Molecular Detection of Human Papillomavirus (HPV) and Other Sexually Transmitted Pathogens in Cervical and Self-Collected Specimens
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. HPV Detection and Genotyping
2.3. Analytical Sensitivity, Specificity and Type-Specific Agreement of Self-Collected Samples for hrHPV Detection
2.4. STI Prevalence
2.5. Analytical Sensitivity, Specificity and Agreement of Self-Collected Samples for STIs Detection
2.6. hrHPV and STI Prevalence in the Different Age Groups
2.7. hrHPV and STI Co-Infections
3. Discussion
4. Materials and Methods
4.1. Study Design and Sample Collection
4.2. Pre-Analytical Sample Processing and Nucleic Acid Extraction
4.3. HPV and STIs Detection
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGC | Atypical glandular cell |
ASCH | Atypical squamous cells—cannot exclude HSIL |
ASCUS | Atypical squamous cells of undetermined significance |
CI | Confidence interval |
CIN 1 | Cervical intraepithelial neoplasia grade 1 |
CIN 2 | Cervical intraepithelial neoplasia grade 2 |
CIN 3 | Cervical intraepithelial neoplasia grade 3 |
CT | Chlamydia trachomatis |
ECDC | European Centre for Disease Prevention and Control |
hrHPV | High-risk Human Papillomavirus |
HPV | Human Papillomavirus |
HSIL | High-grade squamous intraepithelial lesion |
IARC | International Agency for Research on Cancer |
κ | Cohen’s kappa |
IQR | Interquartile ranges |
LSIL | Low-grade squamous intraepithelial lesion |
MG | Mycoplasma genitalium |
MH | Mycoplasma hominis |
NG | Neisseria gonorrhoeae |
NILM | Negative for intraepithelial lesion or malignancy |
STI | Sexually transmitted infection |
TV | Trichomonas vaginalis |
UP | Ureaplasma parvum |
UU | Ureaplasma urealyticum |
VALHUDES | Validation of Human Papillomavirus Assays and Collection Devices for Self-samples and Urine Samples |
WHO | World Health Organization |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- De Sanjosé, S.; Serrano, B.; Tous, S.; Alejo, M.; Lloveras, B.; Quirós, B.; Clavero, O.; Vidal, A.; Ferrándiz-Pulido, C.; Pavón, M.Á.; et al. Burden of Human Papillomavirus (HPV)-Related Cancers Attributable to HPVs 6/11/16/18/31/33/45/52 and 58. JNCI Cancer Spectr. 2018, 2, pky045. [Google Scholar] [CrossRef] [PubMed]
- Burd, E.M. Human Papillomavirus and Cervical Cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef]
- Poljak, M.; Oštrbenk Valenčak, A.; Cuschieri, K.; Bohinc, K.B.; Arbyn, M. 2023 Global Inventory of Commercial Molecular Tests for Human Papillomaviruses (HPV). J. Clin. Virol. 2024, 172, 105671. [Google Scholar] [CrossRef] [PubMed]
- Serrano, B.; Ibáñez, R.; Robles, C.; Peremiquel-Trillas, P.; De Sanjosé, S.; Bruni, L. Worldwide Use of HPV Self-Sampling for Cervical Cancer Screening. Prev. Med. 2022, 154, 106900. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. WHO Guideline for Screening and Treatment of Cervical Pre-Cancer Lesions for Cervical Cancer Prevention, 2nd ed.; World Health Organisation: Geneva, Switzerland, 2021. [Google Scholar]
- Racey, C.S.; Withrow, D.R.; Gesink, D. Self-Collected HPV Testing Improves Participation in Cervical Cancer Screening: A Systematic Review and Meta-Analysis. Can. J. Public Health 2013, 104, e159–e166. [Google Scholar] [CrossRef]
