ. 2022, 831, 154884. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Majdi, A.; Babeker Elhag, A.; Deifalla, A.F.; Soomro, M.; Isleem, H.F.; Qaidi, S. A step towards sustainable concrete with substitution of plastic waste in concrete: Overview on mechanical, durability and microstructure analysis. Crystals 2022, 12, 944. [Google Scholar] [CrossRef]
- Our World in Data. Available online: https://ourworldindata.org/plastic-pollution (accessed on 9 May 2024).
- Hurley, R.; Horton, A.; Lusher, A.; Nizzetto, L. Plastic waste in the terrestrial environment. In Plastic Waste and Eecycling; Academic Press: Cambridge, MA, USA, 2020; pp. 163–193. [Google Scholar]
- Wayman, C.; Niemann, H. The fate of plastic in the ocean environment—A minireview. Environ. Sci. Process. Impacts 2021, 23, 198–212. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Vianello, A.; Vollertsen, J. Retention of microplastics in sediments of urban and highway stormwater retention ponds. Environ. Pollut. 2019, 255, 113335. [Google Scholar] [CrossRef]
- Martin, J.; Lusher, A.; Thompson, R.C.; Morley, A. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci. Rep. 2017, 7, 10772. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Hadibarata, T. Microplastics removal through water treatment plants: Its feasibility, efficiency, future prospects and enhancement by proper waste management. Environ. Chall. 2021, 5, 100264. [Google Scholar] [CrossRef]
- Plastic Waste Accumulated in Aquatic Environments, World. Available online: https://ourworldindata.org/grapher/plastic-leakage-to-aquatic-environments?country=~OWID_WRL (accessed on 13 January 2025).
- Berenstein, G.; Córdoba, P.; Díaz, Y.B.; González, N.; Ponce, M.B.; Montserrat, J.M. Macro, meso, micro and nanoplastics in horticultural soils in Argentina: Abundance, size distribution and fragmentation mechanism. Sci. Total Environ. 2024, 906, 167672. [Google Scholar] [CrossRef]
- Gola, D.; Tyagi, P.K.; Arya, A.; Chauhan, N.; Agarwal, M.; Singh, S.; Gola, S. The impact of microplastics on marine environment: A review. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100552. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef]
- Loganathan, Y.; Kizhakedathil, M.P.J. A review on microplastics-an indelible ubiquitous pollutant. Biointerface Res. Appl. Chem. 2023, 13, 126. [Google Scholar]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A real global threat for environment and food safety: A state of the art review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Bi, R.; Su, C.; Liu, W.; Wang, T. The emerging issue of microplastics in marine environment: A bibliometric analysis from 2004 to 2020. Mar. Pollut. Bull. 2022, 179, 113712. [Google Scholar] [CrossRef] [PubMed]
- Laskar, N.; Kumar, U. Plastics and microplastics: A threat to environment. Environ. Technol. Innov. 2019, 14, 100352. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T.-G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef]
- Song, J.; Wang, C.; Li, G. Defining Primary and Secondary Microplastics: A Connotation Analysis. ACS ES&T Water 2024, 4, 2320–2765. [Google Scholar]
- Periyasamy, A.P.; Tehrani-Bagha, A. A review on microplastic emission from textile materials and its reduction techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- Hossain, M.B.; Pingki, F.H.; Azad, M.A.S.; Nur, A.A.U.; Banik, P.; Paray, B.A.; Arai, T.; Yu, J. Microplastics in Different Tissues of a Commonly Consumed Fish, Scomberomorus guttatus, from a Large Subtropical Estuary: Accumulation, Characterization, and Contamination Assessment. Biology 2023, 12, 1422. [Google Scholar] [CrossRef]
- Huang, J.S.; Koongolla, J.B.; Li, H.X.; Lin, L.; Pan, Y.F.; Liu, S.; He, W.; Maharana, D.; Xu, X.R. Microplastic accumulation in fish from Zhanjiang mangrove wetland, South China. Sci. Total Environ. 2020, 708, 134839. [Google Scholar] [CrossRef]
- Aldana Arana, D.; Gil Cortés, T.P.; Castillo Escalante, V.; Rodríguez-Martínez, R.E. Pelagic Sargassum as a Potential Vector for Microplastics into Coastal Ecosystems. Phycology 2024, 4, 139–152. [Google Scholar] [CrossRef]
- Viel, T.; Cocca, M.; Manfra, L.; Caramiello, D.; Libralato, G.; Zupo, V.; Costantini, M. Effects of biodegradable-based microplastics in Paracentrotus lividus Lmk embryos: Morphological and gene expression analysis. Environ. Pollut. 2023, 334, 122129. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Sui, Q.; Du, Y.; Wang, L.; Jing, J.; Zhu, L.; Zhao, X.; Sun, X.; Booth, A.M.; Chen, B. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. J. Hazard. Mater. 2022, 424, 127421. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, T.; Glassom, D. Decreased growth and survival in small juvenile fish, after chronic exposure to environmentally relevant concentrations of microplastic. Mar. Pollut. Bull. 2019, 145, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Nugnes, R.; Russo, C.; Lavorgna, M.; Orlo, E.; Kundi, M.; Isidori, M. Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceriodaphnia dubia. Environ. Pollut. 2022, 313, 120088. [Google Scholar] [CrossRef]
- Rangaswamy, B.; An, J.; Kwak, I.-S. Different recovery patterns of the surviving bivalve Mytilus galloprovincialis based on transcriptome profiling exposed to spherical or fibrous polyethylene microplastics. Heliyon 2024, 10, e30858. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Lu, L.; Zheng, M.; Zhang, X.; Tian, H.; Wang, W.; Ru, S. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ. Pollut. 2019, 254, 113024. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Khosraviani, K.; Delavar, F.H.; Arghideh, M.; Zavvar, F.; Hoseinifar, S.H.; Van Doan, H.; Zabihi, E.; Reverter, M. Hepatic transcriptomic and histopathological responses of common carp, Cyprinus carpio, to copper and microplastic exposure. Mar. Pollut. Bull. 2022, 175, 113401. [Google Scholar] [CrossRef] [PubMed]
- Guzzetti, E.; Sureda, A.; Tejada, S.; Faggio, C. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 2018, 64, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.; Gilbert, B.; Compère, P.; Eppe, G.; Das, K.; Jauniaux, T.; Parmentier, E. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ. Pollut. 2017, 229, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Mallik, A.; Xavier, K.M.; Naidu, B.C.; Nayak, B.B. Ecotoxicological and physiological risks of microplastics on fish and their possible mitigation measures. Sci. Total Environ. 2021, 779, 146433. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, X.; Fu, J.; Gong, Z.; Jiang, S.Y.; Chen, J.P. Metabolic profile changes of zebrafish larvae in the single-and co-exposures of microplastics and phenanthrene. Sci. Total Environ. 2024, 953, 175994. [Google Scholar] [CrossRef]
- Limonta, G.; Mancia, A.; Abelli, L.; Fossi, M.C.; Caliani, I.; Panti, C. Effects of microplastics on head kidney gene expression and enzymatic biomarkers in adult zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 245, 109037. [Google Scholar] [CrossRef] [PubMed]
- Umamaheswari, S.; Priyadarshinee, S.; Bhattacharjee, M.; Kadirvelu, K.; Ramesh, M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere 2021, 281, 128592. [Google Scholar] [CrossRef]
- Zhao, T.; Tan, L.; Han, X.; Wang, X.; Zhang, Y.; Ma, X.; Lin, K.; Wang, R.; Ni, Z.; Wang, J. Microplastic-induced apoptosis and metabolism responses in marine Dinoflagellate, Karenia mikimotoi. Sci. Total Environ. 2022, 804, 150252. [Google Scholar] [CrossRef]
- Yin, L.; Chen, B.; Xia, B.; Shi, X.; Qu, K. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J. Hazard. Mater. 2018, 360, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, K.; Li, B.; Chen, Q.; Su, L.; Wu, C.; Hollert, H.; Shi, H. Effects of virgin microplastics on goldfish (Carassius auratus). Chemosphere 2018, 213, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Trifuoggi, M.; Pagano, G.; Oral, R.; Pavičić-Hamer, D.; Burić, P.; Kovačić, I.; Siciliano, A.; Toscanesi, M.; Thomas, P.J.; Paduano, L. Microplastic-induced damage in early embryonal development of sea urchin Sphaerechinus granularis. Environ. Res. 2019, 179, 108815. [Google Scholar] [CrossRef] [PubMed]
- Muhr, J.; Ackerman, K.M. Embryology, Gastrulation; Stat Pearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: Implications of single and mixture exposures. Environ. Sci. Technol. 2017, 51, 13397–13406. [Google Scholar] [CrossRef]
- Nasser, A.M.; Sheekh, M.M.E.; Zeineldein, M.H.; Al Maghraby, D.M.; Hassan, I.A. Physiological, morphological, and growth effects of microplastics on freshwater alga Chlorella vulgaris. Rend. Lincei Sci. Fis. Nat. 2022, 33, 815–821. [Google Scholar] [CrossRef]
- Nugnes, R.; Lavorgna, M.; Orlo, E.; Russo, C.; Isidori, M. Toxic impact of polystyrene microplastic particles in freshwater organisms. Chemosphere 2022, 299, 134373. [Google Scholar] [CrossRef] [PubMed]
- Menezes, M.; de Mello, F.T.; Ziegler, L.; Wanderley, B.; Gutiérrez, J.M.; Dias, J.D. Revealing the hidden threats: Genotoxic effects of microplastics on freshwater fish. Aquat. Toxicol. 2024, 276, 107089. [Google Scholar] [CrossRef] [PubMed]
- Senavirathna, M.D.H.J.; Zhaozhi, L.; Fujino, T. Root adsorption of microplastic particles affects the submerged freshwater macrophyte Egeria densa. Water Air Soil Pollut. 2022, 233, 80. [Google Scholar] [CrossRef]
- Jeyavani, J.; Sibiya, A.; Gopi, N.; Mahboob, S.; Riaz, M.N.; Vaseeharan, B. Dietary consumption of polypropylene microplastics alter the biochemical parameters and histological response in freshwater benthic mollusc Pomacea paludosa. Environ. Res. 2022, 212, 113370. [Google Scholar] [CrossRef]
- Jeyavani, J.; Sibiya, A.; Stalin, T.; Vigneshkumar, G.; Al-Ghanim, K.A.; Riaz, M.N.; Govindarajan, M.; Vaseeharan, B. Biochemical, genotoxic and histological implications of polypropylene microplastics on freshwater fish Oreochromis mossambicus: An aquatic eco-toxicological assessment. Toxics 2023, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Au, S.Y.; Bruce, T.F.; Bridges, W.C.; Klaine, S.J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 2015, 34, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.; Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ. Pollut. 2018, 234, 487–494. [Google Scholar] [PubMed]
- Wu, Y.; Guo, P.; Zhang, X.; Zhang, Y.; Xie, S.; Deng, J. Effect of microplastics exposure on the photosynthesis system of freshwater algae. J. Hazard. Mater. 2019, 374, 219–227. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Zhang, C.; Zhou, X.; Yin, Z.; Hu, T.; Hu, D.; Liu, C.; Zhu, L. Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. Sci. Total Environ. 2020, 714, 136767. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, Y.; Qiu, K.; Chen, S.; Zeng, J.; Liu, R.; Yang, Q.; Huang, W. Differential physiological response of marine and freshwater microalgae to polystyrene microplastics. J. Hazard. Mater. 2023, 448, 130814. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, L.; Soupam, D.; Dey, S.; Chandrasekaran, N.; Kundu, R.; Paul, S.; Mukherjee, A. Toxicity of polystyrene microplastics in freshwater algae Scenedesmus obliquus: Effects of particle size and surface charge. Toxicol. Rep. 2022, 9, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.W.; Wright, A.E.; Mank, J.E. The evolution of gene expression and the transcriptome–phenotype relationship. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2012; pp. 222–229. [Google Scholar]
- Hanczar, B.; Zehraoui, F.; Issa, T.; Arles, M. Biological interpretation of deep neural network for phenotype prediction based on gene expression. BMC Bioinform. 2020, 21, 1–18. [Google Scholar] [CrossRef]
- Prinz, N.; Korez, Š. Understanding how microplastics affect marine biota on the cellular level is important for assessing ecosystem function: A review. In YOUMARES 9-The Oceans: Our Research, Our Future, Proceedings of the 2018 Conference for Young Marine Researcher in Oldenburg, Germany, 11–14 September 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 101–120. [Google Scholar]
- Freitas, F.C.; Depintor, T.S.; Agostini, L.T.; Luna-Lucena, D.; Nunes, F.M.; Bitondi, M.M.; Simões, Z.L.; Lourenço, A.P. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Sci. Rep. 2019, 9, 17692. [Google Scholar] [CrossRef] [PubMed]
- Harshitha, R.; Arunraj, D.R. Real-time quantitative PCR: A tool for absolute and relative quantification. Biochem. Mol. Biol. Educ. 2021, 49, 800–812. [Google Scholar] [CrossRef]
- Finotello, F.; Di Camillo, B. Measuring differential gene expression with RNA-seq: Challenges and strategies for data analysis. Brief. Funct. Genomics 2015, 14, 130–142. [Google Scholar] [CrossRef]
- Han, J.E.; Choi, S.-K.; Jeon, H.J.; Park, J.-K.; Han, S.-H.; Jeong, J.; Kim, J.H.; Lee, J. Transcriptional response in the whiteleg shrimp (Penaeus vannamei) to short-term microplastic exposure. Aquac. Rep. 2021, 20, 100713. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, X.; Liao, Y.; Zhao, W.; Zhao, P.; Li, M. Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere 2020, 255, 126914. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ni, X.; Zhou, Z.; Wang, L.; Lin, S. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environ. Pollut. 2018, 243, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Fang, J.; Du, M.; Gao, Y.; Fang, J.; Jiang, Z. Microplastics influence physiological processes, growth and reproduction in the Manila clam, Ruditapes philippinarum. Environ. Pollut. 2022, 293, 118502. [Google Scholar] [CrossRef] [PubMed]
- LeMoine, C.M.; Kelleher, B.M.; Lagarde, R.; Northam, C.; Elebute, O.O.; Cassone, B.J. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio). Environ. Pollut. 2018, 243, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.; Cuesta, A.; Esteban, M.Á. Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2017, 68, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Sun, W.; Yang, T.; Zhu, Z.; Jiang, Y.; Hu, W.; Wei, W.; Zhang, Y.; Yang, H. The toxic effects of polystyrene microplastics on freshwater algae Chlorella pyrenoidosa depends on the different size of polystyrene microplastics. Chemosphere 2022, 308, 136135. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Gao, L.; Zhang, H.-T.; Li, J.; Ye, Y.; Zhu, Q.-L.; Zheng, J.-L.; Yan, X. Transgenerational effects of microplastics on Nrf2 signaling, GH/IGF, and HPI axis in marine medaka Oryzias melastigma under different salinities. Sci. Total Environ. 2024, 906, 167170. [Google Scholar] [CrossRef]
- Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339. [Google Scholar] [CrossRef]
- Romano, N.; Renukdas, N.; Fischer, H.; Shrivastava, J.; Baruah, K.; Egnew, N.; Sinha, A.K. Differential modulation of oxidative stress, antioxidant defense, histomorphology, ion-regulation and growth marker gene expression in goldfish (Carassius auratus) following exposure to different dose of virgin microplastics. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 238, 108862. [Google Scholar] [CrossRef]
- Mak, C.W.; Yeung, K.C.-F.; Chan, K.M. Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotoxicol. Environ. Saf. 2019, 182, 109442. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, H.; Choi, J.S.; Jung, Y.-J.; Park, J.-W. Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus. Ecotoxicol. Environ. Saf. 2022, 243, 113962. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-C.; Fang, C.; Zheng, R.-H.; Chen, M.-L.; Kim, D.-H.; Lee, Y.-H.; Bailey, C.; Wang, K.-J.; Lee, J.-S.; Bo, J. Environmentally relevant concentrations of microplastics modulated the immune response and swimming activity, and impaired the development of marine medaka Oryzias melastigma larvae. Ecotoxicol. Environ. Saf. 2022, 241, 113843. [Google Scholar] [CrossRef]
- Roch, S.; Rebl, A.; Wolski, W.; Brinker, A. Combined proteomic and gene expression analysis to investigate reduced performance in rainbow trout (Oncorhynchus mykiss) caused by environmentally relevant microplastic exposure. Microplast. nanoplast. 2022, 2, 14. [Google Scholar] [CrossRef]
- Sun, S.; Jin, Y.; Luo, P.; Shi, X. Polystyrene microplastics induced male reproductive toxicity and transgenerational effects in freshwater prawn. Sci. Total Environ. 2022, 842, 156820. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Jung, Y.-J.; Hong, N.-H.; Hong, S.H.; Park, J.-W. Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus). Mar. Pollut. Bull. 2018, 129, 231–240. [Google Scholar] [CrossRef]
- Choi, J.S.; Hong, S.H.; Park, J.-W. Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus. Mar. Environ. Res. 2020, 153, 104838. [Google Scholar] [CrossRef] [PubMed]
- Abarghouei, S.; Hedayati, A.; Raeisi, M.; Hadavand, B.S.; Rezaei, H.; Abed-Elmdoust, A. Size-dependent effects of microplastic on uptake, immune system, related gene expression and histopathology of goldfish (Carassius auratus). Chemosphere 2021, 276, 129977. [Google Scholar] [CrossRef] [PubMed]
- Limonta, G.; Mancia, A.; Benkhalqui, A.; Bertolucci, C.; Abelli, L.; Fossi, M.C.; Panti, C. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish. Sci. Rep. 2019, 9, 15775. [Google Scholar] [CrossRef] [PubMed]
- Suman, T.Y.; Jia, P.-P.; Li, W.-G.; Junaid, M.; Xin, G.-Y.; Wang, Y.; Pei, D.-S. Acute and chronic effects of polystyrene microplastics on brine shrimp: First evidence highlighting the molecular mechanism through transcriptome analysis. J. Hazard. Mater. 2020, 400, 123220. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, M.; Lu, L.; Li, X.; Zhang, Z.; Ru, S. Adaptation of life-history traits and trade-offs in marine medaka (Oryzias melastigma) after whole life-cycle exposure to polystyrene microplastics. J. Hazard. Mater. 2021, 414, 125537. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-C.; Chen, M.-Y.; Fang, C.; Zheng, R.-H.; Jiang, Y.-L.; Zhang, Y.-S.; Wang, K.-J.; Bailey, C.; Segner, H.; Bo, J. Microplastics negatively impact embryogenesis and modulate the immune response of the marine medaka Oryzias melastigma. Mar. Pollut. Bull. 2020, 158, 111349. [Google Scholar] [CrossRef]
- Vieira, K.S.; Neto, J.A.B.; Crapez, M.A.C.; Gaylarde, C.; da Silva Pierri, B.; Saldaña-Serrano, M.; Bainy, A.C.D.; Nogueira, D.J.; Fonseca, E.M. Occurrence of microplastics and heavy metals accumulation in native oysters Crassostrea Gasar in the Paranaguá estuarine system, Brazil. Mar. Pollut. Bull. 2021, 166, 112225. [Google Scholar] [CrossRef]
- Mei, W.; Chen, G.; Bao, J.; Song, M.; Li, Y.; Luo, C. Interactions between microplastics and organic compounds in aquatic environments: A mini review. Sci. Total Environ. 2020, 736, 139472. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Perez, M.; Perez, E.; Cabecinha, E.; Luzio, A.; Félix, L.; Monteiro, S.M.; Bellas, J. Toxicity of microplastics and copper, alone or combined, in blackspot seabream (Pagellus bogaraveo) larvae. Environ. Toxicol. Pharmacol. 2022, 91, 103835. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Rong, J.; Guan, X.; Zha, S.; Shi, W.; Han, Y.; Du, X.; Wu, F.; Huang, W.; Liu, G. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species. Environ. Pollut. 2020, 258, 113845. [Google Scholar] [CrossRef] [PubMed]
- Jinhui, S.; Sudong, X.; Yan, N.; Xia, P.; Jiahao, Q.; Yongjian, X. Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus kuda Bleeker. Mar. Pollut. Bull. 2019, 149, 110510. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Liu, M.J.; Geng, X.H.; Zhang, Y.; Jia, R.Q.; Zhang, Y.N.; Wang, X.X.; Jiang, Y. The combined effects of microplastics and the heavy metal cadmium on the marine periphytic ciliate Euplotes vannus. Environ. Pollut. 2022, 308, 119663. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Zhu, J.; Lei, M.; Huang, C.; Xu, H.; Liu, Z.; Wang, P. The interfacial interaction between typical microplastics and Pb2+ and their combined toxicity to Chlorella pyrenoidosa. Sci. Total Environ. 2024, 918, 170591. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Jiang, W.; Chen, J.; Chen, Y.; Zhang, X.; Wang, G. Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity. Chemosphere 2021, 266, 128979. [Google Scholar] [CrossRef]
- Soliman, H.; Salaah, S.; Hamed, M.; Sayed, A. Toxicity of co-exposure of microplastics and lead in African catfish (Clarias gariepinus). Front. Vet. Sci. 2023, 10, 1279382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, Z.; Ai, F.; Du, W.; Yin, Y.; Guo, H. Effect of ultraviolet aged polytetrafluoroethylene microplastics on copper bioavailability and Microcystis aeruginosa growth. Aquat. Toxicol. 2024, 272, 106967. [Google Scholar] [CrossRef]
- Sánchez-Fortún, A.; D’ors, A.; Fajardo, C.; Costa, G.; Sánchez-Fortún, S. Influence of polyethylene-type microplastics on long-term exposure to heavy metals in freshwater phytoplankton. Sci. Total Environ. 2024, 953, 176151. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fortún, A.; D’ors, A.; Fajardo, C.; Martín, C.; Nande, M.; Mengs, G.; Costa, G.; Martín, M.; Sánchez-Fortún, S. Influence of contaminant-spiked polyethylene-type microplastics on the growth and primary production of the freshwater phytoplankton species Scenedesmus armatus and Microcystis aeruginosa. Environ. Exp. Bot. 2022, 203, 105061. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Huang, S.; Zhao, W.; Zheng, Z. Single and combined effects of microplastics and lead on the freshwater algae Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 2021, 208, 111664. [Google Scholar] [CrossRef] [PubMed]
- Rehse, S.; Kloas, W.; Zarfl, C. Microplastics reduce short-term effects of environmental contaminants. Part I: Effects of bisphenol A on freshwater zooplankton are lower in presence of polyamide particles. Int. J. Environ. Res. Public Health 2018, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Le Bihanic, F.; Clérandeau, C.; Cormier, B.; Crebassa, J.-C.; Keiter, S.H.; Beiras, R.; Morin, B.; Bégout, M.-L.; Cousin, X.; Cachot, J. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar. Pollut. Bull. 2020, 154, 111059. [Google Scholar] [CrossRef]
- Syberg, K.; Nielsen, A.; Khan, F.R.; Banta, G.T.; Palmqvist, A.; Jepsen, P.M. Microplastic potentiates triclosan toxicity to the marine copepod Acartia tonsa (Dana). J. Toxicol. Environ. Health A 2017, 80, 1369–1371. [Google Scholar] [CrossRef]
- Gholamhosseini, A.; Banaee, M.; Zeidi, A.; Multisanti, C.R.; Faggio, C. Individual and combined impact of microplastics and lead acetate on the freshwater shrimp (Caridina fossarum): Biochemical effects and physiological responses. J. Contam. Hydrol. 2024, 262, 104325. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, J.; Razanajatovo, R.M.; Jiang, H.; Zou, H.; Zhu, W. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus). Sci. Total Environ. 2019, 648, 1431–1439. [Google Scholar] [CrossRef]
- Zhu, Z.-L.; Wang, S.-C.; Zhao, F.-F.; Wang, S.-G.; Liu, F.-F.; Liu, G.-Z. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ. Pollut. 2019, 246, 509–517. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, D.; Gao, L.; Qi, H.; Su, Y.; Peng, L. Aged microplastics decrease the bioavailability of coexisting heavy metals to microalga Chlorella vulgaris. Ecotoxicol. Environ. Saf. 2021, 217, 112199. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Effects of microplastic on arsenic accumulation in Chlamydomonas reinhardtii in a freshwater environment. J. Hazard. Mater. 2021, 405, 124232. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, H.; Chen, J.; Guo, B.; Zhao, X.; Lin, H.; Li, W.; Zhao, X.; Lv, S.; Huang, C. Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. Environ. Res. 2022, 214, 113777. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; d’Errico, G.; Pauletto, M.; Bargelloni, L.; Regoli, F. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 2015, 198, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.-B.; Kang, H.-M.; Byeon, E.; Kim, M.-S.; Ha, S.Y.; Kim, M.; Jung, J.-H.; Lee, J.-S. Phenotypic and transcriptomic responses of the rotifer Brachionus koreanus by single and combined exposures to nano-sized microplastics and water-accommodated fractions of crude oil. J. Hazard. Mater. 2021, 416, 125703. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yoon, D.-S.; Lee, Y.H.; Kwak, J.I.; An, Y.-J.; Lee, J.-S.; Park, J.C. Combined exposure to microplastics and zinc produces sex-specific responses in the water flea Daphnia magna. J. Hazard. Mater. 2021, 420, 126652. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, G.; Wang, J.; Lu, L.; Li, X.; Zheng, Y.; Zhang, Z.; Ru, S. Microplastics increase the accumulation of phenanthrene in the ovaries of marine medaka (Oryzias melastigma) and its transgenerational toxicity. J. Hazard. Mater. 2022, 424, 127754. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Hamid, N.; Deng, S.; Jia, P.-P.; Pei, D.-S. Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). J. Hazard. Mater. 2020, 397, 122795. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Bellas, J.; Monteiro, S.M. Single and combined acute and subchronic toxic effects of microplastics and copper in zebrafish (Danio rerio) early life stages. Chemosphere 2021, 277, 130262. [Google Scholar] [CrossRef]
- Chen, X.; Peng, L.-B.; Wang, D.; Zhu, Q.-L.; Zheng, J.-L. Combined effects of polystyrene microplastics and cadmium on oxidative stress, apoptosis, and GH/IGF axis in zebrafish early life stages. Sci. Total Environ. 2022, 813, 152514. [Google Scholar] [CrossRef] [PubMed]
- Paul-Pont, I.; Lacroix, C.; Fernández, C.G.; Hégaret, H.; Lambert, C.; Le Goïc, N.; Frère, L.; Cassone, A.-L.; Sussarellu, R.; Fabioux, C. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut. 2016, 216, 724–737. [Google Scholar] [CrossRef] [PubMed]
- Romdhani, I.; De Marco, G.; Cappello, T.; Ibala, S.; Zitouni, N.; Boughattas, I.; Banni, M. Impact of environmental microplastics alone and mixed with benzo [a] pyrene on cellular and molecular responses of Mytilus galloprovincialis. J. Hazard. Mater. 2022, 435, 128952. [Google Scholar] [CrossRef]
- Pittura, L.; Avio, C.G.; Giuliani, M.E.; d’Errico, G.; Keiter, S.H.; Cormier, B.; Gorbi, S.; Regoli, F. Microplastics as vehicles of environmental PAHs to marine organisms: Combined chemical and physical hazards to the Mediterranean mussels, Mytilus galloprovincialis. Front. Mar. Sci. 2018, 5, 103. [Google Scholar] [CrossRef]
- Xie, C.; Li, X.; Chen, Y.; Wu, X.; Chen, H.; Zhang, S.; Jiang, L.; Pang, Q.; Irshad, S.; Guo, Z. Impact of Polystyrene Microplastic Carriers on the Toxicity of Pb2+ towards Freshwater Planarian Dugesia japonica. Environ. Sci. Nano 2024, 11, 2994–3005. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Yang, G.; Lu, L.; Zheng, Y.; Zhang, Q.; Zhang, X.; Tian, H.; Wang, W.; Ru, S. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma). J. Hazard. Mater. 2020, 385, 121586. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Qiao, R.; An, H.; Zhang, Y. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 2018, 202, 514–520. [Google Scholar] [CrossRef]
- Wang, S.; Xie, S.; Zhang, C.; Pan, Z.; Sun, D.; Zhou, A.; Xu, G.; Zou, J. Interactions effects of nano-microplastics and heavy metals in hybrid snakehead (Channa maculata♀ × Channa argus♂). Fish Shellfish Immunol. 2022, 124, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Lee, Y.H.; Sayed, A.E.-D.H.; Jeong, C.-B.; Zhou, B.; Lee, J.-S.; Byeon, E. Short-and long-term single and combined effects of microplastics and chromium on the freshwater water flea Daphnia magna. Aquat. Toxicol. 2022, 253, 106348. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Oh, Y.; Park, H.E.; Lee, J.-S.; Kim, H.S. Synergistic toxic mechanisms of microplastics and triclosan via multixenobiotic resistance (MXR) inhibition–mediated autophagy in the freshwater water flea Daphnia magna. Sci. Total Environ. 2023, 896, 165214. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Liu, J.; Cheng, Y.; Waiho, K.; Chen, A.; Wang, Y. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis. Sci. Total Environ. 2022, 829, 154586. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xie, S.; Wang, Z.; Zhang, C.; Pan, Z.; Sun, D.; Xu, G.; Zou, J. Single and combined effects of microplastics and cadmium on the cadmium accumulation and biochemical and immunity of Channa argus. Biol. Trace Elem. Res. 2022, 200, 3377–3387. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Li, L.; Mohsen, M.; Su, F.; Wang, X.; Lin, C. RNA sequencing provides insights into the effect of dietary ingestion of microplastics and cadmium in the sea cucumber Apostichopus japonicus. Front. Mar. Sci. 2023, 10, 1109691. [Google Scholar] [CrossRef]
- Qiao, R.; Lu, K.; Deng, Y.; Ren, H.; Zhang, Y. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. Sci. Total Environ. 2019, 682, 128–137. [Google Scholar] [CrossRef] [PubMed]
Microplastic Type | Microplastic Size | Microplastic Concentration | Exposure Time | Phenotype | GO/KEGG Analysis | Experiment Model | Reference |
---|---|---|---|---|---|---|---|
microsphere | 1–5 μm | 216.67 mg/mL | 2 h | NA | adaptation of rhodopsin- mediated signaling, metarhodopsin inactivation, adult somatic muscle development, muscle organ development | Penaeus vannamei | [64] |
polystyrene | 1 μm | 50 mg/L | 6, 12, 24 h | photosynthetic pigments, antioxidant system, detoxification system, immune system | stress response, zymogen granules, sterol transport, EGF–ERK1/2 signaling pathway | Pocillopora damicornis | [66] |
polyethylene | spherical: 27–32 μm fibrous: 200–400 μm | 100 mg/L | 4, 14 days | NA | protein modification, transcriptional regulation, metabolic function, signal transduction | Mytilus galloprovincialis | [31] |
polystyrene, polymethyl methacrylate | 65, 100 nm, 1 μm | 10 mg/L | 1, 12, 24, 36, 48, 60, 72 h | cell viability, apoptosis, integrity of the cell membrane | catalytic activity, structural molecular activity, metabolic process, cellular process | Karenia mikimotoi | [40] |
