An in-Depth Survey of Visible Light Communication Based Positioning Systems
Abstract
:1. Introduction
2. Fundamental of Visible Light Communication Based Positioning
2.1. Basic Principles and Specific Characteristics
2.2. Terminology
2.3. Taxonomy of VLC Based Positioning Systems
- The main medium used for determining the location:visible light, infrared, WiFi, Bluetooth, radio frequency, ultra-sound, vision, mechanical energy (inertial or contact), magnetic field, atmospheric pressure, etc.
- The type of application: indoor, outdoor, underwater, vehicle, etc.
- The algorithm used for determining the location: TOA, TDOA, RSS, AOA, fingerprinting, vision analysis, etc.
3. Algorithms in VLC Based Positioning
3.1. Proximity
3.2. Fingerprinting
3.2.1. Probabilistic Methods
3.2.2. k-Nearest Neighbors (k-NN)
3.2.3. Correlation
3.2.4. Type of Signal Features Used for Fingerprinting
3.3. Triangulation
3.3.1. Time of Arrival—TOA
3.3.2. Time Difference of Arrival—TDOA
3.3.3. Received Signal Strength—RSS
3.3.4. Received Signal Strength Ratio and Received Signal Strength Difference
3.3.5. Angle of Arrival—AoA
3.4. Vision Analysis
3.4.1. Basis of Vision Analysis
3.4.2. Single View Geometry
Method of Using Collinearity Condition
Method of Using a Scaling Factor
3.4.3. Vision Triangulation
3.5. Hybrid Algorithm
3.6. Comparison of VLC Based Positioning Techniques
4. Types of Receivers and Multiplexing Techniques in VLC Based Positioning
4.1. Types of Receivers
4.1.1. Photodiode
4.1.2. Image Sensors
4.1.3. Photodiode Arrays
4.2. Multiplexing Technique
4.2.1. Time Division Multiplexing
4.2.2. Frequency Division Multiplexing
4.2.3. Code Division Multiplexing
4.2.4. Color Division Multiplexing
4.2.5. Space Division Multiplexing
5. Summary of Studies in Visible Light Communication Based Positioning
6. General Difficulties in Visible Light Communication Based Positioning
6.1. Ambient Light Noise
6.2. Time Measurement
6.3. Out of Focus Images
6.4. Synchronization
6.5. Flickering
6.6. Lens Distortion
6.7. Trade-offs Regarding to FOV of Receiver and Image Sensor Resolution
6.8. Mobility
7. Open Issues in VLC Based Positioning
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Misra, P.; Enge, P. Global Positioning System: Signals, Measurements and Performance, 2nd ed.; Ganga-Jamuna Press: Lincoln, MA, USA, 2006. [Google Scholar]
- Li, B.; Quader, I.J.; Dempster, A.G. On outdoor positioning with Wi-Fi. J. Glob. Position. Syst. 2008, 1, 18–26. [Google Scholar] [CrossRef]
- Sagotra, R.; Aggarwal, R. Visible light communication. Int. J. Comput. Trends Technol. (IJCTT) 2013, 4, 906–910. [Google Scholar]
- Schill, F.; Zimmer, U.R.; Trumpf, J. Visible spectrum optical communication and distance sensing for underwater applications. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA), Canberra, Australia, 6–8 December 2004; pp. 1–8.
- Rust, I.C.; Asada, H.H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 2445–2450.
- Iturralde, D.; Azurdia-Meza, C.; Krommenacker, N.; Soto, I.; Ghassemlooy, Z.; Becerra, N. A new location system for an underground mining environment using visible light communications. In Proceedings of the 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Manchester, UK, 23–25 July 2014; pp. 1165–1169.
- Xie, B.; Tan, G.; Liu, Y.; Lu, M.; Chen, K.; He, T. LIPS: A Light Intensity Based Positioning System For Indoor Environments. ArXiv E-Prints, 2014; arXiv:1403.2331. [Google Scholar]
- Armstrong, J.; Yasar, S.; Neild, A. Visible light positioning: A roadmap for international standardization. IEEE Commun. Mag. 2013, 51, 68–73. [Google Scholar] [CrossRef]
- Zhang, W.; Kavehrad, M. Comparison of VLC-based indoor positioning techniques. In SPIE OPTO; International Society for Optics and Photonics: San Francisco, CA, USA, 2012. [Google Scholar]
- Wang, C.; Wang, L.; Chi, X.; Liu, S.; Shi, W.; Deng, J. The research of indoor positioning based on visible light communication. Commun. China 2015, 12, 85–92. [Google Scholar] [CrossRef]
- Yan, K.; Zhou, H.; Xiao, H.; Zhang, X. Current status of indoor positioning system based on visible light. In Proceedings of the 15th IEEE International Conference on Control, Automation and Systems (ICCAS), Busan, Korea, 13–16 October 2015; pp. 565–569.
- Do, T.-H.; Yoo, M. Potentialities and challenges of VLC based outdoor positioning. In Proceedings of the IEEE International Conference on Information Networking (ICOIN), Siem Reap, Cambodia, 12–14 January 2015; pp. 474–477.
- Arafa, A.T. An Indoor Optical Wireless Location Comparison between An Angular Receiver and An Image Receiver. Doctoral Dissertation, University of British Columbia, Vancouver, Canada, 2015. [Google Scholar]
- Hassan, N.U.; Naeem, A.; Pasha, M.A.; Jadoon, T.; Yuen, C. Indoor Positioning Using Visible LED Lights: A Survey. ACM Comput. Surv. 2015, 48, 20. [Google Scholar] [CrossRef]
- Mautz, R.; Tilch, S. Survey of optical indoor positioning systems. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Guimaraes, Portugal, 21–23 September 2011; pp. 1–7.
- DeSouza, G.N.; Avinash, C.K. Vision for mobile robot navigation: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 237–267. [Google Scholar] [CrossRef]
- Deans, M.C. Bearings-only Localization and Mapping. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2005. [Google Scholar]
- Sala, P.; Sim, R.; Shokoufandeh, A.; Dickinson, S. Landmark selection for vision-based navigation. IEEE Trans. Robot. 2006, 22, 334–349. [Google Scholar] [CrossRef]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- Gu, Y.; Lo, A.; Niemegeers, I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 2009, 11, 13–32. [Google Scholar] [CrossRef]
- Lee, Y.U.; Kavehrad, M. Two hybrid positioning system design techniques with lighting LEDs and ad-hoc wireless network. IEEE Trans. Consum. Electron. 2012, 58, 1176–1184. [Google Scholar] [CrossRef]
- Lee, Y.U.; Baang, S.; Park, J.; Zhou, Z.; Kavehrad, M. Hybrid positioning with lighting LEDs and Zigbee multihop wireless network. In SPIE OPTO; International Society for Optics and Photonics: San Francisco, CA, USA, 2012. [Google Scholar]
- Lee, Y.U.; Kavehrad, M. Long-range indoor hybrid localization system design with visible light communications and wireless network. In Proceedings of the IEEE Photonics Society Summer Topical Meeting Series, Seattle, WA, USA, 9–11 July 2012.
- Le, N.T.; Jang, Y.M. Smart color channel allocation for visible light communication cell ID. Opt. Switch. Netw. 2015, 15, 75–86. [Google Scholar] [CrossRef]
- Won, E.T.; Shin, D.; Jung, D.K.; Oh, Y.J.; Bae, T.; Kwon, H.; Cho, C.; Son, J.; O’Brien, D.; Kang, T.; et al. Visible Light Communication: Tutorial; IEEE: Orlando, FL, USA, 2008. [Google Scholar]
- Pang, G.; Liu, H.; Chan, C.H.; Kwan, T. Vehicle location and navigation systems based on LEDs. In Proceedings of the 5th World Congress on Intelligent Transport Systems, Seoul, Korea, 12–16 October 1998.
- Pang, G.K.; Liu, H.H. LED location beacon system based on processing of digital images. IEEE Trans. Intell. Transp. Syst. 2001, 2, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.S.; Pang, G. Positioning beacon system using digital camera and LEDs. IEEE Trans. Veh. Technol. 2003, 52, 406–419. [Google Scholar]
- Campo-Jimenez, G.; Martin Perandones, J.; Lopez-Hernandez, F.J. A VLC-based beacon location system for mobile applications. In Proceedings of the IEEE International Conference on Localization and GNSS (ICL-GNSS), Turin, Italy, 25–27 June 2013; pp. 1–4.
- Ayub, S.; Kariyawasam, S.; Honary, M.; Honary, B. Visible light ID system for indoor localization. In Proceedings of the 5th IET International Conference on Wireless, Mobile and Multimedia Networks (ICWMMN 2013), Beijing, China, 22–25 November 2013; pp. 254–257.
- Nakajima, M.; Haruyama, S. Indoor navigation system for visually impaired people using visible light communication and compensated geomagnetic sensing. In Proceedings of the 1st IEEE International Conference on Communications in China (ICCC), Beijing, China, 15–17 August 2012; pp. 524–529.
