1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of the [bmim][BF4]-Modified QCM Sensor
2.3. Sample Handling Setup and Quantification of Acetone Vapor Concentration
2.4. Measurements
3. Results and Discussion
3.1. Viscoelasticity Effect of [bmim][BF4] Film
3.2. Response Curve on the [bmim][BF4]-Modified QCM Sensor
3.3. Calibration Curve
3.4. Effect of Humidity on the [bmim][BF4]-Modified QCM Sensor
3.5. Selectivity
3.6. Comparison of QCM and Gas Chromatography Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amorim, L.C.A.; Cardeal, Z.L. Breath air analysis and its use as a biomarker in biological monitoring of occupational and environmental exposure to chemical agents. J. Chromatogr. B 2007, 853, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Probert, C.S.J.; Ahmed, I.; Khalid, T.; Johnson, E.; Smith, S.; Ratcliffe, N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J. Gastrointest. Liver Dis. 2009, 18, 337–343. [Google Scholar]
- Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R.N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B 1999, 729, 75–88. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Ditkoff, B.A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C.S.; Rahbari-Oskoui, F.; Wong, C. Volatile markers of breast cancer in the breath. Breast J. 2003, 9, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Sabas, M.; Greenberg, J. Increased pentane and carbon disulfide in the breath of patients with schizophrenia. J. Clin. Pathol. 1993, 46, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Corradi, M.; Pesci, A.; Casana, R.; Alinovi, R.; Goldoni, M.; Vettori, M.V.; Cuomo, A. Nitrate in exhaled breath condensate of patients with different airway diseases. Nitric Oxide Biol. Chem. 2003, 8, 26–30. [Google Scholar] [CrossRef]
- Grob, N.M.; Dweik, R.A. Exhaled nitric oxide in asthma. Chest 2008, 133, 837–839. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Mbi, A.; Shepherd, M. A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1c. IEEE Sens. J. 2010, 10, 54–63. [Google Scholar] [CrossRef]
- Turner, C.; Walton, C.; Hoashi, S.; Evans, M. Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J. Breath Res. 2009, 3, 046004. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, J.; Yu, X.; Zhang, W.; Zhang, X. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B 2004, 810, 269–275. [Google Scholar] [CrossRef]
- Tassopoulos, C.N.; Barnett, D.; Fraser, T.R. Breath-acetone and blood-sugar measurements in diabetes. Lancet 1969, 293, 1282–1286. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, P.; Li, J.; Gao, X. Diagnosis of diabetes by image detection of breath using gas-sensitive laps. Biosens. Bioelectron. 2000, 15, 249–256. [Google Scholar] [CrossRef]
- Laurila, T.K.; Sorvajrvi, T.; Saarela, J.; Toivonen, J.; Wheeler, D.W.; Ciaffoni, L.; Ritchie, G.A.D.; Kaminski, C.F. Optical detection of the anesthetic agent propofol in the gas phase. Anal. Chem. 2011, 83, 3963–3967. [Google Scholar] [CrossRef] [PubMed]
- Wojtas, J.; Bielecki, Z.; Stacewicz, T.; Mikołajczyk, J.; Nowakowski, M. Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron. Rev. 2012, 20, 26–39. [Google Scholar] [CrossRef]
- Soini, H.A.; Klouckova, I.; Wiesler, D.; Oberzaucher, E.; Grammer, K.; Dixon, S.J.; Xu, Y.; Brereton, R.G.; Penn, D.J.; Novotny, M.V. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. J. Chem. Ecol. 2010, 36, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Marcin, P.; Agnieszka, S.; Tadeusz, P.; Erwin, M. A study of a QCM sensor based on TiO2 nanostructures for the detection of NO2 and explosives vapours in air. Sensors 2015, 15, 9563–9581. [Google Scholar]
- Yamagiwa, H.; Sato, S.; Fukawa, T.; Ikehara, T.; Maeda, R.; Mihara, T.; Kimura, M. Detection of volatile organic compunds by weight-detectable sensors coated with metal-organic frameworks. Sci. Rep. 2014, 4, 6247. [Google Scholar] [CrossRef] [PubMed]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, G.; Mierzwa, M.; Ziolo, J.; Paluch, M.; Shirota, H.; Ngai, K.I. Glass transition dynamics of room temperature ionic liquid: 1-Methyl-3-Trimethylsilylmethylimidazolium Tetrafluoroborate. J. Phys. Chem. B 2011, 115, 12709–12716. [Google Scholar] [CrossRef] [PubMed]
- Likhanova, N.V.; Guzmán-Lucero, D.; Flores, E.A.; García, P.; Domínguez-Aguilar, M.A.; Palomeque, J.; Martínez-Palou, R. Ionic liquids screening for desulfurization of natural gasoline by liquid–liquid extraction. Mol. Divers. 2010, 14, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Bonhote, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996, 35, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.; Cooper, M.A. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 2011, 24, 754–787. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Vashist, P. Recent advances in quartz crystal microbalance-based sensors. J. Sensors 2011, 2011, 571405. [Google Scholar] [CrossRef]
- Funari, R.; Della, V.B.; Carrieri, R.; Morra, L.; Lahoz, E.; Gesuele, F.; Altucci, C.; Velotta, R. Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique. Biosens. Bioelectron. 2015, 67, 224–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masdor, N.A.; Altintas, Z.; Tothill, I.E. Sensitive detection of campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosens. Bioelectron. 2016, 78, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Yuan, C.Y.; Warmack, R.J.; Barnes, C.E.; Dai, S. Ionic liquids: A new class of sensing materials for detection of organic vapors based on the use of a quartz crystal microbalance. Anal. Chem. 2002, 74, 2172–2176. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, C.; Pei, K.; Zhao, K.; Zhao, Z.K.; Li, H. Ionic liquids used as QCM coating materials for the detection of alcohols. Sens. Actuators B 2008, 134, 258–265. [Google Scholar] [CrossRef]
- Rehman, A.; Hamilton, A.; Chung, A.; Baker, G.A.; Wang, Z.; Zeng, Z.X. Differential solute gas response in ionic liquid based QCM arrays: Elucidating design factors responsible for discriminative dexplosive gas sensing. Anal. Chem. 2011, 83, 7823–7833. [Google Scholar] [CrossRef] [PubMed]
- Survilienė, S.; Eugénio, S.; Vilar, R. Chromium electrodeposition from [Bmim][BF4] ionic liquid. J. Appl. Electrochem. 2011, 41, 107–114. [Google Scholar] [CrossRef]
- Gollas, B.; Bartlett, P.N.; Denuault, G. An instrument for simultaneous EQCM impedance and SECM measurements. Anal. Chem. 2000, 72, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.J.; Granstaff, V.E.; Frye, G.C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 1991, 63, 2272–2281. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, Y.; Yuan, Y.; Guo, Y.; