The Role of Genetic, Environmental, and Dietary Factors in Alzheimer’s Disease: A Narrative Review
Abstract
:1. Introduction
1 | Stage 1: Asymptomatic individuals with biomarker evidence of AD. Subjective complaint, functional impairment, or detectable abnormalities on sensitive neuropsychological measures are absent. Characteristic pathophysiological signs of AD may be demonstrated by assessment of various biomarkers but no evidence of clinical impact. |
2 | Stage 2: A transitional stage which denotes the earliest detectable clinical symptoms that might be due to AD in individuals who are cognitively unimpaired. Patients have characteristic pathophysiological changes in AD and subtle detectable abnormalities on sensitive neuropsychological measures or subjective complaints of mild cognitive symptoms but have no functional impairment yet. |
3 | Stage 3: These patients have characteristic pathophysiological indicators of AD. More apparent detectable abnormalities on sensitive neuropsychological measures and mild but detectable cognitive impairment resulting in significant functional loss are observed (i.e., inefficient in activities of daily living but still independent). The functional impairment corresponds with the syndrome of “mild cognitive impairment” that may also encompass patients in “late Stage 2” or “early Stage 4”. |
4–6 | Stages 4, 5, and 6: Patients present with “overt dementia”, progressing through mild, moderate, and severe stages. Loss of independence with progressively worse functional loss is expected. |
2. Risk Factors
2.1. Aging
2.2. Gender
2.3. Genetic Factors
2.4. Diseases
2.5. Infectious Agents
2.6. Environmental Factors
2.6.1. Air Pollution
2.6.2. Toxic Heavy Metals and Other Elements
2.6.3. Pesticides
2.6.4. Microplastics and Nanoplastics
2.7. Tobacco
2.8. Alcohol
2.9. Diet
2.10. Vitamin D Deficiency
2.11. Gut Microbiota
3. Treatment and Management
Pharmacologic Category: Cholinesterase Inhibitors | |||
Donepezil Approval History: 1996: Initial U.S. approval 2014: extended release, combined with memantine 2022: transdermal delivery system | Rivastigmine Approval: 2000 | Galantamine Approval: 2001 | Benzgalantamine Approval: 2024 |
Labeled Indication: Treatment of mild, moderate, or severe dementia of the Alzheimer’s type. | Labeled Indication: Oral: Treatment of mild to moderate dementia of AD type. Transdermal: Treatment of mild, moderate, and severe dementia of AD type. | Labeled Indication: Treatment of mild to moderate dementia of AD type. | Labeled Indication: Treatment of mild to moderate dementia of AD type. |
|
|
|
|
Pharmacologic Category: NMDA receptor antagonist | Pharmacologic Category: Monoclonal Antibodies | ||
Memantine Approval: 2013 | Aducanumab (BIIB037) Approval: 2021 (accelerated FDA approval) | Donanemab Approval: 2024 | Lecanemab Approval: 2023 |
Labeled Indication: Treatment of moderate to severe dementia of the Alzheimer’s type. | Labeled Indication: Treatment of AD in patients with mild cognitive impairment or mild dementia stage of disease | Labeled Indication: Treatment of AD; initiated in patients with mild cognitive impairment or mild dementia stage. | Labeled Indication: Treatment of AD; to be initiated in patients with mild cognitive impairment or mild dementia stage of disease. |
|
|
|
|
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017–2025; World Health Organization: Geneva, Switzerland, 2017; p. 52. [Google Scholar]
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- The Global Dementia Observatory Reference Guide; World Health Organization: Geneva, Switzerland, 2018.
- 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [CrossRef]
- TURKSTAT Corporate. Tuik.gov.tr. 2024. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Elderly-Statistics-2023-53710&dil=2 (accessed on 4 September 2024).
- Ahmed, T.F.; Ahmed, A.; Imtiaz, F. History in Perspective: How Alzheimer’s Disease Came to Be Where It Is? Brain Res. 2021, 1758, 147342. [Google Scholar] [CrossRef] [PubMed]
- Kiani, L.; Hodson, R. Nature Milestones. The History of Alzheimer’s Disease (1906–2024). Available online: https://www.nature.com/immersive/alzheimers-disease-history/index.html (accessed on 9 December 2024).
- Cai, Y.; Liu, J.; Wang, B.; Sun, M.; Yang, H. Microglia in the Neuroinflammatory Pathogenesis of Alzheimer’s Disease and Related Therapeutic Targets. Front. Immunol. 2022, 13, 856376. [Google Scholar] [CrossRef] [PubMed]
- Schöll, M.; Verberk, I.M.W.; del Campo, M.; Delaby, C.; Therriault, J.; Chong, J.R.; Palmqvist, S.; Alcolea, D. Challenges in the Practical Implementation of Blood Biomarkers for Alzheimer’s Disease. Lancet Health Longev. 2024, 5, 100630. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Huang, J.; Zhou, H.; Meilandt, W.J.; Dejanovic, B.; Zhou, Y.; Bohlen, C.J.; Lee, S.H.; Ren, J.; Liu, A.; et al. Integrative in Situ Mapping of Single-Cell Transcriptional States and Tissue Histopathology in a Mouse Model of Alzheimer’s Disease. Nat. Neurosci. 2023, 26, 430–446. [Google Scholar] [CrossRef] [PubMed]
- Baligács, N.; Albertini, G.; Borrie, S.C.; Serneels, L.; Pridans, C.; Balusu, S.; De Strooper, B. Homeostatic Microglia Initially Seed and Activated Microglia Later Reshape Amyloid Plaques in Alzheimer’s Disease. Nat. Commun. 2024, 15, 10634. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Picard, G.; Sarazin, M. Early Detection of Alzheimer’s Disease: New Diagnostic Criteria. Dialogues Clin. Neurosci. 2009, 11, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised Criteria for Diagnosis and Staging of Alzheimer’s Disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef] [PubMed]
- FDA. Early Alzheimer’s Disease: Developing Drugs for Treatment Guidance for Industry, Draft Guidance, Revision 2 (March 2024). Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/early-alzheimers-disease-developing-drugs-treatment (accessed on 29 November 2024).
- Zhen, M.; Dang, M.; Cao, Z.; Xia, X.; Peng, F.; Wang, S.; Liu, Y. Methylated Cell-Free DNA as a Novel Biomarker in Alzheimer’s Disease. Clin. Chim. Acta 2025, 566, 120069. [Google Scholar] [CrossRef]
- Li, Y.-B.; Fu, Q.; Guo, M.; Du, Y.; Chen, Y.; Cheng, Y. MicroRNAs: Pioneering Regulators in Alzheimer’s Disease Pathogenesis, Diagnosis, and Therapy. Transl. Psychiatry 2024, 14, 367. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Song, X.; Wang, X.; Wang, S.; He, Z. The Early Diagnosis of Alzheimer’s Disease: Blood-based Panel Biomarker Discovery by Proteomics and Metabolomics. CNS Neurosci. Ther. 2024, 30, e70060. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia Prevention, Intervention, and Care: 2024 Report of the Lancet Standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Weis, B.K.; Balshaw, D.; Barr, J.R.; Brown, D.; Ellisman, M.; Lioy, P.; Omenn, G.; Potter, J.D.; Smith, M.T.; Sohn, L.; et al. Personalized Exposure Assessment: Promising Approaches for Human Environmental Health Research. Environ. Health Perspect. 2005, 113, 840–848. [Google Scholar] [CrossRef]
- Agnihotri, A.; Aruoma, O.I. Alzheimer’s Disease and Parkinson’s Disease: A Nutritional Toxicology Perspective of the Impact of Oxidative Stress, Mitochondrial Dysfunction, Nutrigenomics and Environmental Chemicals. J. Am. Coll. Nutr. 2020, 39, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.J.; Fletcher, J.M. Can Education Rescue Genetic Liability for Cognitive Decline? Soc. Sci. Med. 2015, 127, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-L.; Zhuo, Y.-Y.; Luo, D.-H. Education Moderates the Negative Effect of Apolipoprotein E Ɛ4 on Response Inhibition in Older Adults. J. Alzheimer’s Dis. 2021, 82, 1147–1157. [Google Scholar] [CrossRef]