- Costa, S.; Verberckmoes, B.; Castle, P.E.; Arbyn, M. Offering HPV Self-Sampling Kits: An Updated Meta-Analysis of the Effectiveness of Strategies to Increase Participation in Cervical Cancer Screening. Br. J. Cancer 2023, 128, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Paudyal, P.; Llewellyn, C.; Lau, J.; Mahmud, M.; Smith, H. Obtaining Self-Samples to Diagnose Curable Sexually Transmitted Infections: A Systematic Review of Patients’ Experiences. PLoS ONE 2015, 10, e0124310. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Verdoodt, F.; Snijders, P.J.F.; Verhoef, V.M.J.; Suonio, E.; Dillner, L.; Minozzi, S.; Bellisario, C.; Banzi, R.; Zhao, F.-H.; et al. Accuracy of Human Papillomavirus Testing on Self-Collected versus Clinician-Collected Samples: A Meta-Analysis. Lancet Oncol. 2014, 15, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Smith, S.B.; Temin, S.; Sultana, F.; Castle, P. Detecting Cervical Precancer and Reaching Underscreened Women by Using HPV Testing on Self Samples: Updated Meta-Analyses. BMJ 2018, 363, k4823. [Google Scholar] [CrossRef]
- Martinelli, M.; Giubbi, C.; Di Meo, M.L.; Perdoni, F.; Musumeci, R.; Leone, B.E.; Fruscio, R.; Landoni, F.; Cocuzza, C.E. Accuracy of Human Papillomavirus (HPV) Testing on Urine and Vaginal Self-Samples Compared to Clinician-Collected Cervical Sample in Women Referred to Colposcopy. Viruses 2023, 15, 1889. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Peeters, E.; Benoy, I.; Vanden Broeck, D.; Bogers, J.; De Sutter, P.; Donders, G.; Tjalma, W.; Weyers, S.; Cuschieri, K.; et al. VALHUDES: A Protocol for Validation of Human Papillomavirus Assays and Collection Devices for HPV Testing on Self-Samples and Urine Samples. J. Clin. Virol. 2018, 107, 52–56. [Google Scholar] [CrossRef]
- Ogale, Y.; Yeh, P.T.; Kennedy, C.E.; Toskin, I.; Narasimhan, M. Self-Collection of Samples as an Additional Approach to Deliver Testing Services for Sexually Transmitted Infections: A Systematic Review and Meta-Analysis. BMJ Glob. Health 2019, 4, e001349. [Google Scholar] [CrossRef]
- ECDC. STI Cases on the Rise Across Europe. Available online: https://www.ecdc.europa.eu/en/news-events/sti-cases-rise-across-europe (accessed on 4 December 2024).
- Otieno, F.O.; Ndivo, R.; Oswago, S.; Ondiek, J.; Pals, S.; McLellan-Lemal, E.; Chen, R.T.; Chege, W.; Gray, K.M. Evaluation of Syndromic Management of Sexually Transmitted Infections within the Kisumu Incidence Cohort Study. Int. J. STD AIDS 2014, 25, 851–859. [Google Scholar] [CrossRef]
- Nodjikouambaye, Z.A.; Compain, F.; Sadjoli, D.; Mboumba Bouassa, R.-S.; Péré, H.; Veyer, D.; Robin, L.; Adawaye, C.; Tonen-Wolyec, S.; Moussa, A.M.; et al. Accuracy of Curable Sexually Transmitted Infections and Genital Mycoplasmas Screening by Multiplex Real-Time PCR Using a Self-Collected Veil among Adult Women in Sub-Saharan Africa. Infect. Dis. Obstet. Gynecol. 2019, 2019, 8639510. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Shen, Z.; Luo, H.; Zhang, W.; Zhu, X. Chlamydia Trachomatis Infection-Associated Risk of Cervical Cancer: A Meta-Analysis. Medicine 2016, 95, e3077. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, L.; Li, H.; Ma, N.; Huang, H.; Zhang, X.; Li, Y.; Fang, J. Association between Asymptomatic Sexually Transmitted Infections and High-Risk Human Papillomavirus in Cervical Lesions. J. Int. Med. Res. 2019, 47, 5548–5559. [Google Scholar] [CrossRef]
