A Sum-of-Squares and Semidefinite Programming Approach for Maximum Likelihood DOA Estimation
Abstract
:1. Introduction
2. Modeling and Problem Statement
2.1. Array Signal Model
- The noise is stationary and Gaussian distributed with zero mean, , and , where is the identity matrix.
- The signals are uncorrelated with the noise.
2.2. Maximum Likelihood Parameter Estimation
3. The SOS and SDP Based DOA Estimation Approach
3.1. Estimate the DOA of a Single Signal Source
- When , calculate for ; when , perform Gaussian elimination procedure times such that the obtained equations keep the i-th to -th order of t for , respectively, and calculate the roots of all the equations. Then, choose the or root that maximizes as and obtain the corresponding by Equation (19).
- Using as an initial point, minimize by using the Newton’s iteration in Algorithm 1.
Algorithm 1 The Procedure of One-Dimensional Newton’s Iteration. |
Input: A small positive constant, ; the maximum number of iterations, K; an initial point, ; Output: An estimate of DOA, ; 1: and ; 2: repeat 3: ; 4: Choose a step size using Armijo rule [27]; 5: ; 6: and ; 7: until or ; 8: return . |
3.2. Estimate DOAs of Multiple Signal Sources
Algorithm 2 The Framework of Alternating Projection Based on ML Criterion. |
Input: A small positive constant, ϵ; the maximum number of iterations, K; Output: DOA estimates, , ; 1: ; 2: for ; ; do 3: ; 4: end for 5: repeat 6: ; 7: for ; ; do 8: ; 9: end for 10: until or 11: return , . |
3.3. Complexity Analysis
4. Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Trees, H.L.V. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory; John Wiley & Sons, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Krim, H.; Viberg, M. Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Ziskind, I.; Wax, M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1553–1560. [Google Scholar] [CrossRef]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Stoica, P.; Sharman, K. Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1132–1143. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Romano, G.; Solimene, R. On MSE performance of time-reversal MUSIC. In Proceedings of the 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, Spain, 22–25 June 2014; pp. 13–16.
- Ciuonzo, D.; Romano, G.; Solimene, R. Performance Analysis of Time-Reversal MUSIC. IEEE Trans. Signal Process. 2015, 63, 2650–2662. [Google Scholar] [CrossRef]
- Bresler, Y.; Macovski, A. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1081–1089. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P.; Liu, Z.S. Comparative study of IQML and MODE direction-of-arrival estimators. IEEE Trans. Signal Process. 1998, 46, 149–160. [Google Scholar]
- Stoica, P.; Sharman, K. Novel eigenanalysis method for direction estimation. IEE Proc. F R. Signal Proc. 1990, 137, 19–26. [Google Scholar] [CrossRef]
- Stoica, P.; Babu, P.; Li, J. Spice: A sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 2011, 59, 629–638. [Google Scholar] [CrossRef]
- Zhu, H.; Leus, G.; Giannakis, G.B. Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Process. 2011, 59, 2002–2016. [Google Scholar] [CrossRef]
- Bhaskar, B.N.; Tang, G.; Recht, B. Atomic Norm Denoising With Applications to Line Spectral Estimation. IEEE Trans. Signal Process. 2013, 61, 5987–5999. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xie, L.; Zhang, C. A Discretization-Free Sparse and Parametric Approach for Linear Array Signal Processing. IEEE Trans. Signal Process. 2014, 62, 4959–4973. [Google Scholar] [CrossRef]
- Si, W.; Qu, X.; Qu, Z. Off-Grid DOA Estimation Using Alternating Block Coordinate Descent in Compressed Sensing. Sensors 2015, 15, 21099–21113. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Yuan, Y.; Ling, Q. DOA Estimation Using a Greedy Block Coordinate Descent Algorithm. IEEE Trans. Signal Process. 2012, 60, 6382–6394. [Google Scholar]
- Fang, J.; Li, J.; Shen, Y.; Li, H.; Li, S. Super-Resolution Compressed Sensing: An Iterative Reweighted Algorithm for Joint Parameter Learning and Sparse Signal Recovery. IEEE Signal Process. Lett. 2014, 21, 761–765. [Google Scholar]
- Yang, Z.; Xie, L. Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization. IEEE Trans. Signal Process. 2016, 64, 995–1006. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L. Exact Joint Sparse Frequency Recovery via Optimization Methods. IEEE Trans. Signal Process. 2016, 64, 5145–5157. [Google Scholar] [CrossRef]
- Nesterov, Y. Squared Functional Systems and Optimization Problems; Springer: Boston, MA, USA, 2000; pp. 405–440. [Google Scholar]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge Univercity Press: Cambridge, UK, 2004. [Google Scholar]
- Stoica, P.; Arye, N. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 720–741. [Google Scholar] [CrossRef]
- Reznick, B. Some concrete aspects of Hilbertś 17th problem. Contemp. Math. 2000, 253, 251–272. [Google Scholar]
- Kimchuan, T.; Michael, J.T.; Reha, T. On the Implementation and Usage of SDPT3-a Matlab Software Package for Semidefinite-Quadratic-Linear Programming, version 4.0; Springer: New York, NY, USA, 2012; pp. 715–754. [Google Scholar]
- Luo, Z.; Yu, W. An introduction to convex optimization for communications and signal processing. IEEE J. Select. Areas Commun. 2006, 24, 1426–1438. [Google Scholar]
- Armijo, L. Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 1966, 16, 1–3. [Google Scholar] [CrossRef]
- Matlab codes of SPA and ANM. Available online: https://sites.google.com/site/zaiyang0248/publication (accessed on 19 December 2016).
- Sun, F.; Gao, B.; Chen, L.; Lan, P. A Low-Complexity ESPRIT-Based DOA Estimation Method for Co-Prime Linear Arrays. Sensors 2016, 16, 1367. [Google Scholar] [CrossRef] [PubMed]
- Stoica, P.; Gershman, A.B. Maximum-likelihood DOA estimation by data-supported grid search. IEEE Signal Process. Lett. 1999, 6, 273–275. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S.P. CVX: MATLAB software for disciplined convex programming. Available online: http://cvxr.com/cvx (accessed on 10 December 2016).
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, S.; Zhou, Q.; Zhu, H. A Sum-of-Squares and Semidefinite Programming Approach for Maximum Likelihood DOA Estimation. Sensors 2016, 16, 2191. https://doi.org/10.3390/s16122191
Cai S, Zhou Q, Zhu H. A Sum-of-Squares and Semidefinite Programming Approach for Maximum Likelihood DOA Estimation. Sensors. 2016; 16(12):2191. https://doi.org/10.3390/s16122191
Chicago/Turabian StyleCai, Shu, Quan Zhou, and Hongbo Zhu. 2016. "A Sum-of-Squares and Semidefinite Programming Approach for Maximum Likelihood DOA Estimation" Sensors 16, no. 12: 2191. https://doi.org/10.3390/s16122191
APA StyleCai, S., Zhou, Q., & Zhu, H. (2016). A Sum-of-Squares and Semidefinite Programming Approach for Maximum Likelihood DOA Estimation. Sensors, 16(12), 2191. https://doi.org/10.3390/s16122191