- Hendriks, S.; Ranson, J.M.; Peetoom, K.; Lourida, I.; Tai, X.Y.; de Vugt, M.; Llewellyn, D.J.; Köhler, S. Risk Factors for Young-Onset Dementia in the UK Biobank. JAMA Neurol. 2024, 81, 134. [Google Scholar] [CrossRef]
- Mucke, L. Alzheimer’s Disease. Nature 2009, 461, 895–897. [Google Scholar] [CrossRef]
- Nelson, P.T.; Head, E.; Schmitt, F.A.; Davis, P.R.; Neltner, J.H.; Jicha, G.A.; Abner, E.L.; Smith, C.D.; Van Eldik, L.J.; Kryscio, R.J.; et al. Alzheimer’s Disease Is Not “Brain Aging”: Neuropathological, Genetic, and Epidemiological Human Studies. Acta Neuropathol. 2011, 121, 571–587. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Liu, Y.; Wang, X.; Ping, F.; Xu, L.; Zhang, H.; Li, W.; Li, Y. Global Burden of Dementia in Younger People: An Analysis of Data from the 2021 Global Burden of Disease Study. eClinicalMedicine 2024, 77, 102868. [Google Scholar] [CrossRef] [PubMed]
- Cankar, N.; Beschorner, N.; Tsopanidou, A.; Qvist, F.L.; Colaço, A.R.; Andersen, M.; Kjaerby, C.; Delle, C.; Lambert, M.; Mundt, F.; et al. Sleep Deprivation Leads to Non-Adaptive Alterations in Sleep Microarchitecture and Amyloid-β Accumulation in a Murine Alzheimer Model. Cell Rep. 2024, 43, 114977. [Google Scholar] [CrossRef] [PubMed]
- Agnati, L.F.; Leo, G.; Genedani, S.; Piron, L.; Rivera, A.; Guidolin, D.; Fuxe, K. Common Key-Signals in Learning and Neurodegeneration: Focus on Excito-Amino Acids, β-Amyloid Peptides and α-Synuclein. J. Neural Transm. 2009, 116, 953–974. [Google Scholar] [CrossRef] [PubMed]
- Van Valen, L. A New Evolutionary Law. Evol. Theory 1973, 1, 1–30. [Google Scholar]
- Hohman, T.J.; Dumitrescu, L.; Barnes, L.L.; Thambisetty, M.; Beecham, G.; Kunkle, B.; Gifford, K.A.; Bush, W.S.; Chibnik, L.B.; Mukherjee, S.; et al. Sex-Specific Association of Apolipoprotein E with Cerebrospinal Fluid Levels of Tau. JAMA Neurol. 2018, 75, 989. [Google Scholar] [CrossRef]
- Neal, M.A.O. Women and the Risk of Alzheimer’s Disease. Front. Glob. Women’s Health 2024, 4, 1324522. [Google Scholar] [CrossRef]
- Yoo, J.E.; Yoon, D.H.; Jin, E.H.; Han, K.; Choi, S.-Y.; Choi, S.H.; Bae, J.H.; Park, K.-I. Association between Depression and Young-Onset Dementia in Middle-Aged Women. Alzheimer’s Res. Ther. 2024, 16, 137. [Google Scholar] [CrossRef] [PubMed]
- Eissman, J.M.; Archer, D.B.; Mukherjee, S.; Lee, M.L.; Choi, S.; Scollard, P.; Trittschuh, E.H.; Mez, J.B.; Bush, W.S.; Kunkle, B.W.; et al. Sex-specific Genetic Architecture of Late-life Memory Performance. Alzheimer’s Dement. 2024, 20, 1250–1267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-T.; Therriault, J.; Tissot, C.; Servaes, S.; Rahmouni, N.; Macedo, A.C.; Fernandez-Arias, J.; Mathotaarachchi, S.S.; Stevenson, J.; Lussier, F.Z.; et al. Hormone Therapy Is Associated with Lower Alzheimer’s Disease Tau Biomarkers in Post-Menopausal Females -Evidence from Two Independent Cohorts. Alzheimer’s Res. Ther. 2024, 16, 162. [Google Scholar] [CrossRef] [PubMed]
- Saleh, R.N.M.; Hornberger, M.; Ritchie, C.W.; Minihane, A.M. Hormone Replacement Therapy Is Associated with Improved Cognition and Larger Brain Volumes in At-Risk APOE4 Women: Results from the European Prevention of Alzheimer’s Disease (EPAD) Cohort. Alzheimer’s Res. Ther. 2023, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, G.T.; Betthauser, T.J.; Boyle, R.; Koscik, R.L.; Klinger, H.M.; Chibnik, L.B.; Jonaitis, E.M.; Yau, W.-Y.W.; Wenzel, A.; Christian, B.T.; et al. Association of Age at Menopause and Hormone Therapy Use with Tau and β-Amyloid Positron Emission Tomography. JAMA Neurol. 2023, 80, 462. [Google Scholar] [CrossRef] [PubMed]
- Marder, K.; Sano, M. Estrogen to Treat Alzheimer’s Disease: Too Little, Too Late? Neurology 2000, 54, 2035–2037. [Google Scholar] [CrossRef] [PubMed]
- Resnick, S.M.; Henderson, V.W. Hormone Therapy and Risk of Alzheimer Disease. JAMA 2002, 288, 2170. [Google Scholar] [CrossRef]
- Maki, P.M. Critical Window Hypothesis of Hormone Therapy and Cognition. Menopause 2013, 20, 695–709. [Google Scholar] [CrossRef]
- Mills, Z.B.; Faull, R.L.M.; Kwakowsky, A. Is Hormone Replacement Therapy a Risk Factor or a Therapeutic Option for Alzheimer’s Disease? Int. J. Mol. Sci. 2023, 24, 3205. [Google Scholar] [CrossRef]
- Alzheimer’s Disease Genetics Fact Sheet. National Institute on Aging. Available online: https://www.nia.nih.gov/health/alzheimers-causes-and-risk-factors/alzheimers-disease-genetics-fact-sheet (accessed on 10 July 2024).
- Chen, H.; Chen, F.; Jiang, Y.; Zhang, L.; Hu, G.; Sun, F.; Zhang, M.; Ji, Y.; Chen, Y.; Che, G.; et al. A Review of ApoE4 Interference Targeting Mitophagy Molecular Pathways for Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 881239. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yang, D.-S.; Goulbourne, C.N.; Im, E.; Stavrides, P.; Pensalfini, A.; Chan, H.; Bouchet-Marquis, C.; Bleiwas, C.; Berg, M.J.; et al. Faulty Autolysosome Acidification in Alzheimer’s Disease Mouse Models Induces Autophagic Build-up of Aβ in Neurons, Yielding Senile Plaques. Nat. Neurosci. 2022, 25, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Najm, R.; Zalocusky, K.A.; Zilberter, M.; Yoon, S.Y.; Hao, Y.; Koutsodendris, N.; Nelson, M.; Rao, A.; Taubes, A.; Jones, E.A.; et al. In Vivo Chimeric Alzheimer’s Disease Modeling of Apolipoprotein E4 Toxicity in Human Neurons. Cell Rep. 2020, 32, 107962. [Google Scholar] [CrossRef]
- Shi, Y.; Yamada, K.; Liddelow, S.A.; Smith, S.T.; Zhao, L.; Luo, W.; Tsai, R.M.; Spina, S.; Grinberg, L.T.; Rojas, J.C.; et al. ApoE4 Markedly Exacerbates Tau-Mediated Neurodegeneration in a Mouse Model of Tauopathy. Nature 2017, 549, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Fortea, J.; Zaman, S.H.; Hartley, S.; Rafii, M.S.; Head, E.; Carmona-Iragui, M. Alzheimer’s Disease Associated with Down Syndrome: A Genetic Form of Dementia. Lancet Neurol. 2021, 20, 930–942. [Google Scholar] [CrossRef]
- Fortea, J.; Pegueroles, J.; Alcolea, D.; Belbin, O.; Dols-Icardo, O.; Vaqué-Alcázar, L.; Videla, L.; Gispert, J.D.; Suárez-Calvet, M.; Johnson, S.C.; et al. APOE4 Homozygosity Represents a Distinct Genetic Form of Alzheimer’s Disease. Nat. Med. 2024, 30, 1284–1291. [Google Scholar] [CrossRef]
- Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of Lipids in Alzheimer’s Disease Pathology and Potential Therapies. Front. Physiol. 2020, 11, 598. [Google Scholar] [CrossRef] [PubMed]
- Crehan, H.; Hardy, J.; Pocock, J. Blockage of CR1 Prevents Activation of Rodent Microglia. Neurobiol. Dis. 2013, 54, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Dai, W.; Ma, T. Impacts of CR1 Genetic Variants on Cerebrospinal Fluid and Neuroimaging Biomarkers in Alzheimer’s Disease. BMC Med. Genet. 2020, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, J.-T.; Tan, L. PLD3 in Alzheimer’s Disease. Mol. Neurobiol. 2015, 51, 480–486. [Google Scholar] [CrossRef]
- Foster, E.M.; Dangla-Valls, A.; Lovestone, S.; Ribe, E.M.; Buckley, N.J. Clusterin in Alzheimer’s Disease: Mechanisms, Genetics, and Lessons from Other Pathologies. Front. Neurosci. 2019, 13, 164. [Google Scholar] [CrossRef] [PubMed]
- Yuste-Checa, P.; Bracher, A.; Hartl, F.U. The Chaperone Clusterin in Neurodegeneration—Friend or Foe? BioEssays 2022, 44, 2100287. [Google Scholar] [CrossRef] [PubMed]