polystyrene | 5, 10 μm | 25 μg/L | 30 days | ingestion rate, oxygen consumption rate, ammonia-N excretion rate, growth, wet flesh weight-specific growth rate | carbohydrate metabolism, citrate cycle | Ruditapes philippinarum | [67] |
polyethylene | 10–45 μm | 5, 20 mg/L | 24, 48, 72, 96, 120 h post-fertilization, 2, 7, 15 days, 1, 3, 4, 7, 12, 19 days post-fertilization | NA | central and peripheral nervous system, neural development, synapse function, translation, ribosomal and spliceosomal function | Danio rerio | [68] |
polystyrene | 0.1, 5 μm | 0.5, 1, 10, 50 mg/L | 24, 48, 72, 96 h | growth, photosynthetic pigments, antioxidant system | cellular processes, environmental information processing, carbohydrate metabolism, signal transduction | Euglena gracilis | [65] |
Microplastic Type | Microplastic Size | Microplastic Concentration | Exposure Time | Phenotype | Genes | Experiment model | Reference |
---|---|---|---|---|---|---|---|
polystyrene | 5 μm | 180 μg/L | 7, 21, 25, 90, 240 days post-hatching | body weight, body length, antioxidant system | ghrh, gh, ghrb, ghra, igf1, igf2b, igf1ra, igf1rb, igf2r, igfbp1, nrf2, keap1a, keap1b, sod1, sod2, cat, mt2 | Oryzias melastigma | [71] |
polyvinyl chloride | 53–106 μm | 1 × 103, 1 × 106 particles/L | 15, 18, 30, 36, 48, 60, 66, 84, 90, 102, 138, 156, 174, 192, 210, 228, 246, 264, 282, 318 s, 5, 10 min, 1, 2, 3, 12, 24 h, 5, 8, 11 days | hatching time, heart rate, malformation, oxygen flux | HIF-1α, GATA4, NKX2.5 | Oryzias melastigma | [28] |
polypropylene, high-density polyethylene | 400–1000 μm | NA | 5 h, 1, 3, 7, 20, 63, 78 days | aggregation, colonization | rbcL, UGD, UGE, UGLD, | Chlamydomonas reinhardtii | [72] |
polystyrene, high-density polyethylene | <90 μm | 100, 1000 μg/L | 20 days | NA | cyp2p8, tcra | Danio rerio | [38] |
polyvinyl chloride | 100–1000 μm | 0.1, 0.5 mg/L | 96 h | oxidant system, detoxification system | IGFBP-1, gHR | Carassius auratus | [73] |
high-density polyethylene | red: 10–22 μm, blue: 45–53 μm, green: 90–106 μm, clear: 212–250 μm, yellow: 500–600 μm | 2 mg/L, 11, 110, 1100 particles/L | 96 h | tail bent downwards or upwards, erratic movement, seizure | cyp1a, vtg1 | Danio rerio | [74] |
polycaprolactone, polyhydroxy butyrate, polylactic acid | polycaprolactone: 164.90 ± 99.20 μm polyhydroxy butyrate: 0.64 ± 0.3 μm polylactic acid: 335.00 ± 182.01 μm | 1, 5, 10 mg/L | 1, 48 h post-fertilization | development | ARF1, Mtase, HIF1A, PARP-1, SDH, p53, ChE, CYP-2UL, GST, GAPDH, PKS, SULT1, ERCC3, hsp56, hsp60, hsp70, NF-Kb, P38 MAPK, Cytb, GS | Paracentrotus lividus | [27] |
polystyrene | 50 nm, 2 μm | 0.5, 0.0001 μg/L, 1, 10, 100 mg/L | 30 days | antioxidant system | USP, cat, tnf | Tigriopus japonicus | [75] |
polystyrene | 10 μm | 2, 20, 200 μg/L | 10, 30, 60 days | antioxidant system, abnormal proliferation, disintegration of gills, maturation, sex hormones, number of eggs, body length, heart rate | mGnRH, FSHb, LHb, Cyp19b, FSHR, LHR, Cyp19a, Vtg1, Vtg, ChgL, 11bHSD, CYP11a, 17bHSD, StAR, GTHa, 11bHSD, CYP17a1, CYP11a2, Vtg2, ChgH, Era | Oryzias melastigma | [32] |
polystyrene | 94–107 nm | 10, 100 μg/L | 7, 14, 21, 28, 35 days | oxidative stress, lipid peroxidation, antioxidative system, neuron system, biochemical, hepatic histology, inflammation response | cat, sod1, gpx1a, gstp1, hsp70l, ptgs2a, ache | Danio rerio | [39] |
polyvinylchloride | 40–150 μm | 100, 500 mg/kg | 15, 30 days | immune parameter | prdx5, coxIV, ucp1 | Sparus aurata | [69] |
polystyrene | 6 μm | 1 × 102, 1 × 104, 1 × 106 particles/L | 14 days | body length, distance moved | il-6, il-1β, tnf-α, jak, stat-3, nf-κb, ccl-11, heg1, muc2, muc7-like, muc13, muc13-like, sod | Oryzias melastigma | [76] |
polymethylmethacrylate | 20–1000 μm | 19, 85 mg | 1, 2, 3, 4, 9, 13, 17 weeks | weight, specific growth rate, feed conversion ratio | col1a1, ighd, rpl7, c3-3, tmem63b, ctrl | Oncorhynchus mykiss | [77] |
polystyrene | 5 μm | 0.2, 2, 4, 20, 40, 80, 100, 160, 200, 300, 320, 400, 500, 600, 640, 1280 mg/L | 96 h, 1, 2, 4 weeks | survival rate, heart rate, weight, gonadosomatic index, sex hormones, antioxidant system, testicular system, malformation rate, hatching rate, innate immune system | StAR, 17βHSD, 3βHSD, Cu-ZnSOD, MnSOD, CAT, GPX, LZM, PO | Freshwater prawn | [78] |
polyethylene | sphere: 150–180 μm irregular: 6–350 μm | 50, 250 mg/L | 10, 20, 30, 40 min | total distance traveled, maximum velocity, antioxidant system | cat, sod3, cxcr5, casp3, tp53 | Cyprinodon variegatus | [79] |
polystyrene | 1, 5 μm | 2, 10, 50 mg/L | 1, 5, 10 days | cumulative growth ratio, daily growth ratio, photosynthetic pigments, extracellular polymeric substances, soluble proteins, antioxidant system | psbA, rbcS, rbcL, chlL, ATPF1B, ND1, AACP | Chlorella pyrenoidosa | [70] |
polystyrene | 50, 10 μm | 20 mg/L | 24, 48 h | antioxidant system, abnormal proliferation, disintegration of gills, maturation, sex hormones, number of eggs, body length, heart rate | gr, gst, cuznsod, mnsod | Tigriopus japonicus | [80] |
polystyrene | 0.25, 8 μm | 0.05, 0.5, 5 mg/L, 300 μg/L | 168 h, 28 days | antioxidant system | cat, sod, hsp70 | Carassius auratus | [81] |
Microplastic Type | Microplastic Size | Microplastic Concentration | Exposure Time | Phenotype | GO/KEGG Analysis | Genes | Experiment Model | Reference |
---|---|---|---|---|---|---|---|---|
polystyrene | NA | 1, 25, 50, 75, 100 mg/L | 24, 48 h, 1, 2, 7, 14 days | morphology, development, body length, apoptosis, oxidative stress | energy derivation, cellular nitrogen compound metabolic process, arrhythmogenic right ventricular cardiomyopathy, viral myocarditis | EGR1b, titin, MHC class l antigen, Crammer, Pyrimidodiazepine synthase, Dappudraft_310496, Dappudraft_308348 | Artemia salina | [83] |