- Nakajima, M.; Haruyama, S. New indoor navigation system for visually impaired people using visible light communication. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Makino, H.; Kobayashi, S.; Maeda, Y. Design of an indoor self-positioning system for the visually impaired-simulation with rfid and bluetooth in a visible light communication system. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Lyon, France, 22–26 August 2007; pp. 1655–1658.
- Sertthin, C.; Tsuji, E.; Nakagawa, M.; Kuwano, S.; Watanabe, K. A switching estimated receiver position scheme for visible light based indoor positioning system. In Proceedings of the 4th International Symposium on Wireless Pervasive Computing (ISWPC), Melbourne, Australia, 11–13 February 2009; pp. 1–5.
- Sertthin, C.; Ohtsuki, T.; Nakagawa, M. 6-axis sensor assisted low complexity high accuracy-visible light communication based indoor positioning system. IEICE Trans. Commun. 2010, 93, 2879–2891. [Google Scholar] [CrossRef]
- Sertthin, C.; Fujii, T.; Takyu, O.; Umeda, Y.; Ohtsuki, T. On physical layer simulation model for 6-axis sensor assisted VLC based positioning system. In Proceedings of the Global Telecommunications Conference, Houston, TX, USA, 5–9 December 2011; pp. 1–5.
- Taylor, M.T.; Hranilovic, S. Angular diversity approach to indoor positioning using visible light. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 1093–1098.
- Lin, T.N.; Lin, P.C. Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks. In Proceedings of the IEEE International Conference on Wireless Networks, Communications and Mobile Computing, Maui, HI, USA, 13–16 June 2005; pp. 1569–1574.
- Kail, G.; Maechler, P.; Preyss, N.; Burg, A. Robust asynchronous indoor localization using LED lighting. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 1866–1870.
- Vongkulbhisal, J.; Chantaramolee, B.; Zhao, Y.; Mohammed, W.S. A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes. Microw. Opt. Technol. Lett. 2012, 54, 1218–1227. [Google Scholar] [CrossRef]
- Biagi, M.; Vegni, A.M.; Little, T.D. LAT indoor MIMO-VLC—Localize, access and transmit. In Proceedings of the IEEE International Workshop on Optical Wireless Communications (IWOW), Pisa, Italy, 22 October 2012.
- Vegni, A.M.; Biagi, M. An indoor localization algorithm in a small-cell LED-based lighting system. In Proceedings of the IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 13–15 November 2012; pp. 1–7.
- Hann, S.; Kim, J.H.; Jung, S.Y.; Park, C.S. White LED ceiling lights positioning systems for optical wireless indoor applications. In Proceedings of the 36th European Conference and Exhibition on Optical Communication, Torino, Italy, 19–23 September 2010.
- Jung, S.Y.; Hann, S.; Park, S.; Park, C.S. Optical wireless indoor positioning system using light emitting diode ceiling lights. Microw. Opt. Technol. Lett. 2012, 54, 1622–1626. [Google Scholar] [CrossRef]
- Yang, S.H.; Kim, D.R.; Kim, H.S.; Son, Y.H.; Han, S.K. Indoor positioning system based on visible light using location code. In Proceedings of the Fourth International Conference on Communications and Electronics (ICCE), Hue, Vietnam, 1–3 August 2012; pp. 360–363.
- Yang, S.H.; Kim, D.R.; Kim, H.S.; Son, Y.H.; Han, S.K. Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals. Microw. Opt. Technol. Lett. 2013, 55, 1385–1389. [Google Scholar] [CrossRef]
- Yang, S.H.; Jeong, E.M.; Kim, H.S.; Son, Y.H.; Han, S.K. Visible light indoor positioning system based on gain difference between tilted multiple optical receivers. In SPIE OPTO; International Society for Optics and Photonics: San Francisco, CA, USA, 2013. [Google Scholar]
- Yang, S.H.; Jeong, E.M.; Han, S.K. Indoor positioning based on received optical power difference by angle of arrival. Electron. Lett. 2014, 50, 49–51. [Google Scholar] [CrossRef]
- Yang, S.H.; Kim, H.S.; Son, Y.H.; Han, S.K. Three-dimensional visible light indoor localization using AOA and RSS with multiple optical receivers. J. Lightwave Technol. 2014, 32, 2480–2485. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, K.; Che, F.; Li, S.; Hussain, B.; Wu, L.; Yue, C.P. Towards indoor localization using visible light Communication for consumer electronic devices. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 14–18 September 2014; pp. 143–148.