- Palihati, N.; Tang, Y.; Yin, Y.; Yu, D.; Liu, G.; Quan, Z.; Ni, J.; Yan, Y.; Qing, H. Clusterin Is a Potential Therapeutic Target in Alzheimer’s Disease. Mol. Neurobiol. 2024, 61, 3836–3850. [Google Scholar] [CrossRef] [PubMed]
- Nho, K.; Risacher, S.L.; Apostolova, L.G.; Bice, P.J.; Brosch, J.R.; Deardorff, R.; Faber, K.; Farlow, M.R.; Foroud, T.; Gao, S.; et al. CYP1B1-RMDN2 Alzheimer’s Disease Endophenotype Locus Identified for Cerebral Tau PET. Nat. Commun. 2024, 15, 8251. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, H.; Jiang, Y.; Chen, Y.; Zhong, H.; Fu, W.Y.; Lo, R.M.N.; Wong, B.W.Y.; Cheng, E.Y.L.; Mok, K.Y.; et al. Transethnic Analysis Identifies SORL1 Variants and Haplotypes Protective against Alzheimer’s Disease. Alzheimer’s Dement. 2024, 21, e14214. [Google Scholar] [CrossRef] [PubMed]
- Mega Vascular Cognitive Impairment and Dementia (MEGAVCID) consortium A Genome-wide Association Meta-analysis of All-cause and Vascular Dementia. Alzheimer’s Dement. 2024, 20, 5973–5995. [CrossRef] [PubMed]
- Feigin, A.; Evans, E.E.; Fisher, T.L.; Leonard, J.E.; Smith, E.S.; Reader, A.; Mishra, V.; Manber, R.; Walters, K.A.; Kowarski, L.; et al. Pepinemab Antibody Blockade of SEMA4D in Early Huntington’s Disease: A Randomized, Placebo-Controlled, Phase 2 Trial. Nat. Med. 2022, 28, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, D.; Saake, A.; Studer, S.; Buchmann, A.; Rauen, K.; Gruber, E.; Michels, L.; Nitsch, R.M.; Hock, C.; Gietl, A.; et al. Hypertension and Cerebral Blood Flow in the Development of Alzheimer’s Disease. Alzheimer’s Dement. 2024, 20, 7729–7744. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.; Sharma, S.; Kelberman, M.A.; Ware, C.; Guo, N.; Qin, Z.; Weinshenker, D.; Parent, M.B. Obesity during Preclinical Alzheimer’s Disease Development Exacerbates Brain Metabolic Decline. J. Neurochem. 2024, 168, 801–821. [Google Scholar] [CrossRef]
- Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017, 2017, 6871089. [Google Scholar] [CrossRef]
- Kim, J.J.; Diamond, D.M. The Stressed Hippocampus, Synaptic Plasticity and Lost Memories. Nat. Rev. Neurosci. 2002, 3, 453–462. [Google Scholar] [CrossRef]
- Ding, X.; Yin, L.; Zhang, L.; Zhang, Y.; Zha, T.; Zhang, W.; Gui, B. Diabetes Accelerates Alzheimer’s Disease Progression in the First Year Post Mild Cognitive Impairment Diagnosis. Alzheimer’s Dement. 2024, 20, 4583–4593. [Google Scholar] [CrossRef] [PubMed]
- Lennon, M.J.; Lipnicki, D.M.; Lam, B.C.P.; Crawford, J.D.; Schutte, A.E.; Peters, R.; Rydberg-Sterner, T.; Najar, J.; Skoog, I.; Riedel-Heller, S.G.; et al. Blood Pressure, Antihypertensive Use, and Late-Life Alzheimer and Non-Alzheimer Dementia Risk. Neurology 2024, 103, e209715. [Google Scholar] [CrossRef]
- Bennett, S.; Thomas, A.J. Depression and Dementia: Cause, Consequence or Coincidence? Maturitas 2014, 79, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Kiss, A.; Lanctot, K.; Herrmann, N. Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am. J. Geriatr. Psychiatry 2018, 26, 819–827. [Google Scholar] [CrossRef]
- Crump, C.; Sieh, W.; Vickrey, B.G.; Edwards, A.C.; Sundquist, J.; Sundquist, K. Risk of Depression in Persons with Alzheimer’s Disease: A National Cohort Study. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 2024, 16, e12584. [Google Scholar] [CrossRef]
- Tahiri, J.; Mian, M.; Aftan, F.; Habbal, S.; Salehi, F.; Reddy, P.H.; Reddy, A.P. Serotonin in Depression and Alzheimer’s Disease: Focus on SSRI’s Beneficial Effects. Ageing Res. Rev. 2024, 101, 102537. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Shi, L.; Kubzansky, L.D.; Wei, Y.; Castro, E.; Li, H.; Weisskopf, M.G.; Schwartz, J.D. Association of Long-Term Exposure to Air Pollution With Late-Life Depression in Older Adults in the US. JAMA Netw. Open 2023, 6, e2253668. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kang, C.; Lee, W.; Song, I.; Kwon, D.; Oh, J.; Moon, J.; Park, J.; Min, J.; Kim, E.; et al. Particulate Matters (PM2.5, PM10) and the Risk of Depression among Middle-Aged and Older Population: Analysis of the Korean Longitudinal Study of Aging (KLoSA), 2016–2020 in South Korea. Environ. Health 2024, 23, 4. [Google Scholar] [CrossRef]
- Petkus, A.J.; Younan, D.; Wang, X.; Beavers, D.P.; Espeland, M.A.; Gatz, M.; Gruenewald, T.L.; Kaufman, J.D.; Chui, H.C.; Manson, J.E.; et al. Air Pollution and the Dynamic Association between Depressive Symptoms and Memory in Oldest-old Women. J. Am. Geriatr. Soc. 2021, 69, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Monereo-Sánchez, J.; Schram, M.T.; Frei, O.; O’Connell, K.; Shadrin, A.A.; Smeland, O.B.; Westlye, L.T.; Andreassen, O.A.; Kaufmann, T.; Linden, D.E.J.; et al. Genetic Overlap between Alzheimer’s Disease and Depression Mapped onto the Brain. Front. Neurosci. 2021, 15, 653130. [Google Scholar] [CrossRef]
- Kale, M.B.; Bhondge, H.M.; Wankhede, N.L.; Shende, P.V.; Thanekaer, R.P.; Aglawe, M.M.; Rahangdale, S.R.; Taksande, B.G.; Pandit, S.B.; Upaganlawar, A.B.; et al. Navigating the Intersection: Diabetes and Alzheimer’s Intertwined Relationship. Ageing Res. Rev. 2024, 100, 102415. [Google Scholar] [CrossRef] [PubMed]
- Enduru, N.; Fernandes, B.S.; Bahrami, S.; Dai, Y.; Andreassen, O.A.; Zhao, Z. Genetic Overlap between Alzheimer’s Disease and Immune-Mediated Diseases: An Atlas of Shared Genetic Determinants and Biological Convergence. Mol. Psychiatry 2024, 29, 2447–2458. [Google Scholar] [CrossRef] [PubMed]
- Doroszkiewicz, J.; Mroczko, J.; Winkel, I.; Mroczko, B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer’s Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J. Clin. Med. 2024, 13, 5057. [Google Scholar] [CrossRef]
- Kustrimovic, N.; Balkhi, S.; Bilato, G.; Mortara, L. Gut Microbiota and Immune System Dynamics in Parkinson’s and Alzheimer’s Diseases. Int. J. Mol. Sci. 2024, 25, 12164. [Google Scholar] [CrossRef] [PubMed]
- Zingel, R.; Bohlken, J.; Kostev, K. Association Between Inflammatory Bowel Disease and Dementia: A Retrospective Cohort Study. J. Alzheimer’s Dis. 2021, 80, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Rønnow Sand, J.; Troelsen, F.S.; Horváth-Puhó, E.; Henderson, V.W.; Sørensen, H.T.; Erichsen, R. Risk of Dementia in Patients with Inflammatory Bowel Disease: A Danish Population-based Study. Aliment. Pharmacol. Ther. 2022, 56, 831–843. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.E.; Bai, Y.-M.; Tsai, S.-J.; Su, T.-P.; Chen, T.-J.; Wang, Y.-P.; Chen, M.-H. Inflammatory Bowel Disease Is Associated with Higher Dementia Risk: A Nationwide Longitudinal Study. Gut 2021, 70, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Bathini, P.; Brai, E.; Balin, B.J.; Bimler, L.; Corry, D.B.; Devanand, D.P.; Doty, R.L.; Ehrlich, G.D.; Eimer, W.A.; Fulop, T.; et al. Sensory Dysfunction, Microbial Infections, and Host Responses in Alzheimer’s Disease. J. Infect. Dis. 2024, 230, S150–S164. [Google Scholar] [CrossRef] [PubMed]
- Al-Atrache, Z.; Lopez, D.B.; Hingley, S.T.; Appelt, D.M. Astrocytes Infected with Chlamydia Pneumoniae Demonstrate Altered Expression and Activity of Secretases Involved in the Generation of β-Amyloid Found in Alzheimer Disease. BMC Neurosci. 2019, 20, 6. [Google Scholar] [CrossRef]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s Disease Brains: Evidence for Disease Causation and Treatment with Small-Molecule Inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef]