polystyrene | 2 μm | 2, 20, 200 μg/L | 3, 5, 7, 9, 10, 11, 76, 80, 81, 84, 97, 110, 119, 150 days, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 days post-fertilization | hatching rate, heartbeat, body length, body weight, gonadosomatic index, sexual maturity, antioxidant stress | neuroactive ligand– receptor interaction, steroid hormone biosynthesis | FSHβ, GTHα, LHβ, Vtg, CHgL, StAR, CYP11a | Oryzias melastigma | [84] |
high-density polyethylene, polystyrene | NA | 100, 1000 μg/L | 20 days | intestinal mucosa, gill epithelium, daily activity rhythm, nocturnal activity | sterol biosynthetic process, steroid metabolic process, steroid biosynthesis pathway, terpenoid backbone biosynthesis | ltb4r, iftm1, elovl6, ch25h, cyp51 | Danio rerio | [82] |
polystyrene | 0.05, 0.50, 6.00 μm | 0.1, 1 × 103, 1 × 106 particles/mL | 3, 4, 5, 6, 7, 8, 9, 19 days post-fertilization | heartbeat, hatching rate | inflammatory mediator regulation of TRP channels, B cell receptor signaling pathway | HCE, LCE, BMP4, GATA4, NKx2.5 | Oryzias melastigma | [85] |
Microplastic Type | Microplastic Size | Microplastic Concentration | Exposure Time | Pollutants | Pollutant Concentration | Phenotype | Experiment Model | Reference |
---|---|---|---|---|---|---|---|---|
polyvinyl chloride | NA | NA | 14 days | cadmium | 0, 5, 15, 25 mg | fresh weight | Vallisneria natans | [93] |
polyethylene | NA | 100 mg/L | 15 days | lead | 1 mg/L | antioxidant system, lipid peroxidation, inflammatory signaling | Clarias gariepinus | [94] |
polytetrafluoroethylene | 2–20 μm | 20 mg/L | 0.5, 1, 3, 7, 12, 24, 36, 48, 60, 72, 96 h | copper | 0.5, 1, 2, 3, 5, 8, 10 mg/L | growth, photosynthetic pigments, antioxidant system | Microcystis aeruginosa | [95] |
high-density polyethylene | NA | NA | 0.5, 1, 1.5, 2, 4, 6, 8, 10, 12 h, 7, 14, 15, 21, 28, 30, 35, 42, 45 days | copper, cadmium, lead | copper: 0.05 mg/L cadmium: 0.01 mg/L lead: 0.05 mg/L | body length, condition factor, body weight, antioxidant system, lipid peroxidation | Hippocampus kuda | [90] |
polyethylene | 250–300 μm | 1 mg/mL | 72 h, 3, 7, 14, 21, 28 days | silver, copper, chromium | silver: 0.001 mg/L, copper: 0.05 mg/L, chromium: 0.5 mg/L | growth, photosynthesis activity, oxidative stress | Scenedesmus armatus, Microcystis aeruginosa | [96] |
polyethylene | 250–300 μm | NA | 3, 7, 14, 21, 28 days | amoxicillin, ibuprofen, sertraline, simazine | NA | growth, photosynthetic activity | Scenedesmus armatus, Microcystis aeruginosa | [97] |
polystyrene | NA | 1 mg/L | 2, 4, 6, 8 days | lead | 0.05, 0.1, 0.2, 0.5 mg/L | growth, photosynthetic pigments, antioxidant system, ultrastructure | Microcystis aeruginosa | [98] |
polyamide | 5–50 μm | 25–250 mg/L | NA | bisphenol a | 5, 7.5, 10, 12.5, 15, 20 mg/L | immobilization | Daphnia magna | [99] |
polyethylene | 4–6 μm | 10 mg/L | NA | benzo(a)pyrene, perfluorooctanesulfonic acid, benzophenone-3 | benzo(a)pyrene: 0.01 and 16.64 μg/g perfluorooctanesulfonic acid: 0.12, 55.65 µg/g benzophenone-3: 0.14, 24 ng/g | embryonic survival, hatching success, larvae head length, total length, abnormal individuals, distance swam, velocity | Oryzias melastigma | [100] |
polyethylene | 10–90 µm | 0–25,000 MP/mL | 48 h | triclosan | 300 µg/L | mortality | Acartia tonsa | [101] |
polyethylene | 15–25 μm | 500, 1000 μg/L | 15 days | lead | 2.5, 5 mg/L | hepatotoxicity, neurotoxicity, antioxidant system, metabolism | Caridina fossarum | [102] |
polystyrene | 0.1 μm | 10, 100 µg/L | 1, 2, 3, 4, 6, 8, 10, 12, 14 days | roxithromycin | 50 µg/L | neurotoxicity, antioxidant system, cytochrome activity | Oreochromis niloticus | [103] |
polyethylene, polystyrene, polyvinyl chloride | polyethylene, polystyrene, polyvinyl chloride: 74 μm polyvinyl chloride 800: 1 μm | 0.01, 0.02, 0.05, 0.1 g/L | 24, 48, 72, 96 h | triclosan | 0.1, 0.2, 0.3, 0.4 mg/L | growth, antioxidant system, lipid peroxidation | Skeletonema costatum | [104] |
polystyrene | 1.07, 2.14, 5 μm | 2 × 105, 2 × 106, 4 × 106, 6 × 106 items/mL | 12, 24, 36, 48, 60, 72, 84, 96 h | cadmium | 22.5, 45, 57.6, 67.5, 90 mg/L | antioxidant system, lipid peroxidation | Euplotes vannus | [91] |
polyethylene terephthalate | aged: 20–50 nm; virgin: 100, 300 nm | 0.8 mg/L | 1, 2, 4, 8, 14, 24, 36 h | lead | 2 µg/mL | growth, photosynthetic pigments, antioxidant system, lipid peroxidation, soluble proteins, soluble sugars | Chlorella pyrenoidosa | [92] |
polystyrene, polyvinyl chloride | 150, 250 μm | 0.01, 0.1, 1 g/L | 1, 2, 3, 4, 5, 6, 7 days | copper, cadmium | 0.5, 1, 2 mg/L | antioxidant system, lipid peroxidation | Chlorella vulgaris | [105] |
polystyrene | 100 nm, 5 μm | 10, 20, 50, 100 mg/L | 0.5, 1, 2, 4, 5, 6, 8, 15, 24, 30, 48, 60, 72, 120, 150, 180 h | arsenic | 10, 20, 30, 40, 50, 75, 100, 150 mg/L | growth, photosynthesis, respiration | Chlamydomonas reinhardtii | [106] |
polypropylene, polystyrene, polyvinyl chloride | <100 μm | 0.1, 0.2, 0.4, 1 g/L | 24, 36, 48, 72, 96 h | lead, copper, chromium, cadmium | 50, 500, 1000 μg/L | cell density, antioxidant system, growth | Chlorella vulgaris | [107] |
Microplastic Type | Microplastic Size | Microplastic Concentration | Exposure Time | Pollutants | Pollutant Concentration | Phenotype | GO/KEGG Analysis | Experiment Model | Reference |
---|---|---|---|---|---|---|---|---|---|
polyethylene, polystyrene | <100 μm | 20 g/L | 3, 6 days | pyrene | 0.5, 5, 50 µg/L | phagocytosis rate, micronuclei/1000 cells | NA | Mytilus galloprovincialis | [108] |
polystyrene | 0.05 μm | 0.1, 1 µg/mL | 1, 2, 3, 4, 5, 6, 7, 8 days | water-accommodated fractions | NA | growth rate | mRNA processing, peptide biosynthesis | Brachionus koreanus | [109] |
Microplastic Type | Microplastic Size | Microplastic Concentration | Exposure Time | Pollutants | Pollutant Concentration | Phenotype | Genes | Experiment Model | Reference |
---|---|---|---|---|---|---|---|---|---|
polyvinyl chloride | 140.7 ± 5.11 μm | 0.5 mg/L | 14 days | copper | 0.25 mg/L | hepatic histopathology, number of melanomacrophage centers, melanomacrophage center area | hsp70, tnfa, il1b, cyp1a1, gst, cas3, cas9 | Cyprinus carpio | [33] |