- Knowlton, A.E.; Brown, H.M.; Richards, T.S.; Andreolas, L.A.; Patel, R.K.; Grieshaber, S.S. Chlamydia trachomatis Infection Causes Mitotic Spindle Pole Defects Independently from Its Effects on Centrosome Amplification. Traffic 2011, 12, 854–866. [Google Scholar] [CrossRef]
- Sun, H.S.; Wilde, A.; Harrison, R.E. Chlamydia trachomatis Inclusions Induce Asymmetric Cleavage Furrow Formation and Ingression Failure in Host Cells. Mol. Cell. Biol. 2011, 31, 5011–5022. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Fay, M.J.; Lamar, P.C.; Pearson, C.A.; Sigar, I.; Ramsey, K.H. Chlamydia trachomatis Disrupts N-Cadherin-Dependent Cell-Cell Junctions and Sequesters β-Catenin in Human Cervical Epithelial Cells. Infect. Immun. 2002, 70, 2605–2613. [Google Scholar] [CrossRef]
- Smith, J.S.; Bosetti, C.; Muñoz, N.; Herrero, R.; Bosch, F.X.; Eluf-Neto, J.; Meijer, C.J.L.M.; Van Den Brule, A.J.C.; Franceschi, S.; Peeling, R.W. Chlamydia trachomatis and Invasive Cervical Cancer: A Pooled Analysis of the IARC Multicentric Case-control Study. Int. J. Cancer 2004, 111, 431–439. [Google Scholar] [CrossRef]
- Castle, P.E.; Escoffery, C.; Schachter, J.; Rattray, C.; Schiffman, M.; Moncada, J.; Sugai, K.; Brown, C.; Cranston, B.; Hanchard, B.; et al. Chlamydia trachomatis, Herpes Simplex Virus 2, and Human T-Cell Lymphotrophic Virus Type 1 Are Not Associated With Grade of Cervical Neoplasia in Jamaican Colposcopy Patients. Sex. Transm. Dis. 2003, 30, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Castle, P.E.; Giuliano, A.R. Chapter 4: Genital Tract Infections, Cervical Inflammation, and Antioxidant Nutrients--Assessing Their Roles as Human Papillomavirus Cofactors. JNCI Monogr. 2003, 2003, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, M.; Qin, L.; Wan, B.; Wang, H. A Meta-Analysis of the Relationship between Vaginal Microecology, Human Papillomavirus Infection and Cervical Intraepithelial Neoplasia. Infect. Agents Cancer 2019, 14, 29. [Google Scholar] [CrossRef]
- Disi, A.; Bi, H.; Zhang, D.; Xiao, B. Association between Human Papillomavirus Infection and Common Sexually Transmitted Infections, and the Clinical Significance of Different Mycoplasma Subtypes. Front. Cell. Infect. Microbiol. 2023, 13, 1145215. [Google Scholar] [CrossRef]
- Cho, H.-W.; Ouh, Y.-T.; Hong, J.H.; Min, K.J.; So, K.A.; Kim, T.J.; Paik, E.S.; Lee, J.; Moon, J.H.; Lee, J.K. Comparison of Urine, Self-Collected Vaginal Swab, and Cervical Swab Samples for Detecting Human Papillomavirus (HPV) with Roche Cobas HPV, Anyplex II HPV, and RealTime HR-S HPV Assay. J. Virol. Methods 2019, 269, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Sokale, I.O.; Kuo, D.C.; Hoppenot, C.M.; Reitzel, L.R.; Juarez, L.H.; Hernandez, K.J.; Parker, S.L.; Amos, C.; Daheri, M.; Keene, K.R.; et al. Self-Collection for Primary HPV Testing: Acceptability in a Large Urban Emergency Department. Ann. Emerg. Med. 2024, S019606442401117X. [Google Scholar] [CrossRef]
- Sechi, I.; Muresu, N.; Puci, M.V.; Saderi, L.; Del Rio, A.; Cossu, A.; Muroni, M.R.; Castriciano, S.; Martinelli, M.; Cocuzza, C.E.; et al. Preliminary Results of Feasibility and Acceptability of Self-Collection for Cervical Screening in Italian Women. Pathogens 2023, 12, 1169. [Google Scholar] [CrossRef]
- DeWitt, M.E.; Pabon, V.; Vasquez, A.; Wenner, J.J.; McNeil, C.J. STI Self-Testing: Ensuring Representation and Outreach to Teens and Adolescents in Expanded Approaches. Sex. Transm. Infect. 2024, 100, 190–191. [Google Scholar] [CrossRef]