- Bruno, F.; Abondio, P.; Bruno, R.; Ceraudo, L.; Paparazzo, E.; Citrigno, L.; Luiselli, D.; Bruni, A.C.; Passarino, G.; Colao, R.; et al. Alzheimer’s Disease as a Viral Disease: Revisiting the Infectious Hypothesis. Ageing Res. Rev. 2023, 91, 102068. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Han, J.; Zhang, T.; Li, S.; Hou, Y.; Su, H.; Han, F.; Zhang, C. Herpes Simplex Virus 1 Accelerates the Progression of Alzheimer’s Disease by Modulating Microglial Phagocytosis and Activating NLRP3 Pathway. J. Neuroinflamm. 2024, 21, 176. [Google Scholar] [CrossRef]
- Tzeng, N.S.; Chung, C.H.; Lin, F.H.; Chiang, C.P.; Yeh, C.B.; Huang, S.Y.; Lu, R.B.; Chang, H.A.; Kao, Y.C.; Yeh, H.W.; et al. Anti-Herpetic Medications and Reduced Risk of Dementia in Patients with Herpes Simplex Virus Infections—A Nationwide, Population-Based Cohort Study in Taiwan. Neurotherapeutics 2018, 15, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A. Are Infections Seeding Some Cases of Alzheimer’s Disease? Nature 2020, 587, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683. [Google Scholar] [CrossRef] [PubMed]
- Balin, B.J.; Gérard, H.C.; Arking, E.J.; Appelt, D.M.; Branigan, P.J.; Abrams, J.T.; Whittum-Hudson, J.A.; Hudson, A.P. Identification and Localization of Chlamydia Pneumoniae in the Alzheimer’s Brain. Med. Microbiol. Immunol. 1998, 187, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Appelt, D.M.; Roupas, M.R.; Way, D.S.; Bell, M.G.; Albert, E.V.; Hammond, C.J.; Balin, B.J. Inhibition of Apoptosis in Neuronal Cells Infected with Chlamydophila (Chlamydia) Pneumoniae. BMC Neurosci. 2008, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Gérard, H.C.; Fomicheva, E.; Whittum-Hudson, J.A.; Hudson, A.P. Apolipoprotein E4 Enhances Attachment of Chlamydophila (Chlamydia) Pneumoniae Elementary Bodies to Host Cells. Microb. Pathog. 2008, 44, 279–285. [Google Scholar] [CrossRef]
- Little, C.S.; Hammond, C.J.; MacIntyre, A.; Balin, B.J.; Appelt, D.M. Chlamydia Pneumoniae Induces Alzheimer-like Amyloid Plaques in Brains of BALB/c Mice. Neurobiol. Aging 2004, 25, 419–429. [Google Scholar] [CrossRef]
- Lachenmaier, S.M.; Deli, M.A.; Meissner, M.; Liesenfeld, O. Intracellular Transport of Toxoplasma gondii through the Blood–Brain Barrier. J Neuroimmunol. 2014, 232, 119–130. [Google Scholar] [CrossRef]
- Ueno, N.; Harker, K.S.; Clarke, E.V.; McWhorter, F.Y.; Liu, W.F.; Tenner, A.J.; Lodoen, M.B. Real-Time Imaging of Toxoplasma-Infected Human Monocytes under Fluidic Shear Stress Reveals Rapid Translocation of Intracellular Parasites across Endothelial Barriers. Cell. Microbiol. 2014, 16, 580–595. [Google Scholar] [CrossRef]
- Torres, L.; Robinson, S.-A.; Kim, D.-G.; Yan, A.; Cleland, T.A.; Bynoe, M.S. Toxoplasma gondii Alters NMDAR Signaling and Induces Signs of Alzheimer’s Disease in Wild-Type, C57BL/6 Mice. J. Neuroinflamm. 2018, 15, 57. [Google Scholar] [CrossRef]
- Möhle, L.; Israel, N.; Paarmann, K.; Krohn, M.; Pietkiewicz, S.; Müller, A.; Lavrik, I.N.; Buguliskis, J.S.; Schott, B.H.; Schlüter, D.; et al. Chronic Toxoplasma gondii Infection Enhances β-Amyloid Phagocytosis and Clearance by Recruited Monocytes. Acta Neuropathol. Commun. 2016, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.-K.; Pyo, K.-H.; Shin, K.Y.; Hwang, Y.S.; Lim, H.; Lee, S.J.; Moon, J.-H.; Lee, S.H.; Suh, Y.-H.; Chai, J.-Y.; et al. Toxoplasma gondii Infection in the Brain Inhibits Neuronal Degeneration and Learning and Memory Impairments in a Murine Model of Alzheimer’s Disease. PLoS ONE 2012, 7, e33312. [Google Scholar] [CrossRef]
- Shin, J.-H.; Hwang, Y.S.; Jung, B.-K.; Seo, S.-H.; Ham, D.-W.; Shin, E.-H. Reduction of Amyloid Burden by Proliferated Homeostatic Microglia in Toxoplasma gondii-Infected Alzheimer’s Disease Model Mice. Int. J. Mol. Sci. 2021, 22, 2764. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, K.; Grimm, W.D.; Chaudhari, P.K.; Verma, F. Does Periodontal Disease Elevate the Risk of Alzheimer’s Disease and Mild Cognitive Impairment? Evid. Based. Dent. 2021, 22, 123–125. [Google Scholar] [CrossRef]
- Mao, S.; Huang, C.P.; Lan, H.; Lau, H.G.; Chiang, C.P.; Chen, Y.W. Association of Periodontitis and Oral Microbiomes with Alzheimer’s Disease: A Narrative Systematic Review. J. Dent. Sci. 2022, 17, 1762–1779. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Ren, J.; Yu, H.; Yu, W.; Zhou, Y. Porphyromonas gingivalis, a Periodontitis Causing Bacterium, Induces Memory Impairment and Age-Dependent Neuroinflammation in Mice. Immun. Ageing 2018, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ni, J.; Liu, Y.; Teeling, J.L.; Takayama, F.; Collcutt, A.; Ibbett, P.; Nakanishi, H. Cathepsin B Plays a Critical Role in Inducing Alzheimer’s Disease-like Phenotypes Following Chronic Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis in Mice. Brain. Behav. Immun. 2017, 65, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Aragón, F.; Zea-Sevilla, M.A.; Montero, J.; Sancho, P.; Corral, R.; Tejedor, C.; Frades-Payo, B.; Paredes-Gallardo, V.; Albaladejo, A. Oral Health in Alzheimer’s Disease: A Multicenter Case-Control Study. Clin. Oral Investig. 2018, 22, 3061–3070. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, T.; Brickman, A.M.; Cheng, B.; Burkett, S.; Park, H.; Annavajhala, M.K.; Uhlemann, A.; Andrews, H.; Gutierrez, J.; Paster, B.J.; et al. Periodontitis and Brain Magnetic Resonance Imaging Markers of Alzheimer’s Disease and Cognitive Aging. Alzheimer’s Dement. 2024, 20, 2191–2208. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P. Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [PubMed]
- Killin, L.O.J.; Starr, J.M.; Shiue, I.J.; Russ, T.C. Environmental Risk Factors for Dementia: A Systematic Review. BMC Geriatr. 2016, 16, 175. [Google Scholar] [CrossRef]
- Finch, C.E.; Kulminski, A.M. The Alzheimer’s Disease Exposome. Alzheimer’s Dement. 2019, 15, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Saborit, J.M.; Guercio, V.; Gowers, A.M.; Shaddick, G.; Fox, N.C.; Love, S. A Critical Review of the Epidemiological Evidence of Effects of Air Pollution on Dementia, Cognitive Function and Cognitive Decline in Adult Population. Sci. Total Environ. 2021, 757, 143734. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Younan, D.; Millstein, J.; Petkus, A.J.; Garcia, E.; Beavers, D.P.; Espeland, M.A.; Chui, H.C.; Resnick, S.M.; Gatz, M.; et al. Association of Improved Air Quality with Lower Dementia Risk in Older Women. Proc. Natl. Acad. Sci. USA 2022, 119, e2107833119. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Peters, R.; Ee, N.; Peters, J.; Booth, A.; Mudway, I.; Anstey, K.J. Air Pollution and Dementia: A Systematic Review. J. Alzheimer’s Dis. 2019, 70, S145–S163. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Wang, Y.; Huang, Z.; Qian, A.M.; Wang, C.; Tan, L.; McMillin, S.E.; Abresch, C.; Zhang, Z.; Lin, H. Metabolomic Profiling Identifies Signatures and Biomarkers Linking Air Pollution to Dementia Risk: A Prospective Cohort Study. J. Hazard. Mater. 2024, 480, 136498. [Google Scholar] [CrossRef]
- Gui, Z.; Ji, W.; Wang, Y.; Li, J.; Cheng, Y.; Li, L.; Dong, G.; Yang, B.; Zhou, Y. Severer Air Pollution, Poorer Cognitive Function: Findings from 176,345 Elders in Northwestern China. Ecotoxicol. Environ. Saf. 2024, 271, 116008. [Google Scholar] [CrossRef]
- World Health Organization Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. J. Korean Med. Assoc. 2013, 50, 20.