- Wang, T.Q.; Sekercioglu, Y.A.; Neild, A.; Armstrong, J. Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems. J. Lightwave Technol. 2013, 31, 3302–3308. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, I.H.; Kim, J.Y. Novel Location Awareness Technique for Indoor LBS Based on Visible Light Communication. Adv. Sci. Technol. Lett. 2012, 3, 75–80. [Google Scholar]
- Choi, Y.H.; Park, I.H.; Kim, Y.H.; Kim, Y.H. Novel LBS technique based on visible light communications. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 13–16 January 2012; pp. 576–577.
- Do, T.H.; Hwang, J.; Yoo, M. TDoA based indoor visible light positioning systems. In Proceedings of the Fifth International Conference on Ubiquitous and Future Networks (ICUFN), Da Nang, Vietnam, 2–5 July 2013; pp. 456–458.
- Do, T.H.; Yoo, M. TDOA-based indoor positioning using visible light. Photonic Netw. Commun. 2014, 27, 80–88. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, Y.; Yoo, M. VLC-TDOA Using Sinusoidal Pilot Signal. In Proceedings of the IEEE International Conference on IT Convergence and Security (ICITCS), Macao, China, 16–18 December 2013; pp. 1–3.
- Roberts, R.; Gopalakrishnan, P.; Rathi, S. Visible light positioning: Automotive use case. In Proceedings of the IEEE Vehicular Networking Conference (VNC), Jersey City, NJ, USA, 13–15 December 2010; pp. 309–314.
- Jung, S.Y.; Hann, S.; Park, C.S. TDOA-based optical wireless indoor localization using LED ceiling lamps. IEEE Trans. Consum. Electron. 2011, 57, 1592–1597. [Google Scholar] [CrossRef]
- Nah, J.H.Y.; Parthiban, R.; Jaward, M.H. Visible Light Communications localization using TDOA-based coherent heterodyne detection. In Proceedings of the IEEE 4th International Conference on Photonics (ICP), Melaka, Malaysia, 28–30 October 2013; pp. 247–249.
- Panta, K.; Armstrong, J. Indoor localisation using white LEDs. Electron. Lett. 2012, 48, 228–230. [Google Scholar] [CrossRef]
- Bai, B.; Chen, G.; Xu, Z.; Fan, Y. Visible light positioning based on LED traffic light and photodiode. In Proceedings of the Vehicular Technology Conference (VTC Fall), San Francisco, CA, USA, 5–8 September 2011; pp. 1–5.
- Gu, W.; Kashani, M.A.; Kavehrad, M. Multipath reflections analysis on indoor visible light positioning system. ArXiv E-Prints, 2015; arXiv:1504.01192. [Google Scholar]
- Kim, H.S.; Kim, D.R.; Yang, S.H.; Son, Y.H.; Han, S.K. Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication. In Proceedings of the 5th IEEE International Conference on Signal Processing and Communication Systems (ICSPCS), Honolulu, HI, USA, 12–14 December 2011; pp. 1–7.
- Kim, H.S.; Kim, D.R.; Yang, S.H.; Son, Y.H.; Han, S.K. Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system. IEEE Commun. Lett. 2012, 16, 526–529. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.R.; Yang, S.H.; Son, Y.H.; Han, S.K. An indoor visible light communication positioning system using a RF carrier allocation technique. J. Lightwave Technol. 2013, 31, 134–144. [Google Scholar] [CrossRef]
- Yang, S.H.; Jeong, E.M.; Kim, D.R.; Kim, H.S.; Son, Y.H.; Han, S.K. Indoor three-dimensional location estimation based on LED visible light communication. Electron. Lett. 2013, 49, 54–56. [Google Scholar] [CrossRef]
- Mi, E.; Rae, D.; Hoon, S.; Hwan, Y.; Kook, S. Estimated position error compensation in localization using visible light communication. In Proceedings of the IEEE Fifth International Conference on Ubiquitous and Future Networks (ICUFN), Da Nang, Vietnam, 2–5 July 2013; pp. 470–471.
- Jeong, E.M.; Yang, S.H.; Kim, H.S.; Han, S.K. Tilted receiver angle error compensated indoor positioning system based on visible light communication. Electron. Lett. 2013, 49, 890–892. [Google Scholar] [CrossRef]
- Yang, S.H.; Jung, E.M.; Han, S.K. Indoor location estimation based on LED visible light communication using multiple optical receivers. IEEE Commun. Lett. 2013, 17, 1834–1837. [Google Scholar] [CrossRef]
- Yang, S.H.; Han, S.K. VLC based indoor positioning using single-Tx and rotatable single-Rx. In Proceedings of the 12th International Conference on Optical Internet (COIN), Jeju, Korea, 27–29 August 2014; pp. 1–2.