- Kong, F.; Ma, Z.; James, G.; Gordon, S.; Gilbert, G.L. Species Identification and Subtyping of Ureaplasma parvum and Ureaplasma urealyticum Using PCR-Based Assays. J. Clin. Microbiol. 2000, 38, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Latsuzbaia, A.; Van Keer, S.; Vanden Broeck, D.; Weyers, S.; Donders, G.; De Sutter, P.; Tjalma, W.; Doyen, J.; Vorsters, A.; Arbyn, M. Clinical Accuracy of Alinity m HR HPV Assay on Self- versus Clinician-Taken Samples Using the VALHUDES Protocol. J. Mol. Diagn. 2023, 25, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Koskela, P.; Anttila, T.; Bjørge, T.; Brunsvig, A.; Dillner, J.; Hakama, M.; Hakulinen, T.; Jellum, E.; Lehtinen, M.; Lenner, P.; et al. Chlamydia trachomatis Infection as a Risk Factor for Invasive Cervical Cancer. Int. J. Cancer 2000, 85, 35–39. [Google Scholar] [CrossRef]
- Biernat-Sudolska, M.; Szostek, S.; Rojek-Zakrzewska, D.; Klimek, M.; Kosz-Vnenchak, M. Concomitant Infections with Human Papillomavirus and Various Mycoplasma and Ureaplsasma Species in Women with Abnormal Cervical Cytology. Adv. Med. Sci. 2011, 56, 299–303. [Google Scholar] [CrossRef]
- Robial, R.; Longatto-Filho, A.; Roteli-Martins, C.M.; Silveira, M.F.; Stauffert, D.; Ribeiro, G.G.; Linhares, I.M.; Tacla, M.; Zonta, M.A.; Baracat, E.C. Frequency of Chlamydia trachomatis Infection in Cervical Intraepithelial Lesions and the Status of Cytological P16/Ki-67 Dual-Staining. Infect. Agents Cancer 2017, 12, 3. [Google Scholar] [CrossRef]
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; De Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S. Carcinogenic Human Papillomavirus Infection. Nat. Rev. Dis. Primer 2016, 2, 16086. [Google Scholar] [CrossRef]
- Verteramo, R.; Pierangeli, A.; Mancini, E.; Calzolari, E.; Bucci, M.; Osborn, J.; Nicosia, R.; Chiarini, F.; Antonelli, G.; Degener, A.M. Human Papillomaviruses and Genital Co-Infections in Gynaecological Outpatients. BMC Infect. Dis. 2009, 9, 16. [Google Scholar] [CrossRef]
- Scarth, J.A.; Patterson, M.R.; Morgan, E.L.; Macdonald, A. The Human Papillomavirus Oncoproteins: A Review of the Host Pathways Targeted on the Road to Transformation. J. Gen. Virol. 2021, 102, 001540. [Google Scholar] [CrossRef]
- Rokos, T.; Holubekova, V.; Kolkova, Z.; Hornakova, A.; Pribulova, T.; Kozubik, E.; Biringer, K.; Kudela, E. Is the Physiological Composition of the Vaginal Microbiome Altered in High-Risk HPV Infection of the Uterine Cervix? Viruses 2022, 14, 2130. [Google Scholar] [CrossRef]
- Silva, J.; Cerqueira, F.; Medeiros, R. Chlamydia trachomatis Infection: Implications for HPV Status and Cervical Cancer. Arch. Gynecol. Obstet. 2014, 289, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Zhao, F.; Xu, X.; Xu, J.; Wang, Q.; Zhao, Z. Correlation between Common Lower Genital Tract Microbes and High-Risk Human Papillomavirus Infection. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 9678104. [Google Scholar] [CrossRef] [PubMed]
- Lukic, A.; Canzio, C.; Patella, A.; Giovagnoli, M.; Cipriani, P.; Frega, A.; Moscarini, M. Determination of Cervicovaginal Microorganisms in Women with Abnormal Cervical Cytology: The Role of Ureaplasma urealyticum. Anticancer Res. 2006, 26, 4843–4849. [Google Scholar]