- Kioumourtzoglou, M.A.; Schwartz, J.D.; Weisskopf, M.G.; Melly, S.J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-Term PM2.5 Exposure and Neurological Hospital Admissions in the Northeastern United States. Environ. Health Perspect. 2016, 124, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.P.; Puig, K.L.; Gorr, M.W.; Wold, L.E.; Combs, C.K. A Pilot Study to Assess Effects of Long-Term Inhalation of Airborne Particulate Matter on Early Alzheimer-like Changes in the Mouse Brain. PLoS ONE 2015, 10, e0127102. [Google Scholar] [CrossRef]
- Ard, K.; Thomas, J.; Bullock, C. Toxic Air Pollution and Cognitive Decline: Untangling Particulate Matter. Health Place 2024, 89, 103330. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Solt, A.C.; Henríquez-Roldán, C.; Torres-Jardón, R.; Nuse, B.; Herritt, L.; Villarreal-Calderón, R.; Osnaya, N.; Stone, I.; García, R.; et al. Long-Term Air Pollution Exposure Is Associated with Neuroinflammation, an Altered Innate Immune Response, Disruption of the Blood-Brain Barrier, Ultrafine Particulate Deposition, and Accumulation of Amyloid β-42 and α-Synuclein in Children and Young Adult. Toxicol. Pathol. 2008, 36, 289–310. [Google Scholar] [CrossRef]
- Sampedro, F.; Vilaplana, E.; de Leon, M.J.; Alcolea, D.; Pegueroles, J.; Montal, V.; Carmona-Iragui, M.; Sala, I.; Sánchez-Saudinos, M.-B.; Antón-Aguirre, S.; et al. APOE -by-Sex Interactions on Brain Structure and Metabolism in Healthy Elderly Controls. Oncotarget 2015, 6, 26663–26674. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Jewells, V.; Galaz-Montoya, C.; van Zundert, B.; Pérez-Calatayud, A.; Ascencio-Ferrel, E.; Valencia-Salazar, G.; Sandoval-Cano, M.; Carlos, E.; Solorio, E.; et al. Interactive and Additive Influences of Gender, BMI and Apolipoprotein 4 on Cognition in Children Chronically Exposed to High Concentrations of PM2.5 and Ozone. APOE 4 Females Are at Highest Risk in Mexico City. Environ. Res. 2016, 150, 411–422. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Torres-Jardón, R.; Kulesza, R.J.; Mansour, Y.; González-González, L.O.; Gónzalez-Maciel, A.; Reynoso-Robles, R.; Mukherjee, P.S. Alzheimer Disease Starts in Childhood in Polluted Metropolitan Mexico City. A Major Health Crisis in Progress. Environ. Res. 2020, 183, 109137. [Google Scholar] [CrossRef] [PubMed]
- Alemany, S.; Crous-Bou, M.; Vilor-Tejedor, N.; Milà-Alomà, M.; Suárez-Calvet, M.; Salvadó, G.; Cirach, M.; Arenaza-Urquijo, E.M.; Sanchez-Benavides, G.; Grau-Rivera, O.; et al. Associations between Air Pollution and Biomarkers of Alzheimer’s Disease in Cognitively Unimpaired Individuals. Environ. Int. 2021, 157, 106864. [Google Scholar] [CrossRef] [PubMed]
- Popov, V.A.; Ukraintseva, S.V.; Duan, H.; Yashin, A.I.; Arbeev, K.G. Traffic-Related Air Pollution and APOE4 Can Synergistically Affect Hippocampal Volume in Older Women: New Findings from UK Biobank. Front. Dement. 2024, 3, 1402091. [Google Scholar] [CrossRef] [PubMed]
- Elser, H.; Frankland, T.B.; Chen, C.; Tartof, S.Y.; Mayeda, E.R.; Lee, G.S.; Northrop, A.J.; Torres, J.M.; Benmarhnia, T.; Casey, J.A. Wildfire Smoke Exposure and Incident Dementia. JAMA Neurol. 2024, 82, e244058. [Google Scholar] [CrossRef]
- Fania, A.; Monaco, A.; Amoroso, N.; Bellantuono, L.; Cazzolla Gatti, R.; Firza, N.; Lacalamita, A.; Pantaleo, E.; Tangaro, S.; Velichevskaya, A.; et al. Machine Learning and XAI Approaches Highlight the Strong Connection between O3 and NO2 Pollutants and Alzheimer’s Disease. Sci. Rep. 2024, 14, 5385. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Z.; Ling, Y.; Teng, W.; Cui, J.; Yan, Z.; Hou, X.; Cen, W.; Long, N.; Li, W.; et al. Causal Effect of Air Pollution on the Risk of Brain Health and Potential Mediation by Gut Microbiota. Ecotoxicol. Environ. Saf. 2024, 285, 117080. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, Y.; Si, H.; Li, J.; Zhao, Y.; Gao, T.; Pi, J.; Zhang, R.; Chen, R.; Chen, W.; et al. The Effect of Real-Ambient PM2.5 Exposure on the Lung and Gut Microbiomes and the Regulation of Nrf2. Ecotoxicol. Environ. Saf. 2023, 254, 114702. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.; Li, Q.; Wang, Y.-J.; Guo, J. Gut Microbiota and Alzheimer’s Disease: Pathophysiology and Therapeutic Perspectives. J. Alzheimer’s Dis. 2021, 83, 963–976. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Cheng, X.; Chen, G.; Zhang, Y.; Tian, Z.; Wang, Y.; Wang, H.; Guo, X.; Li, H.; et al. APOE Ε4 Allele Modifies the Associations of Toxic Metals and Their Mixture with Cognitive Impairment among Older Adults. Environ. Res. 2024, 255, 119148. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Verheijen, M.; Wittens, M.M.J.; Czuryło, J.; Engelborghs, S.; Hauser, D.; van Herwijnen, M.H.M.; Lundh, T.; Bergdahl, I.A.; Kyrtopoulos, S.A.; et al. Lead-Exposure Associated MiRNAs in Humans and Alzheimer’s Disease as Potential Biomarkers of the Disease and Disease Processes. Sci. Rep. 2022, 12, 15966. [Google Scholar] [CrossRef]
- Wu, S.; Liu, H.; Zhao, H.; Wang, X.; Chen, J.; Xia, D.; Xiao, C.; Cheng, J.; Zhao, Z.; He, Y. Environmental Lead Exposure Aggravates the Progression of Alzheimer’s Disease in Mice by Targeting on Blood Brain Barrier. Toxicol. Lett. 2020, 319, 138–147. [Google Scholar] [CrossRef]
- Rondeau, V.; Jacqmin-Gadda, H.; Commenges, D.; Helmer, C.; Dartigues, J.-F. Aluminum and Silica in Drinking Water and the Risk of Alzheimer’s Disease or Cognitive Decline: Findings from 15-Year Follow-up of the PAQUID Cohort. Am. J. Epidemiol. 2008, 169, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.; King, A.; Troakes, C.; Exley, C. Aluminium in Brain Tissue in Familial Alzheimer’s Disease. J. Trace Elem. Med. Biol. 2017, 40, 30–36. [Google Scholar] [CrossRef]
- Exley, C.; Clarkson, E. Aluminium in Human Brain Tissue from Donors without Neurodegenerative Disease: A Comparison with Alzheimer’s Disease, Multiple Sclerosis and Autism. Sci. Rep. 2020, 10, 7770. [Google Scholar] [CrossRef] [PubMed]
- Becerril-Ortega, J.; Bordji, K.; Fréret, T.; Rush, T.; Buisson, A. Iron Overload Accelerates Neuronal Amyloid-β Production and Cognitive Impairment in Transgenic Mice Model of Alzheimer’s Disease. Neurobiol. Aging 2014, 35, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- Ayton, S.; Wang, Y.; Diouf, I.; Schneider, J.A.; Brockman, J.; Morris, M.C.; Bush, A.I. Brain Iron Is Associated with Accelerated Cognitive Decline in People with Alzheimer Pathology. Mol. Psychiatry 2020, 25, 2932–2941. [Google Scholar] [CrossRef]
- Ayton, S.; Barton, D.; Brew, B.; Brodtmann, A.; Clarnette, R.; Desmond, P.; Devos, D.; Ellis, K.A.; Fazlollahi, A.; Fradette, C.; et al. Deferiprone in Alzheimer Disease. JAMA Neurol. 2024, 82, e243733. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-D.; Zhang, W.; Wang, Z.-Y.; Zhao, P. Serum Copper, Zinc, and Iron Levels in Patients with Alzheimer’s Disease: A Meta-Analysis of Case-Control Studies. Front. Aging Neurosci. 2017, 9, 300. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Yoo, B.; McElheny, D.; Tay, W.; Ishii, Y. Capturing a Reactive State of Amyloid Aggregates: Nmr-Based Characterization of Copper-Bound Alzheimer Disease Amyloid β-Fibrils in a Redox Cycle. J. Biol. Chem. 2014, 289, 9998–10010. [Google Scholar] [CrossRef] [PubMed]