- Yamaguchi, S.; Mai, V.V.; Thang, T.C.; Pham, A.T. Design and performance evaluation of VLC indoor positioning system using optical orthogonal codes. In Proceedings of the IEEE Fifth International Conference on Communications and Electronics (ICCE), Da Nang, Vietnam, 30 July–1 August 2014; pp. 54–59.
- Luo, P.; Zhang, M.; Zhang, X.; Cai, G.; Han, D.; Li, Q. An indoor visible light communication positioning system using dual-tone multi-frequency technique. In Proceedings of the 2nd International Workshop on Optical Wireless Communications (IWOW), Newcastle upon Tyne, UK, 21 October 2013; pp. 25–29.
- Hu, P.; Li, L.; Peng, C.; Shen, G.; Zhao, F. Pharos: Enable physical analytics through visible light based indoor localization. In Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, College Park, MD, USA, 21–22 November 2013.
- Li, L.; Hu, P.; Peng, C.; Shen, G.; Zhao, F. Epsilon: A visible light based positioning system. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), Seattle, WA, USA, 2–4 April 2014.
- Kim, Y.; Hwang, J.; Lee, J.; Yoo, M. Position estimation algorithm based on tracking of received light intensity for indoor visible light communication systems. In Proceedings of the IEEE Third International Conference on Ubiquitous and Future Networks (ICUFN), Dalian, China, 15–17 June 2011; pp. 131–134.
- Yi, K.Y.; Kim, D.Y.; Yi, K.M. Development of a Localization System Based on VLC Technique for an Indoor Environment. J. Electr. Eng. Technol. 2015, 10, 436–442. [Google Scholar] [CrossRef]
- Zhou, Z.; Kavehrad, M.; Deng, P. Indoor positioning algorithm using light-emitting diode visible light communications. Opt. Eng. 2012, 51, 085009-1–085009-6. [Google Scholar] [CrossRef]
- Rahaim, M.; Prince, G.B.; Little, T.D. State estimation and motion tracking for spatially diverse VLC networks. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Anaheim, CA, USA, 3–7 December 2012; pp. 1249–1253.
- Zhang, X.; Duan, J.; Fu, Y.; Shi, A. Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator. J. Lightwave Technol. 2014, 32, 3578–3584. [Google Scholar]
- Liu, W.; Yang, C.; Chen, Y.; Yang, Q.; Zhang, D. An Indoor Positioning System Based on Cross-correlation in Visible Light Communication. In Proceedings of the Asia Communications and Photonics Conference, Shanghai, China, 11–14 November 2014.
- Nguyen, T.; Jang, Y.M. Highly Accurate Indoor Three-Dimensional Localization Technique in Visible Light Communication Systems. J. Korea Inf. Commun. Soc. 2013, 38, 775–780. [Google Scholar]
- Jung, S.Y.; Choi, C.K.; Heo, S.H.; Lee, S.R.; Park, C.S. Received signal strength ratio based optical wireless indoor localization using light emitting diodes for illumination. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–14 January 2013; pp. 63–64.
- Jung, S.Y.; Park, C.S. Lighting LEDs based Indoor Positioning System using Received Signal Strength Ratio. In Proceedings of the 3DSA2013, Osaka, Japan, 26–28 June 2013.
- Jung, S.Y.; Lee, S.R.; Park, C.S. Indoor location awareness based on received signal strength ratio and time division multiplexing using light-emitting diode light. Opt. Eng. 2014, 53, 016106. [Google Scholar] [CrossRef]
- Zhang, W.; Kavehrad, M. A 2-D indoor localization system based on visible light LED. In Proceedings of the IEEE Photonics Society Summer Topical Meeting Series, Seattle, WA, USA, 9–11 July 2012; pp. 80–81.
- Zhang, W.; Chowdhury, M.S.; Kavehrad, M. Asynchronous indoor positioning system based on visible light communications. Opt. Eng. 2014, 53, 45105. [Google Scholar] [CrossRef]
- Lee, S.; Jung, S.Y. Location awareness using Angle-of-arrival based circular-PD-array for visible light communication. In Proceedings of the 18th Asia-Pacific Conference on Communications (APCC), Jeju Island, Korea, 15–17 October 2012; pp. 480–485.