- Parthenis, C.; Panagopoulos, P.; Margari, N.; Kottaridi, C.; Spathis, A.; Pouliakis, A.; Konstantoudakis, S.; Chrelias, G.; Chrelias, C.; Papantoniou, N.; et al. The Association between Sexually Transmitted Infections, Human Papillomavirus, and Cervical Cytology Abnormalities among Women in Greece. Int. J. Infect. Dis. 2018, 73, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, I.; Russell, W. Transformations in Hamster Cells Mediated by Mycoplasmas. Nature 1966, 210, 1343–1345. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.; Wear, D.J.; Shih, J.W.; Lo, S.C. Mycoplasmas and Oncogenesis: Persistent Infection and Multistage Malignant Transformation. Proc. Natl. Acad. Sci. USA 1995, 92, 10197–10201. [Google Scholar] [CrossRef] [PubMed]
- Ssedyabane, F.; Amnia, D.A.; Mayanja, R.; Omonigho, A.; Ssuuna, C.; Najjuma, J.N.; Freddie, B. HPV-Chlamydial Coinfection, Prevalence, and Association with Cervical Intraepithelial Lesions: A Pilot Study at Mbarara Regional Referral Hospital. J. Cancer Epidemiol. 2019, 2019, 9092565. [Google Scholar] [CrossRef] [PubMed]
- Naldini, G.; Grisci, C.; Chiavarini, M.; Fabiani, R. Association between Human Papillomavirus and Chlamydia Trachomatis Infection Risk in Women: A Systematic Review and Meta-Analysis. Int. J. Public Health 2019, 64, 943–955. [Google Scholar] [CrossRef]
- Arévalos, A.; Valenzuela, A.; Mongelós, P.; Barrios, H.; Rodríguez, M.I.; Báez, R.; Centurión, C.; Vester, J.; Soilán, A.; Ortega, M.; et al. Genital Infections in High-Risk Human Papillomavirus Positive Paraguayan Women Aged 30–64 with and without Cervical Lesions. PLoS ONE 2024, 19, e0312947. [Google Scholar] [CrossRef] [PubMed]
- Ginindza, T.G.; Dlamini, X.; Almonte, M.; Herrero, R.; Jolly, P.E.; Tsoka-Gwegweni, J.M.; Weiderpass, E.; Broutet, N.; Sartorius, B. Prevalence of and Associated Risk Factors for High Risk Human Papillomavirus Among Sexually Active Women, Swaziland. PLoS ONE 2017, 12, e0170189. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.H.F. Bethesda 2001. Cytopathology 2002, 13, 4–10. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours. Female Genital Tumours, 5th ed.; IARC: Lyon, France, 2020; Volume 4. [Google Scholar]
Cytology (n = 345) | N | % |
---|---|---|
HSIL | 47 | 13.6% |
ASCH | 26 | 7.5% |
LSIL | 164 | 47.5% |
ASCUS | 86 | 24.9% |
AGC | 14 | 4.1% |
NILM | 8 | 2.3% |
Colposcopy (n = 345) | ||
Positive | 127 | 36.8% |
Negative | 218 | 63.2% |
Histological Outcome (n = 84) | ||
Negative | 11 | 13.1% |
CIN 1 | 13 | 15.5% |
CIN 2 | 12 | 14.3% |
CIN 3 | 44 | 52.4% |
Cervical cancer | 4 | 4.8% |
UP n (%) | UU n (%) | MH n (%) | MG n (%) | CT n (%) | NG n (%) | TV n (%) | |
---|---|---|---|---|---|---|---|
Cervical sample (n = 342) | 129 (37.7%) | 34 (9.9%) | 31 (9.1%) | 8 (2.3%) | 11 (3.2%) | 0 (0%) | 4 (1.2%) |
Vaginal swab (n = 342) | 165 (48.2%) | 40 (11.7%) | 40 (11.7%) | 11 (3.2%) | 13 (3.8%) | 0 (0%) | 3 (0.9%) |
Urine (n = 342) | 158 (46.2%) | 38 (11.1%) | 39 (11.4%) | 10 (2.9%) | 11 (3.2%) | 0 (0%) | 3 (0.9%) |
UP | UU | MH | MG | CT | NG | TV | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | p | n (%) | p | n (%) | p | n (%) | p | n (%) | p | n (%) | p | n (%) | p | ||
Cervical sample | hrHPV-positive (n = 229) | 102 (44.5%) | 0.0003 | 27 (11.8%) | 0.15 | 29 (12.7%) | 0.0005 | 8 (3.5%) | 0.06 | 10 (4.4%) | 0.11 | 0 (0%) | 1 | 3 (1.3%) | 1 |
hrHPV-negative (n = 113) | 27 (23.9%) | 7 (6.2%) | 2 (1.8%) | 0 (0%) | 1 (0.9%) | 0 (0%) | 1 (0.9%) | ||||||||