- Voss, K.; Harris, C.; Ralle, M.; Duffy, M.; Murchison, C.; Quinn, J.F. Modulation of Tau Phosphorylation by Environmental Copper. Transl. Neurodegener. 2014, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Gharai, P.K.; Khan, J.; Pradhan, K.; Mallesh, R.; Garg, S.; Arshi, M.U.; Barman, S.; Ghosh, S. Power of Dopamine: Multifunctional Compound Assisted Conversion of the Most Risk Factor into Therapeutics of Alzheimer’s Disease. ACS Chem. Neurosci. 2024, 15, 2470–2483. [Google Scholar] [CrossRef]
- Aloizou, A.-M.; Siokas, V.; Vogiatzi, C.; Peristeri, E.; Docea, A.O.; Petrakis, D.; Provatas, A.; Folia, V.; Chalkia, C.; Vinceti, M.; et al. Pesticides, Cognitive Functions and Dementia: A Review. Toxicol. Lett. 2020, 326, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Petit, P.; Gondard, E.; Gandon, G.; Moreaud, O.; Sauvée, M.; Bonneterre, V. Agricultural Activities and Risk of Alzheimer’s Disease: The TRACTOR Project, a Nationwide Retrospective Cohort Study. Eur. J. Epidemiol. 2024, 39, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Zhang, Y.; Liu, L.; Yan, H. Pesticide Exposure and Risk of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 32222. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.R.; Roy, A.; Shalat, S.L.; von Stein, R.T.; Hossain, M.M.; Buckley, B.; Gearing, M.; Levey, A.I.; German, D.C. Elevated Serum Pesticide Levels and Risk for Alzheimer Disease. JAMA Neurol. 2014, 71, 284. [Google Scholar] [CrossRef]
- Eid, A.; Mhatre-Winters, I.; Sammoura, F.M.; Edler, M.K.; von Stein, R.; Hossain, M.M.; Han, Y.; Lisci, M.; Carney, K.; Konsolaki, M.; et al. Effects of DDT on Amyloid Precursor Protein Levels and Amyloid Beta Pathology: Mechanistic Links to Alzheimer’s Disease Risk. Environ. Health Perspect. 2022, 130, 87005. [Google Scholar] [CrossRef] [PubMed]
- Hayden, K.M.; Norton, M.C.; Darcey, D.; Østbye, T.; Zandi, P.P.; Breitner, J.C.S.; Welsh-Bohmer, K.A. Occupational Exposure to Pesticides Increases the Risk of Incident AD. Neurology 2010, 74, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, S.K.; Winslow, W.; Sharma, R.; Pathak, K.V.; Tallino, S.; Judd, J.M.; Leon, H.; Turk, J.; Pirrotte, P.; Velazquez, R. Glyphosate Exposure Exacerbates Neuroinflammation and Alzheimer’s Disease-like Pathology despite a 6-Month Recovery Period in Mice. J. Neuroinflamm. 2024, 21, 316. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-González, C.; Román, P.; Rueda-Ruzafa, L.; Cardona, D.; Requena, M.; Alarcón, R. Environmental Pesticide Exposure and Alzheimer’s Disease in Southern Spain: A Cross-Sectional Study. Psychiatry Res. 2024, 337, 115932. [Google Scholar] [CrossRef]
- Han, S.-W.; Choi, J.; Ryu, K.-Y. Recent Progress and Future Directions of the Research on Nanoplastic-Induced Neurotoxicity. Neural Regen. Res. 2024, 19, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Singh, A.; Kumar Gupta, V.; Mishra, Y.K. Nano/Micro-Plastic, an Invisible Threat Getting into the Brain. Chemosphere 2024, 361, 142380. [Google Scholar] [CrossRef] [PubMed]
- Paing, Y.M.M.; Eom, Y.; Song, G.B.; Kim, B.; Choi, M.G.; Hong, S.; Lee, S.H. Neurotoxic Effects of Polystyrene Nanoplastics on Memory and Microglial Activation: Insights from in Vivo and in Vitro Studies. Sci. Total Environ. 2024, 924, 171681. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Fu, Y.; Li, J.; Xiang, J.; Yang, M.; Zhang, Y. Impact of Nanoplastics on Alzheimer ’s Disease: Enhanced Amyloid-β Peptide Aggregation and Augmented Neurotoxicity. J. Hazard. Mater. 2024, 465, 133518. [Google Scholar] [CrossRef]
- Shi, L.; Feng, Y.; Wang, J.; Xiao, R.; Wang, L.; Tian, P.; Jin, X.; Zhao, J.; Wang, G. Innovative Mechanisms of Micro- and Nanoplastic-Induced Brain Injury: Emphasis on the Microbiota-Gut-Brain Axis. Life Sci. 2024, 357, 123107. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Deochand, C.; Krotow, A.; Leão, R.; Tong, M.; Agarwal, A.R.; Cadenas, E.; de la Monte, S.M. Tobacco Smoke-Induced Brain White Matter Myelin Dysfunction: Potential Co-Factor Role of Smoking in Neurodegeneration. J. Alzheimer’s Dis. 2016, 50, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Choi, S.; Park, S.M. Effect of Smoking Cessation on the Risk of Dementia: A Longitudinal Study. Ann. Clin. Transl. Neurol. 2018, 5, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Ning, K.; Zhao, L.; Matloff, W.; Sun, F.; Toga, A.W. Association of Relative Brain Age with Tobacco Smoking, Alcohol Consumption, and Genetic Variants. Sci. Rep. 2020, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Mobaderi, T.; Kazemnejad, A.; Salehi, M. Exploring the Impacts of Risk Factors on Mortality Patterns of Global Alzheimer’s Disease and Related Dementias from 1990 to 2021. Sci. Rep. 2024, 14, 15583. [Google Scholar] [CrossRef]
- Day, S.M.; Gironda, S.C.; Clarke, C.W.; Snipes, J.A.; Nicol, N.I.; Kamran, H.; Vaughan, W.; Weiner, J.L.; Macauley, S.L. Ethanol Exposure Alters Alzheimer’s-Related Pathology, Behavior, and Metabolism in APP/PS1 Mice. Neurobiol. Dis. 2023, 177, 105967. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.L.; Faccidomo, S.; Kim, M.; Taylor, S.M.; Agoglia, A.E.; May, A.M.; Smith, E.N.; Wong, L.C.; Hodge, C.W. Alcohol Drinking Exacerbates Neural and Behavioral Pathology in the 3xTg-AD Mouse Model of Alzheimer’s Disease. Int. Rev. Neurobiol. 2019, 148, 169–230. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, C.; Trovato Salinaro, A.; Scuto, M.; Fronte, V.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.; Graziano, A.; Crupi, R.; et al. Cellular Stress Response, Sirtuins and UCP Proteins in Alzheimer Disease: Role of Vitagenes. Immun. Ageing 2013, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Trovato Salinaro, A. Cellular Stress Response, Redox Status, and Vitagenes in Glaucoma: A Systemic Oxidant Disorder Linked to Alzheimer’s Disease. Front. Pharmacol. 2014, 5, 129. [Google Scholar] [CrossRef] [PubMed]
- Scuto, M.; Trovato Salinaro, A.; Caligiuri, I.; Ontario, M.L.; Greco, V.; Sciuto, N.; Crea, R.; Calabrese, E.J.; Rizzolio, F.; Canzonieri, V.; et al. Redox Modulation of Vitagenes via Plant Polyphenols and Vitamin D: Novel Insights for Chemoprevention and Therapeutic Interventions Based on Organoid Technology. Mech. Ageing Dev. 2021, 199, 111551. [Google Scholar] [CrossRef]
- Scuto, M.; Rampulla, F.; Reali, G.M.; Spanò, S.M.; Trovato Salinaro, A.; Calabrese, V. Hormetic Nutrition and Redox Regulation in Gut–Brain Axis Disorders. Antioxidants 2024, 13, 484. [Google Scholar] [CrossRef]
- Scuto, M.; Majzúnová, M.; Torcitto, G.; Antonuzzo, S.; Rampulla, F.; Di Fatta, E.; Trovato Salinaro, A. Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. Int. J. Mol. Sci. 2024, 25, 12155. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, N.Z.; Hasan, M.K.; Mahmud, Z.; Hossain, M.S.; Rahman, A. Prevention of Alzheimer’s Disease through Diet: An Exploratory Review. Metab. Open 2023, 20, 100257. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean Diet and Health Status: Meta-Analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef] [PubMed]
- Cherian, L.; Wang, Y.; Fakuda, K.; Leurgans, S.; Aggarwal, N.; Morris, M. Mediterranean-Dash Intervention for Neurodegenerative Delay (MIND) Diet Slows Cognitive Decline after Stroke. J. Prev. Alzheimer’s Dis. 2019, 6, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Hosking, D.E.; Eramudugolla, R.; Cherbuin, N.; Anstey, K.J. MIND Not Mediterranean Diet Related to 12-Year Incidence of Cognitive Impairment in an Australian Longitudinal Cohort Study. Alzheimer’s Dement. 2019, 15, 581–589. [Google Scholar] [CrossRef]