- Yasir, M.; Ho, S.W.; Vellambi, B.N. Indoor localization using visible light and accelerometer. In Proceedings of the Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 3341–3346.
- Yasir, M.; Ho, S.W.; Vellambi, B.N. Indoor positioning system using visible light and accelerometer. J. Lightwave Technol. 2014, 32, 3306–3316. [Google Scholar] [CrossRef]
- Yasir, M.; Ho, S.W.; Vellambi, B. Indoor position tracking using multiple optical receivers. J. Lightwave Technol. 2015, 34, 1166–1176. [Google Scholar] [CrossRef]
- Liu, X.; Makino, H.; Maeda, Y. Basic study on indoor location estimation using visible light communication platform. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 2377–2380.
- Arafa, A.; Dalmiya, S.; Klukas, R.; Holzman, J.F. Angle-of-arrival reception for optical wireless location technology. Opt. Express 2015, 23, 7755–7766. [Google Scholar] [CrossRef] [PubMed]
- Cossu, G.; Presi, M.; Corsini, R.; Choudhury, P.; Khalid, A.M.; Ciaramella, E. A Visible Light localization aided Optical Wireless system. In Proceedings of the GLOBECOM Workshops, Houston, TX, USA, 5–9 December 2011; pp. 802–807.
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Yamazato, T.; Haruyama, S. Image sensor based visible light communication and its application to pose, position, and range estimations. IEICE Trans. Commun. 2014, 97, 1759–1765. [Google Scholar] [CrossRef]
- Ganick, A.; Ryan, D. Self Identifying Modulated Light Source. U.S. Patent 8,866,391, 21 October 2014. [Google Scholar]
- Yoshino, M.; Haruyama, S.; Nakagawa, M. High-accuracy positioning system using visible LED lights and image sensor. In Proceedings of the Radio and Wireless Symposium, Orlando, FL, USA, 22–24 January 2008; pp. 439–442.
- Nakazawa, Y.; Makino, H.; Nishimori, K.; Wakatsuki, D.; Komagata, H. Indoor positioning using a high-speed, fish-eye lens-equipped camera in Visible Light Communication. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–8.
- Tanaka, T.; Haruyama, S. New position detection method using image sensor and visible light LEDs. In Proceedings of the Second International Conference on Machine Vision, Dubai, UAE, 28–30 December 2009; pp. 150–153.
- Kuo, Y.S.; Pannuto, P.; Hsiao, K.J.; Dutta, P. Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 447–458.
- Yang, Z.; Wang, Z.; Zhang, J.; Huang, C.; Zhang, Q. Wearables can afford: Light-weight indoor positioning with visible light. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18–22 May 2015; pp. 317–330.
- Rahman, M.S.; Haque, M.M.; Kim, K.D. Indoor positioning by LED visible light communication and image sensors. Int. J. Electr. Comput. Eng. 2011, 1, 161–170. [Google Scholar] [CrossRef]
- Rahman, M.S.; Haque, M.M.; Kim, K.D. High precision indoor positioning using lighting led and image sensor. In Proceedings of the 14th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2011; pp. 309–314.
- Kim, B.Y.; Cho, J.S.; Park, Y.; Kim, K.D. Implementation of indoor positioning using LED and dual PC cameras. In Proceedings of the Fourth International Conference on Ubiquitous and Future Networks (ICUFN), Phuket, Thailand, 4–6 July 2012; pp. 476–477.
- Biagi, M.; Pergoloni, S.; Vegni, A.M. LAST: A framework to localize, access, schedule, and transmit in indoor VLC systems. J. Lightwave Technol. 2015, 33, 1872–1887. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, N.H.; Nguyen, V.H.; Sripimanwat, K.; Suebsomran, A. Improvement of the VLC localization method using the Extended Kalman Filter. In Proceedings of the 2014 IEEE Region 10 Conference, TENCON 2014, Bangkok, Thailand, 22–25 October 2014; pp. 1–6.
- Prince, G.B.; Little, T.D. A two phase hybrid RSS/AoA algorithm for indoor device localization using visible light. In Proceedings of the Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 3347–3352.
- Prince, G.B.; Little, T.D. Latency constrained device positioning using a visible light communication two-phase received signal strength-angle of arrival algorithm. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 1–7.
- Jia, Z. A visible light communication based hybrid positioning method for wireless sensor networks. In Proceedings of the Second International Conference on Intelligent System Design and Engineering Application (ISDEA), Sanya, China, 6–7 January 2012; pp. 1367–1370.
- Ganti, D.; Zhang, W.; Kavehrad, M. VLC-based indoor positioning system with tracking capability using Kalman and particle filters. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–13 January 2014; pp. 476–477.