Vaginal swab | hrHPV-positive (n = 244) | 137 (56.1%) | 0.000007 | 32 (13.1%) | 0.27 | 37 (15.2%) | 0.001 | 11 (4.5%) | 0.04 | 12 (4.9%) | 0.12 | 0 (0%) | 1 | 2 (0.8%) | 1 |
hrHPV-negative (n = 98) | 28 (28.6%) | 8 (8.2%) | 3 (3.1%) | 0 (0%) | 1 (1.0%) | 0 (0%) | 1 (1.0%) | ||||||||
Urine | hrHPV-positive (n = 233) | 125 (53.6%) | 0.00009 | 30 (12.9%) | 0.18 | 34 (14.6%) | 0.006 | 9 (3.9%) | 0.18 | 10 (4.3%) | 0.18 | 0 (0%) | 1 | 2 (0.9%) | 1 |
hrHPV-negative (n = 109) | 33 (30.3%) | 8 (7.3%) | 5 (4.6%) | 1 (0.9%) | 1 (0.9%) | 0 (0%) | 1 (0.9%) |
hrHPV+/STI+ | hrHPV+/STI− | hrHPV−/STI+ | hrHPV−/STI− | Total | |
---|---|---|---|---|---|
Total Population | 130 (38.0%) | 99 (28.9%) | 34 (9.9%) | 79 (23.1%) | 342 |
Age in Years (n = 342) | |||||
<30 | 40 (46.0%) | 22 (25.3%) | 8 (9.2%) | 17 (19.5%) | 87 |
30–40 | 40 (37.7%) | 40 (37.7%) | 9 (8.5%) | 17 (16.1%) | 106 |
41–50 | 34 (34.3%) | 27 (27.3%) | 16 (16.2%) | 22 (22.2%) | 99 |
51–60 | 13 (31.0%) | 8 (19.0%) | 2 (4.8%) | 19 (45.2%) | 42 |
>60 | 2 (25.0%) | 2 (25.0%) | 0 (0%) | 4 (50.0%) | 8 |
Cytology (n = 342) | |||||
NILM | 0 (0%) | 1 (12.5%) | 1 (12.5%) | 6 (75.0%) | 8 |
ASCUS | 26 (30.6%) | 26 (30.6%) | 10 (11.8%) | 23 (27.0%) | 85 |
AGC | 3 (21.4%) | 2 (14.3%) | 1 (7.1%) | 8 (57.1%) | 14 |
LSIL | 71 (43.8%) | 41 (25.3%) | 15 (9.3%) | 35 (21.6%) | 162 |
ASCH | 13 (50.0%) | 8 (30.8%) | 0 (0%) | 5 (19.2%) | 26 |
HSIL | 16 (34.0%) | 22 (46.8%) | 7 (14.9%) | 2 (4.3%) | 47 |
Colposcopy (n = 342) | |||||
Negative | 73 (33.6%) | 53 (24.4%) | 28 (12.9%) | 63 (29.1%) | 217 |
Positive | 57 (45.6%) | 46 (36.8%) | 6 (4.8%) | 16 (12.8%) | 125 |
Histology (n = 84) | |||||
<CIN 2 | 10 (41.7%) | 6 (25.0%) | 2 (8.3%) | 6 (25.0%) | 24 |
≥CIN 2 | 29 (48.3%) | 29 (48.3%) | 2 (3.4%) | 0 (0%) | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giubbi, C.; Martinelli, M.; Rizza, M.; Di Meo, M.L.; Njoku, R.C.; Perdoni, F.; Mannarà, G.; Musumeci, R.; Fruscio, R.; Landoni, F.; et al. Molecular Detection of Human Papillomavirus (HPV) and Other Sexually Transmitted Pathogens in Cervical and Self-Collected Specimens. Int. J. Mol. Sci. 2025, 26, 1296. https://doi.org/10.3390/ijms26031296
Giubbi C, Martinelli M, Rizza M, Di Meo ML, Njoku RC, Perdoni F, Mannarà G, Musumeci R, Fruscio R, Landoni F, et al. Molecular Detection of Human Papillomavirus (HPV) and Other Sexually Transmitted Pathogens in Cervical and Self-Collected Specimens. International Journal of Molecular Sciences. 2025; 26(3):1296. https://doi.org/10.3390/ijms26031296
Chicago/Turabian StyleGiubbi, Chiara, Marianna Martinelli, Michelle Rizza, Maria Letizia Di Meo, Ruth Chinyere Njoku, Federica Perdoni, Giulio Mannarà, Rosario Musumeci, Robert Fruscio, Fabio Landoni, and et al. 2025. "Molecular Detection of Human Papillomavirus (HPV) and Other Sexually Transmitted Pathogens in Cervical and Self-Collected Specimens" International Journal of Molecular Sciences 26, no. 3: 1296. https://doi.org/10.3390/ijms26031296
APA StyleGiubbi, C., Martinelli, M., Rizza, M., Di Meo, M. L., Njoku, R. C., Perdoni, F., Mannarà, G., Musumeci, R., Fruscio, R., Landoni, F., & Cocuzza, C. E. (2025). Molecular Detection of Human Papillomavirus (HPV) and Other Sexually Transmitted Pathogens in Cervical and Self-Collected Specimens. International Journal of Molecular Sciences, 26(3), 1296. https://doi.org/10.3390/ijms26031296