Upland Habitat Quality and Historic Landscape Composition Influence Genetic Variation of a Pond-Breeding Salamander
Abstract
:1. Introduction
2. Experimental Section
3. Results
Population | Allelic Richness | Inbreeding Coefficient | Observed Heterozygosity | Expected Heterozygosity |
---|---|---|---|---|
A | 8 | 0.26 | 0.589 | 0.803 |
B | 5.8 | 0.30 | 0.648 | 0.731 |
C | 7.8 | 0.20 | 0.639 | 0.794 |
D | 7.2 | 0.11 | 0.650 | 0.618 |
E | 8.8 | 0.38 | 0.471 | 0.787 |
F | 6.2 | 0.08 | 0.588 | 0.69 |
Mean + 1 SE | 7.3 + 0.46 | 0.22 + 0.05 | 0.565 + 0.036 | 0.737 + 0.030 |
Genetic variable | Model | AICc | ∆AICc | wi | Parameter Estimate (±1 St. Err) | p-value |
---|---|---|---|---|---|---|
Allelic richness | 1993: 164 m | 14.32 | 0.00 | 0.767 | 7.601 (±1.973) | 0.018 |
1938: 164 m | 17.67 | 3.36 | 0.143 | 3.177 (±1.221) | 0.060 | |
1978: 164 m | 19.89 | 5.57 | 0.047 | 6.392 (±3.444) | 0.137 | |
2005: 164 m | 22.78 | 8.46 | 0.011 | 2.381 (±3.083) | 0.483 | |
1993: 2000 m | 23.08 | 8.77 | 0.010 | 2.323 (±3.821) | 0.576 | |
1978: 2000 m | 23.60 | 9.29 | 0.007 | 0.298 (±3.816) | 0.942 | |
2005: 2000 m | 23.60 | 9.29 | 0.007 | −0.261 (±3.293) | 0.941 | |
1938: 2000 m | 23.61 | 9.30 | 0.007 | 0.087 (±7.911) | 0.992 | |
FIS | 1993: 2000 m | −7.43 | 0.00 | 0.341 | 0.538 (±0.301) | 0.148 |
1993: 164 m | −5.47 | 1.96 | 0.128 | 0.415 (±0.379) | 0.336 | |
1978: 164 m | −5.43 | 2.01 | 0.125 | 0.449 (±0.418) | 0.343 | |
1938: 164 m | −5.15 | 2.28 | 0.109 | 0.175 (±0.182) | 0.390 | |
1978: 2000 m | −4.75 | 2.68 | 0.089 | 0.279 (±0.359) | 0.480 | |
1938: 2000 m | −4.39 | 3.04 | 0.075 | 0.447 (±0.767) | 0.592 | |
2005: 2000m | −4.20 | 3.23 | 0.068 | 0.1465 (±0.325) | 0.675 | |
2005: 164 m | −4.13 | 3.31 | 0.065 | −0.127 (±0.328) | 0.718 | |
HO | 1993: 2000 m | −8.23 | 0.00 | 0.175 | −0.248 (±0.281) | 0.428 |
2005: 164 m | −7.75 | 0.47 | 0.138 | 0.156 (±0.242) | 0.555 | |
1978: 2000 m | −7.68 | 0.55 | 0.133 | −0.169 (±0.282) | 0.582 | |
1978: 2000 m | −7.68 | 0.55 | 0.133 | −0.169 (±0.282) | 0.582 | |
1938: 164 m | −7.42 | 0.81 | 0.117 | 0.063 (±0.151) | 0.696 | |
1993: 164 m | −7.31 | 0.91 | 0.111 | 0.105 (±0.325) | 0.764 | |
2005: 2000 m | −7.25 | 0.49 | 0.108 | −0.060 (±0.252) | 0.823 | |
1978: 164 m | −7.26 | 0.96 | 0.108 | 0.093 (±0.359) | 0.807 | |
1938: 2000 m | −7.26 | 0.96 | 0.108 | −0.158 (±0.604) | 0.807 |
4. Discussion
Acknowledgments
Conflicts of Interest
References
- Lomolino, M.V.; Riddle, B.R.; Whittaker, R.J.; Brown, J.H. Biogeography, 4th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010. [Google Scholar]
- Moilanen, A.; Franco, A.M.A.; Early, R.I.; Fox, R.; Wintle, B.; Thomas, C.D. Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proc. Biol. Sci. 2005, 272, 1885–1891. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization, biodiversity, and conservation. BioScience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Jetz, W.; Wilcove, D.S.; Dobson, A.P. Projected impacts of climate and landscape change on the global diversity of birds. PLoS One 2007, 5, 1211–1219. [Google Scholar]
- Syphard, A.D.; Clarke, K.C.; Franklin, J.; Regan, H.M.; McGinnis, M. Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source input. J. Environ. Manag. 2011, 92, 1882–1898. [Google Scholar] [CrossRef]
- Richardson, J.L. Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol. Ecol. 2012, 21, 4437–4451. [Google Scholar] [CrossRef]
- Hamer, A.J.; McDonnell, M.J. Amphibian ecology and conservation in the urbanizing world: A review. Biol. Conserv. 2008, 141, 2432–2449. [Google Scholar] [CrossRef]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef]
- Harper, E.B.; Rittenhouse, T.A.G.; Semlitsch, R.D. Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: Predicting extinction risks associated with inadequate size of buffer zones. Conserv. Biol. 2008, 22, 1205–1215. [Google Scholar] [CrossRef]
- Rothermel, B.B. Migratory success of juveniles: A potential constraint on connectivity for pond-breeding amphibians. Ecol. Appl. 2004, 14, 1535–1546. [Google Scholar] [CrossRef]
- Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 2006, 128, 231–240. [Google Scholar] [CrossRef]
- Price, S.J.; Dorcas, M.E.; Gallant, A.L.; Klaver, R.W.; Willson, J.D. Three decades of urbanization: Estimating the impact of land-cover change on stream salamander populations. Biol. Conserv. 2006, 133, 436–441. [Google Scholar] [CrossRef]
- Holzhauer, S.I.J.; Ekschmitt, K.; Sander, A.-C.; Dauber, J.; Wolters, V. Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecol. 2006, 21, 891–899. [Google Scholar] [CrossRef]
- Orsini, L.; Corander, J.; Alasentie, A.; Hanski, I. Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Mol. Ecol. 2008, 17, 2629–2642. [Google Scholar] [CrossRef]
- Porej, D.; Micacchion, M.; Hetherington, T.E. Core terrestrial habitat for conservation of local populations of salamanders and wood frogs in agricultural landscapes. Biol. Conserv. 2004, 120, 399–409. [Google Scholar] [CrossRef]
- Semlitsch, R.D.; Bodie, J.R. Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv. Biol. 2003, 17, 1219–1228. [Google Scholar] [CrossRef]
- Gamble, L.R.; McGarigal, K.; Jenkins, C.L.; Timm, B.C. Limitations of regulated “buffer zones” for the conservation of marbled salamanders. Wetlands 2006, 26, 298–306. [Google Scholar] [CrossRef]
- Semlitsch, R.D. Biological delineation of terrestrial buffer zones for pond-breeding salamanders. Conserv. Biol. 1998, 12, 1113–1119. [Google Scholar] [CrossRef]
- Van Buskirk, J. Local and landscape influence on amphibian occurrence and abundance. Ecology 2005, 86, 1936–1947. [Google Scholar] [CrossRef]
- Zamudio, K.R.; Wieczorek, A.M. Fine-Scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol. Ecol. 2007, 16, 257–274. [Google Scholar] [CrossRef]
- Greenwald, K.R.; Gibbs, H.L.; Waite, T.A. Efficacy of land-cover models in predicting isolation of marbled salamander populations in a fragmented landscape. Conserv. Biol. 2009, 23, 1232–1241. [Google Scholar] [CrossRef]
- Purrenhage, J.L.; Niewiarowski, S.P.H.; Moore, F.B.G. Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol. Ecol. 2009, 18, 235–247. [Google Scholar] [CrossRef]
- Richter, S.C.; Crother, B.I.; Broughton, R.E. Genetic consequences of population reduction and geographic isolation in the critically endangered frog. Copeia. 2009, 4, 799–806. [Google Scholar]
- Spear, S.F.; Storfer, A. Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests. Mol. Ecol. 2008, 17, 4642–4656. [Google Scholar] [CrossRef]
- Savage, W.K.; Zamudio, K.R. Spotted Salamanders, Ambystoma maculatum. In Amphibian Declines: The Conservation Status of United States Species; Lannoo, M.J., Ed.; University of California Press: Berkeley, CA, USA, 2005; pp. 621–627. [Google Scholar]
- Julian, S.E.; Kings, T.L.; Savage, W.K. Isolation and characterization of novel tetra-nucleotide microsatellite DNA markers for the spotted salamander, Ambystoma maculatum. Mol. Ecol. Notes 2003, 3, 7–9. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar]
- Rothermel, B.B.; Semlitsch, R.D. An experimental investigation of landscape resistance of forest versus old-field habitats of emigrating juvenile amphibians. Conserv. Biol. 2002, 16, 1324–1332. [Google Scholar] [CrossRef]
- Rothermel, B.B.; Semlitsch, R.D. Consequences of forest fragmentation for juvenile survival in spotted (Ambystoma maculatum) and marbled (Ambystoma opacum) salamanders. Can. J. Zool. 2006, 84, 797–807. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Hart, J.F. Cropland concentrations in the south. Ann. Assoc. Am. Geogr. 1978, 68, 505–517. [Google Scholar] [CrossRef]
- Hart, J.F. Land use change in a piedmont county. Ann. Assoc. Am. Geogr. 1980, 70, 492–527. [Google Scholar] [CrossRef]
- Griffith, J.A.; Stehman, S.V.; Loveland, T.R. Landscape trends in Mid-Atlantic and Southeastern United States ecoregions. Environ. Manag. 2003, 32, 572–588. [Google Scholar] [CrossRef]
- Napton, D.E.; Auch, R.F.; Headley, R.; Taylor, J.L. Land changes and their driving forces in the Southeastern United States. Reg. Environ. Change 2010, 10, 37–53. [Google Scholar] [CrossRef]
- Richter, S.C.; Jackson, J.A.; Hinderliter, M.; Epperson, D.; Theodorakis, C.W.; Adams, S.M. Conservation genetics of the largest cluster of federally threatened gopher tortoise (Gopherus polyphemus) colonies with implications for species management. Herpetologica 2011, 67, 406–419. [Google Scholar] [CrossRef]
- Armstrong, D.P. Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conserv. Biol. 2005, 19, 1402–1410. [Google Scholar] [CrossRef]
- Brehm, K. The Acceptance of 0.2-metre Tunnels by Amphibians during Their Migration to the Breeding Site. In Amphibians and Roads; Langton, T.E.S., Ed.; ACO Polymer Products Ltd: Bedfordshire, UK, 1989; pp. 29–42. [Google Scholar]
- Mazerolle, M.J. Drainage ditches facilitate frog movements in a hostile landscape. Landsc. Ecol. 2004, 20, 579–590. [Google Scholar] [CrossRef]
- White, D.; Minotti, P.G.; Barczak, M.J.; Sifneos, J.C.; Freemark, K.E.; Santelmann, M.V.; Preston, E.M. Assessing risks to biodiversity from future landscape change. Conserv. Biol. 1997, 11, 349–360. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Richter, S.C.; Price, S.J.; Kross, C.S.; Alexander, J.R.; Dorcas, M.E. Upland Habitat Quality and Historic Landscape Composition Influence Genetic Variation of a Pond-Breeding Salamander. Diversity 2013, 5, 724-733. https://doi.org/10.3390/d5040724
Richter SC, Price SJ, Kross CS, Alexander JR, Dorcas ME. Upland Habitat Quality and Historic Landscape Composition Influence Genetic Variation of a Pond-Breeding Salamander. Diversity. 2013; 5(4):724-733. https://doi.org/10.3390/d5040724
Chicago/Turabian StyleRichter, Stephen C., Steven J. Price, Chelsea S. Kross, Jeremiah R. Alexander, and Michael E. Dorcas. 2013. "Upland Habitat Quality and Historic Landscape Composition Influence Genetic Variation of a Pond-Breeding Salamander" Diversity 5, no. 4: 724-733. https://doi.org/10.3390/d5040724