- Nishikata, H.; Makino, H.; Nishimori, K.; Kaneda, T.; Liu, X.; Kobayashi, M.; Wakatsuki, D. Basis research of indoor positioning method using visible light communication and dead reckoning. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011.
- Zheng, D.; Cui, K.; Bai, B.; Chen, G.; Farrell, J.A. Indoor localization based on LEDs. In Proceedings of the IEEE International Conference on Control Applications (CCA), Denver, CO, USA, 28–30 September 2011; pp. 573–578.
- Zheng, D.; Vanitsthian, R.; Chen, G.; Farrell, J.A. LED-based initialization and navigation. In Proceedings of the American Control Conference (ACC), Washington, DC, USA, 17–19 June 2013; pp. 6199–6205.
- Zheng, D.; Chen, G.; Farrell, J.A. Navigation using linear photo detector arrays. In Proceedings of the IEEE International Conference on Control Applications (CCA), Hyderabad, India, 28–30 August 2013; pp. 533–538.
- Zheng, D. Joint Visible Light Communication and Navigation via LEDs. Ph.D. Thesis, University of California, Riverside, CA, USA, December 2014. [Google Scholar]
- Danakis, C.; Afgani, M.; Povey, G.; Underwood, I.; Haas, H. Using a CMOS camera sensor for visible light communication. In Proceedings of the Globecom Workshops (GC Wkshps), Anaheim, CA, USA, 3–7 Decemmber 2012; pp. 1244–1248.
- Do, T.-H.; Yoo, M. Performance Analysis of Visible Light Communication Using CMOS Sensors. Sensors 2016, 16, 309. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, N.; Lazik, P.; Rowe, A. Visual light landmarks for mobile devices. In Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 15–17 April 2014; pp. 249–260.
- Nadeem, U.; Hassan, N.U.; Pasha, M.A.; Yuen, C. Indoor positioning system designs using visible LED lights: Performance comparison of TDM and FDM protocols. Electron. Lett. 2014, 51, 72–74. [Google Scholar] [CrossRef]
- Aminikashani, M.; Gu, W.; Kavehrad, M. Indoor positioning in high speed OFDM visible light communications. ArXiv E-Prints, 2015; arXiv:1505.01811. [Google Scholar]
- De Lausnay, S.; De Strycker, L.; Goemaere, J.P.; Stevens, N.; Nauwelaers, B. Optical CDMA codes for an indoor localization system using VLC. In Proceedings of the 3rd International Workshop in Optical Wireless Communications (IWOW), Funchal, Portugal, 17 September 2014; pp. 50–54.
- Kim, D.R.; Yang, S.H.; Kim, H.S.; Son, Y.H.; Han, S.K. Outdoor visible light communication for inter-vehicle communication using controller area network. In Proceedings of the 4th International Conference on Communications and Electronics (ICCE), Hue, Vietnam, 1–3 August 2012; pp. 31–34.
- Chung, Y.H.; Oh, S.B. Efficient optical filtering for outdoor visible light communications in the presence of sunlight or articifical light. In Proceedings of the International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), Naha-shi, Japan, 12–15 November 2013; pp. 749–752.
- Yan, Y.; Vongkulbhisal, J. Design of visible light communication receiver for on-off keying modulation by adaptive minimum-voltage cancelation. Eng. J. 2013, 17, 1–5. [Google Scholar]
- Takai, I.; Ito, S.; Yasutomi, K.; Kagawa, K.; Andoh, M.; Kawahito, S. LED and CMOS image sensor based optical wireless communication system for automotive application. IEEE Photonics J. 2013, 5, 6801418. [Google Scholar] [CrossRef]
- Mondal, M.R.H.; Armstrong, J. The effect of defocus blur on a spatial OFDM optical wireless communication system. In Proceedings of the 14th International Conference on Transparent Optical Networks (ICTON), Coventry, UK, 2–5 July 2012; pp. 1–4.
- Akiyama, T.; Sugimoto, M.; Hashizume, H. SyncSync: Time-of-arrival based localization method using light-synchronized acoustic waves for smart phones. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 1–9.
- Ikeda, Y.; Okuda, K.; Uemura, W. The coded hierarchical modulation with amplitude for estimating the position in visible light communications. In Proceedings of the IEEE 3rd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 7–10 October 2014; pp. 412–413.
- Lou, P.; Zhang, X.; Yao, M.; Xu, Z. Fundamental analysis for indoor visible light positioning system. In Proceedings of IEEE International Conference on Communications in China Workshops (ICCC), Bejing, China, 15–17 August 2012; pp. 59–63.