- Lu, L.; Cai, S.; Xiao, Q.; Peng, J.; Li, F.; Li, Y.; Li, B.; Li, T.; Rong, S. The Association between Chinese Adapted MIND Diet and Cognitive Function in Chinese Middle-Aged and Older Adults: Results from the Chinese Square Dance Cohort. Eur. J. Nutr. 2024, 64, 22. [Google Scholar] [CrossRef] [PubMed]
- Barnes, L.L.; Dhana, K.; Liu, X.; Carey, V.J.; Ventrelle, J.; Johnson, K.; Hollings, C.S.; Bishop, L.; Laranjo, N.; Stubbs, B.J.; et al. Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons. N. Engl. J. Med. 2023, 389, 602–611. [Google Scholar] [CrossRef]
- van Lent, D.M.; Mesa, H.G.; Short, M.I.; Gonzales, M.M.; Aparicio, H.J.; Salinas, J.; Yuan, C.; Jacques, P.F.; Beiser, A.; Seshadri, S.; et al. Association between Dietary Inflammatory Index Score and Incident Dementia. Alzheimer’s Dement. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.C.; Harder, J.M.; Soto, I.; de Vries, W.N.; John, S.W.M.; Howell, G.R. Chronic Consumption of a Western Diet Induces Robust Glial Activation in Aging Mice and in a Mouse Model of Alzheimer’s Disease. Sci. Rep. 2016, 6, 21568. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Pan, H.; Shen, F.; Tan, Y.; Chen, S. Ketogenic Diet Alleviates Cognitive Dysfunction and Neuroinflammation in APP/PS1 Mice via the Nrf2/HO-1 and NF-ΚB Signaling Pathways. Neural Regen. Res. 2023, 18, 2767–2772. [Google Scholar] [CrossRef]
- Holland, T.M.; Agarwal, P.; Wang, Y.; Leurgans, S.E.; Bennett, D.A.; Booth, S.L.; Morris, M.C. Dietary Flavonols and Risk of Alzheimer Dementia. Neurology 2020, 94, E1749–E1756. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, X.; Jiang, B.; Li, X.; Wang, Y.; Chen, X.; Su, Y.; Wang, X.; Luo, J.; Chen, L.; et al. Tea, Coffee, and Caffeine Intake and Risk of Dementia and Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Cohort Studies. Food Funct. 2024, 15, 8330–8344. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ma, T.; Yang, L.; He, S.; Li, J.; Sun, X. Association between Coffee and Tea Consumption and the Risk of Dementia in Individuals with Hypertension: A Prospective Cohort Study. Sci. Rep. 2024, 14, 21063. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-T.; Kao, S.-T.; Cheng, C.-Y. Medicinal Herbs and Their Derived Ingredients Protect against Cognitive Decline in In Vivo Models of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 11311. [Google Scholar] [CrossRef]
- Alexander, C.; Parsaee, A.; Vasefi, M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer’s Disease. Biology 2023, 12, 1453. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, G.L.d.O.; dos Santos, L.M.O.; Osman, N.; Lamas, C.B.; Laurindo, L.F.; Pomini, K.T.; Guissoni, L.M.; de Lima, E.P.; Goulart, R.d.A.; Catharin, V.M.C.S.; et al. Ginkgo Biloba: A Leaf of Hope in the Fight against Alzheimer’s Dementia: Clinical Trial Systematic Review. Antioxidants 2024, 13, 651. [Google Scholar] [CrossRef]
- Morasso, C.; Truffi, M.; Tinelli, V.; Stivaktakis, P.; Di Gerlando, R.; Francesca, D.; Perini, G.; Faisal, M.; Aid, J.; Noridov, B.; et al. Exploring the Anti-Inflammatory Effects of Curcumin Encapsulated within Ferritin Nanocages: A Comprehensive in Vivo and in Vitro Study in Alzheimer’s Disease. J. Nanobiotechnol. 2024, 22, 718. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.-F. Vitamin D Deficiency Is Associated with Increased Risk of Alzheimer’s Disease and Dementia: Evidence from Meta-Analysis. Nutr. J. 2015, 14, 76. [Google Scholar] [CrossRef]
- Park, J.; Byun, M.S.; Yi, D.; Ahn, H.; Jung, J.H.; Kong, N.; Chang, Y.Y.; Jung, G.; Lee, J.-Y.; Kim, Y.K.; et al. The Moderating Effect of Serum Vitamin D on the Relationship between Beta-Amyloid Deposition and Neurodegeneration. Clin. Psychopharmacol. Neurosci. 2024, 22, 646–654. [Google Scholar] [CrossRef]
- Feart, C.; Helmer, C.; Merle, B.; Herrmann, F.R.; Annweiler, C.; Dartigues, J.; Delcourt, C.; Samieri, C. Associations of Lower Vitamin D Concentrations with Cognitive Decline and Long-term Risk of Dementia and Alzheimer’s Disease in Older Adults. Alzheimer’s Dement. 2017, 13, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Morello, M.; Landel, V.; Lacassagne, E.; Baranger, K.; Annweiler, C.; Féron, F.; Millet, P. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 6463–6479. [Google Scholar] [CrossRef] [PubMed]
- Mohanad, M.; Mohamed, S.K.; Aboulhoda, B.E.; Ahmed, M.A.E. Neuroprotective Effects of Vitamin D in an Alzheimer’s Disease Rat Model: Improvement of Mitochondrial Dysfunction via Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 Activation of Sirtuin1 Phosphorylation. Biofactors 2024, 50, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, M.; Smith, E.E.; Chen, H.; Creese, B.; Goodarzi, Z.; Ismail, Z. Vitamin D Supplementation and Incident Dementia: Effects of Sex, APOE, and Baseline Cognitive Status. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 2023, 15, 12404. [Google Scholar] [CrossRef] [PubMed]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; et al. Comparison of Vitamin D2 and Vitamin D3 Supplementation in Raising Serum 25-Hydroxyvitamin D Status: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef]
- Lai, R.H.; Hsu, C.C.; Yu, B.H.; Lo, Y.R.; Hsu, Y.Y.; Chen, M.H.; Juang, J.L. Vitamin D Supplementation Worsens Alzheimer’s Progression: Animal Model and Human Cohort Studies. Aging Cell 2022, 21, e13670. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.P.; Sharma, N.; An, S.S.A. Role of Calcitriol and Vitamin D Receptor (VDR) Gene Polymorphisms in Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 4806. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W. Gut Microbiota and Its Metabolites: Bridge of Dietary Nutrients and Alzheimer’s Disease. Adv. Nutr. 2023, 14, 819–839. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Liu, J.; Zhang, H.; Shan, C.; Guo, Y.; Gong, X.; Cui, M.; Li, X.; Tang, M. Correlation between the Gut Microbiome and Neurodegenerative Diseases: A Review of Metagenomics Evidence. Neural Regen. Res. 2024, 19, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.; Holtzman, D.M. Current Understanding of the Alzheimer’s Disease-Associated Microbiome and Therapeutic Strategies. Exp. Mol. Med. 2024, 56, 86–94. [Google Scholar] [CrossRef]
- Hazan, S. Rapid Improvement in Alzheimer’s Disease Symptoms Following Fecal Microbiota Transplantation: A Case Report. J. Int. Med. Res. 2020, 48, 300060520925930. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liang, J.; Hu, N.; He, N.; Liu, B.; Liu, G.; Qin, Y. The Gut Microbiota Modulates Neuroinflammation in Alzheimer’s Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci. Ther. 2024, 30, e70091. [Google Scholar] [CrossRef]
- Zhuang, Z.-Q.; Shen, L.-L.; Li, W.-W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.-L.; et al. Gut Microbiota Is Altered in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 63, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wu, L.; Peng, G.; Han, Y.; Tang, R.; Ge, J.; Zhang, L.; Jia, L.; Yue, S.; Zhou, K.; et al. Altered Microbiomes Distinguish Alzheimer’s Disease from Amnestic Mild Cognitive Impairment and Health in a Chinese Cohort. Brain. Behav. Immun. 2019, 80, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, S.; Nalbantoğlu, Ö.U.; Bayraktar, A.; Ercan, F.B.; Gündoğdu, A.; Velioğlu, H.A.; Göl, M.F.; Soylu, A.E.; Koç, F.; Gülpınar, E.A.; et al. Stratification of the Gut Microbiota Composition Landscape across the Alzheimer’s Disease Continuum in a Turkish Cohort. mSystems 2022, 7, e00004-22. [Google Scholar] [CrossRef] [PubMed]