polystyrene | 2.5 μm | 100 μg/L | NA | cadmium, lead, zinc | 100 mg/L | gut microbiota, gonadal development | mGnRH, GnRHR, B-AR-α, L-AR-α, L-ER-α, L-ER-β, VTG1, ChgL, G-ER-α | Oryzias melastigma | [112] |
microspheres | 1–5 mm | 2 mg/L | 2, 6, 10, 14 days post-fertilization | copper | 60, 125 mg/L | mortality, oxidative stress, antioxidant system | cat, gstp1, mt2, ache | Danio rerio | [113] |
polystyrene | 5 μm | 500 μg/L | 6, 12, 18, 24 h, 30 days | cadmium | 5 μg/L | body weight, antioxidant system | keap1b, igf1rb, igfbp5a, nrf2, mt2, hsp70, igfbp1a, bcl2, ghra, igf1, igf1ra, igfbp2b, igfbp6a | Danio rerio | [114] |
polystyrene | 2, 6 μm | 32 mg/L | 7, 14 days | fluoranthene | 30 mg/L | histopathological lesions/ abnormalities, oxidative stress, antioxidant system | cat, pk, sod | Mytilus edulis, Mytilus galloprovincialis | [115] |
polyethylene, polyethylene terephthalate, polypropylene, polyethylene vinyl acetate, high-density polyethylene, | <100 µm | 50 µg/L | 1, 3 days | benzo[a]pyrene | 1 µg/L | micronuclei frequency, DNA fragmentation | DNA ligase, bax, cas-3, p53, | Mytilus galloprovincialis | [116] |
low-density polyethylene | 20–25 µm | 10 mg/L | 7, 14, 28 days | benzo[a]pyrene | 15 µg/g, 150 ng/L | immune, DNA strand breaks | hsp70 | Mytilus galloprovincialis | [117] |
polystyrene | 2 μm | 1, 10 mg/L | 48, 96 h, 21 days | zinc | 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 10 mg/L | survival rate, chlorella ingestion, total fecundity, days of the first brood, antennae beating, oxidative stress, antioxidant system | SOD, CAT, GST, ABC transporter | Daphnia magna | [110] |
polystyrene | 10 μm | 0, 1, 10, 20, 50, 100, 200 mg/L | 1, 2, 3, 4, 5, 6, 7, 8 min, 2, 3, 4, 5, 6, 7 days post-amputation | lead | 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1 mg/L | regeneration, antioxidant system, DNA integrity, energy metabolism, ferroptosis | Cu-Zn SOD, GST, GPX, nak, p53, cas-3 | Dugesia japonica | [118] |
microsphere | 1–5 µm | 0.3 mg/L | 3, 9 days post-fertilization | copper | 10, 30, 90, 270, 810 µg/L | NA | cat, ache | Pagellus bogaraveo | [88] |
polystyrene | 10 μm | 2, 20, 200 μg/L | 2 days post-hatching, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 days post-fertilization | phenanthrene | 50 μg/L | deformity rate, hatching time, hatching rate, body length, body weight, death rate, heartbeat | GATA, BMP, COX, SmyD1, EPO, NKX2.5 | Oryzias melastigma | [119] |
polystyrene | 5 μm | 20, 200 mg/L | 3 weeks | cadmium | 100 mg/L | antioxidant system, metal detoxification | nfe212, mt1, mt2, tnfa, il1b, ifng1-2 | Danio rerio | [120] |
virgin polystyrene | 80 nm | 50, 500 μg/L | 24, 48, 96 h | cadmium | 50 μg/L | bending of gill lamellae | IL-1β, TNF-α, MT, HSP70 | Channa maculata, Channa argus | [121] |
polystyrene | 6 μm | 2.5, 5, 10, 20, 30 mg/L | 24, 48 h | chromium | 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 mg/L | adult survival rate, first neonate body length, antioxidant system | PGC-1α, Drp1, ABCB1, ABCB7, ABCC4-1, ABCC9-1 | Daphnia magna | [122] |
carboxyl -modified polystyrene | 2 μm | 1, 10 μg/mL | 48 h | triclosan | 100, 150, 200, 250, 300, 330, 360, 400, 425, 450, 500 μg/L | survival rate, total fecundity, first brood day, heart rate, oxidative stress, antioxidant system | ABCC4-3 | Daphnia magna | [123] |
polystyrene | NA | 400 μg/L | 7, 14, 21 days | lead | 5, 50 μg/L | antioxidant system, lipid metabolism, histopathological changes | ACC, Elovl6, FAD6b | Eriocheir sinensis | [124] |
polystyrene | NA | 2, 20, 200 μg/L | 60 days | phenanthrene | 50 µg/L | histopathological changes, atretic follicles, heartbeat, body width | 3βHSD, 17βHSD, 11βHSD | Oryzias melastigma | [111] |
polystyrene | 80 nm, 0.5 μm | 200 μg/L | 24, 48, 96 h | cadmium | 50 μg/L | antioxidant system | IL-1β, HSP70, MT | Channa argus | [125] |
Microplastic Type | Microplastic Size | Microplastic Concentration | Exposure Time | Pollutants | Pollutant Concentration | Phenotype | GO/KEGG Analysis | Genes | Experiment Model | Reference |
---|---|---|---|---|---|---|---|---|---|---|
polyethylene glycol terephthalate | NA | 1000, 100,000 particles/kg | 30 days | cadmium | 0.5, 50 mg/kg | antioxidant system | lipid metabolism, immune system, glycan biosynthesis, glycan metabolism | BSL78_01257, BSL78_04100, BSL78_07802, BSL78_08543, BSL78_12019, BSL78_20141 | Apostichopus japonicus | [126] |
polystyrene | 0.1, 20 μm | 40 mg/L | 3, 6, 12 h, 1, 2, 4, 6, 8, 10, 14 days | copper, natural organic matter | copper: 5 mg/L; natural organic matter: 5 mg/L | antioxidant system | metal ion transport, DNA repair, cell cycle regulation, oxidative stress response | LOXA, COX4I1, MAT2AB, ABCA12, ABCB5, KIF20B, RAD52, LMX1BA, MIOX. DHRS7CB | Danio rerio | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.J.; Kim, W.R.; Park, E.G.; Lee, D.H.; Kim, J.-m.; Jeong, H.-s.; Roh, H.-Y.; Choi, Y.H.; Srivastava, V.; Mishra, A.; et al. Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics. Int. J. Mol. Sci. 2025, 26, 1080. https://doi.org/10.3390/ijms26031080
Lee YJ, Kim WR, Park EG, Lee DH, Kim J-m, Jeong H-s, Roh H-Y, Choi YH, Srivastava V, Mishra A, et al. Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics. International Journal of Molecular Sciences. 2025; 26(3):1080. https://doi.org/10.3390/ijms26031080
Chicago/Turabian StyleLee, Yun Ju, Woo Ryung Kim, Eun Gyung Park, Du Hyeong Lee, Jung-min Kim, Hyeon-su Jeong, Hyun-Young Roh, Yung Hyun Choi, Vaibhav Srivastava, Anshuman Mishra, and et al. 2025. "Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics" International Journal of Molecular Sciences 26, no. 3: 1080. https://doi.org/10.3390/ijms26031080
APA StyleLee, Y. J., Kim, W. R., Park, E. G., Lee, D. H., Kim, J.-m., Jeong, H.-s., Roh, H.-Y., Choi, Y. H., Srivastava, V., Mishra, A., & Kim, H.-S. (2025). Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics. International Journal of Molecular Sciences, 26(3), 1080. https://doi.org/10.3390/ijms26031080