- Ringaby, E. Geometric Models for Rolling-shutter and Push-broom Sensors. Ph.D. Thesis, Linköping University, Linköping, Sweden, 2014. [Google Scholar]
Algorithm | Reference | Receiver | Multiplexing | Accuracy |
---|---|---|---|---|
Proximity | [8,21,22,23,24,25,26,27,28,30,33] | PD | ||
[29] | PD | 4.5 m | ||
[31,32] | PD | 1–2 m | ||
[34,35,36] | PD + 6-axis sensor | no need | 30–60 cm | |
[37] | PD | FDM | 12.9 cm | |
Fingerprinting | [39] | PD | 0.81 cm | |
[40] | PD | FDM | 15–20 cm | |
[41,42] | PD | TDM | 20–80 cm | |
[43,44] | PD | CDM | 4.4–12.5 cm | |
[45,46] | PD | TDM | 1.58 cm | |
[47,48] | PD array | no need | 4–13 cm | |
[49] | PD array | no need | 6 cm | |
[50] | PD + camera | no need | ||
TOA | [51] | PD | FDM | 2–6 cm |
RSS | [7] | PD | FDM | 0.4 m |
[62] | PD | TDM | 4–90 cm | |
[63,64,65,66] | PD | FDM | 6 cm | |
[67,68] | PD + gyroscope | 1.5 cm | ||
[69,70] | PD array | no need | 1.5 cm | |
[71] | PD | CDM | 8 cm | |
[72] | PD | FDM | 1.5 cm | |
[73] | PD | FDM | 0.3–0.7 m | |
[74] | PD | FDM | 0.4 m | |
[75] | PD | 3–35 cm | ||
[76] | PD | TDM | 3.2–10.3 cm | |
[77] | PD | TDM | 0.5–7.3 mm | |
[78] | PD | 5-10 cm | ||
[79] | PD | FDM | 4.78 cm | |
[80] | PD | CDM | 6 cm | |
[81] | PD | |||
[82,83,84] | PD | TDM | 1.7–3.9 cm | |
[85,86] | PD | TDM | 11–17 cm | |
[120] | PD | FDM | 0.53 m | |
[121] | PD | CDM | 0.7 m | |
TDOA | [52,53] | PD | 14 cm | |
[54,55] | PD | TDM | 3 cm | |
[56] | PD | TDM | 68.2 cm | |
[57] | PD | FDM | 1 cm | |
[58] | PD | FDM | 1 cm | |
[59] | PD | FDM | 2 cm | |
[60] | PD | FDM | ||
[61] | PD | TDM | 0.5–5 m | |
AOA | [87] | PD array | 5–30 cm | |
[88,89] | PD + accelerometer | TDM | 25 cm | |
[90] | PD array + accelerometer | TDM | 6 cm | |
[91] | PD + angle lens | tens of cm | ||
[92] | PD array | FDM | 5 cm | |
[93] | PD | OFDM | ||
Vision | [95] | camera | no need | |
[96] | camera | no need | ||
[97] | camera | no need | 7 cm | |
[98] | camera | no need | 10 cm | |
[99] | camera + accelerometer | no need | 5 cm | |
[100] | camera | FDM | 10 cm | |
[101] | camera | no need | 30 cm | |
[102,103] | 2 camera | no need | 1.5 m | |
[104] | 2 camera | no need | 85 cm | |
Hybrid | [105] | PD | TDM | 5 mm |
[106] | PD array | no need | 20 cm | |
[107] | PD | TDM | 14 cm | |
[108] | PD | TDM | 14–48 cm | |
[109] | PD | |||
[110] | PD | 0.5 m | ||
[111] | PD + gyroscoper | 10.5 cm | ||
[112] | camera | FDM | 1 m | |
[113] | camera | 0.5 m | ||
[114,115] | camera | 0.2 m |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, T.-H.; Yoo, M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors 2016, 16, 678. https://doi.org/10.3390/s16050678
Do T-H, Yoo M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors. 2016; 16(5):678. https://doi.org/10.3390/s16050678
Chicago/Turabian StyleDo, Trong-Hop, and Myungsik Yoo. 2016. "An in-Depth Survey of Visible Light Communication Based Positioning Systems" Sensors 16, no. 5: 678. https://doi.org/10.3390/s16050678
APA StyleDo, T.-H., & Yoo, M. (2016). An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors, 16(5), 678. https://doi.org/10.3390/s16050678