- Haran, J.P.; Bhattarai, S.K.; Foley, S.E.; Dutta, P.; Ward, D.V.; Bucci, V.; McCormick, B.A. Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. MBio 2019, 10, e00632-19. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, Gut Microbiota, and Alzheimer’s Disease. J. Neuroinflamm. 2019, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hu, X.; Liang, S.; Li, W.; Wu, X.; Wang, L.; Jin, F. Lactobacillus Fermentum NS9 Restores the Antibiotic Induced Physiological and Psychological Abnormalities in Rats. Benef. Microbes 2015, 6, 707–717. [Google Scholar] [CrossRef]
- Balducci, C.; Santamaria, G.; La Vitola, P.; Brandi, E.; Grandi, F.; Viscomi, A.R.; Beeg, M.; Gobbi, M.; Salmona, M.; Ottonello, S.; et al. Doxycycline Counteracts Neuroinflammation Restoring Memory in Alzheimer’s Disease Mouse Models. Neurobiol. Aging 2018, 70, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tu, K.; Cao, P.; Yang, Y.; Zhang, H.; Qiu, X.-T.; Zhang, M.-M.; Wu, X.-J.; Yang, H.; Chen, T. Antibiotics-Induced Intestinal Dysbacteriosis Caused Behavioral Alternations and Neuronal Activation in Different Brain Regions in Mice. Mol. Brain 2021, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Kandeel, M.; Morsy, M.A.; Abd El-Lateef, H.M.; Marzok, M.; El-Beltagi, H.S.; Al Khodair, K.M.; Albokhadaim, I.; Venugopala, K.N. Cognitive- and Memory-Enhancing Effects of Augmentin in Alzheimer’s Rats through Regulation of Gene Expression and Neuronal Cell Apoptosis. Front. Pharmacol. 2023, 14, 1154607. [Google Scholar] [CrossRef]
- Umeda, T.; Ono, K.; Sakai, A.; Yamashita, M.; Mizuguchi, M.; Klein, W.L.; Yamada, M.; Mori, H.; Tomiyama, T. Rifampicin Is a Candidate Preventive Medicine against Amyloid-β and Tau Oligomers. Brain 2016, 139, 1568–1586. [Google Scholar] [CrossRef]
- Lin, A.L.; Zheng, W.; Halloran, J.J.; Burbank, R.R.; Hussong, S.A.; Hart, M.J.; Javors, M.; Shih, Y.Y.I.; Muir, E.; Solano Fonseca, R.; et al. Chronic Rapamycin Restores Brain Vascular Integrity and Function through NO Synthase Activation and Improves Memory in Symptomatic Mice Modeling Alzheimer’s Disease. J. Cereb. Blood Flow Metab. 2013, 33, 1412–1421. [Google Scholar] [CrossRef]
- Naderi, Y.; Sabetkasaei, M.; Parvardeh, S.; Zanjani, T.M. Neuroprotective Effect of Minocycline on Cognitive Impairments Induced by Transient Cerebral Ischemia/Reperfusion through Its Anti-Inflammatory and Anti-Oxidant Properties in Male Rat. Brain Res. Bull. 2017, 131, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Westfall, S.; Lomis, N.; Prakash, S. A Novel Synbiotic Delays Alzheimer’s Disease Onset via Combinatorial Gut-Brain-Axis Signaling in Drosophila Melanogaster. PLoS ONE 2019, 14, e0214985. [Google Scholar] [CrossRef]
- Shi, J.; Touchon, J.; Middleton, L.T.; Rovira, M.B.; Vassar, R.; Vellas, B.; Shen, Y. Now and Future: Strategies for Diagnosis, Prevention and Therapies for Alzheimer’s Disease. Sci. Bull. 2024, 69, 3777–3784. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Sameei, P.; Mousavi, S.; Ghaderi, K.; Hassani, A.; Hassani, S.; Alipour, S. Application of CRISPR/Cas9 System in the Treatment of Alzheimer’s Disease and Neurodegenerative Diseases. Mol. Neurobiol. 2024, 61, 9416–9431. [Google Scholar] [CrossRef]
- Jain, U.; Johari, S.; Srivastava, P. Current Insights of Nanocarrier-Mediated Gene Therapeutics to Treat Potential Impairment of Amyloid Beta Protein and Tau Protein in Alzheimer’s Disease. Mol. Neurobiol. 2024, 61, 1969–1989. [Google Scholar] [CrossRef]
- Wang, C.; Najm, R.; Xu, Q.; Jeong, D.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.A.; et al. Gain of Toxic Apolipoprotein E4 Effects in Human IPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector. Nat. Med. 2018, 24, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.X.; Zeng, L.; Wang, Q.; Tan, E.K.; Zhou, Z.D. Reelin Links Apolipoprotein E4, Tau, and Amyloid-β in Alzheimer’s Disease. Ageing Res. Rev. 2024, 98, 102339. [Google Scholar] [CrossRef]
- Yin, F. Lipid Metabolism and Alzheimer’s Disease: Clinical Evidence, Mechanistic Link and Therapeutic Promise. FEBS J. 2023, 290, 1420–1453. [Google Scholar] [CrossRef] [PubMed]
- Ferré-González, L.; Balaguer, Á.; Roca, M.; Ftara, A.; Lloret, A.; Cháfer-Pericás, C. Brain Areas Lipidomics in Female Transgenic Mouse Model of Alzheimer’s Disease. Sci. Rep. 2024, 14, 870. [Google Scholar] [CrossRef]
- Grayson, J.M.; Short, S.M.; Lee, C.J.; Park, N.; Marsac, C.; Sette, A.; Lindestam Arlehamn, C.S.; Leng, X.I.; Lockhart, S.N.; Craft, S. T Cell Exhaustion Is Associated with Cognitive Status and Amyloid Accumulation in Alzheimer’s Disease. Sci. Rep. 2023, 13, 15779. [Google Scholar] [CrossRef]
- Angelucci, F.; Ai, A.R.; Piendel, L.; Cerman, J.; Hort, J. Integrating AI in Fighting Advancing Alzheimer: Diagnosis, Prevention, Treatment, Monitoring, Mechanisms, and Clinical Trials. Curr. Opin. Struct. Biol. 2024, 87, 102857. [Google Scholar] [CrossRef]
- Bazarbekov, I.; Razaque, A.; Ipalakova, M.; Yoo, J.; Assipova, Z.; Almisreb, A. A Review of Artificial Intelligence Methods for Alzheimer’s Disease Diagnosis: Insights from Neuroimaging to Sensor Data Analysis. Biomed. Signal Process. Control 2024, 92, 106023. [Google Scholar] [CrossRef]
- Nazir, A.; Assad, A.; Hussain, A.; Singh, M. Alzheimer’s Disease Diagnosis Using Deep Learning Techniques: Datasets, Challenges, Research Gaps and Future Directions. Int. J. Syst. Assur. Eng. Manag. 2024. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef] [PubMed]
- Press, D.; Buss, S.S. Treatment of Alzheimer disease. In UpToDate; Connor, R.F., Ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2024; Available online: https://www.uptodate.com/contents/treatment-of-alzheimer-disease?csi=34c234ee-1379-44b0-8d8f-998329f9c1a3&source=contentShare (accessed on 18 December 2024).
- Wang, L.; Davis, P.B.; Volkow, N.D.; Berger, N.A.; Kaelber, D.C.; Xu, R. Association of COVID-19 with New-Onset Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 89, 411–414. [Google Scholar] [CrossRef] [PubMed]
Disease | Mechanisms Related to the Onset and Progression of AD | Reference |
---|---|---|
Hypertension |
| [59] |
Obesity |
| [60] |
Depression |
| [61,62] |
Diabetes mellitus |
| [63] |
Antibiotic | Species | Effects | Reference |
---|---|---|---|
Antibiotic Mixtures (Ampicillin, Streptomycin, and Clindamycin) | Mice |
| [202] |
Amoxicillin/Clavulanic acid | Rats |
| [203] |
Rifampicin | Mice |
| [204] |
Rapamycin | Mice |
| [205] |
Doxycycline | Mice |
| [201] |
Minocycline | Rats |
| [206] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mertaş, B.; Boşgelmez, İ.İ. The Role of Genetic, Environmental, and Dietary Factors in Alzheimer’s Disease: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 1222. https://doi.org/10.3390/ijms26031222
Mertaş B, Boşgelmez İİ. The Role of Genetic, Environmental, and Dietary Factors in Alzheimer’s Disease: A Narrative Review. International Journal of Molecular Sciences. 2025; 26(3):1222. https://doi.org/10.3390/ijms26031222
Chicago/Turabian StyleMertaş, Beyza, and İ. İpek Boşgelmez. 2025. "The Role of Genetic, Environmental, and Dietary Factors in Alzheimer’s Disease: A Narrative Review" International Journal of Molecular Sciences 26, no. 3: 1222. https://doi.org/10.3390/ijms26031222
APA StyleMertaş, B., & Boşgelmez, İ. İ. (2025). The Role of Genetic, Environmental, and Dietary Factors in Alzheimer’s Disease: A Narrative Review. International Journal of Molecular Sciences, 26(3), 1222. https://doi.org/10.3390/ijms26031222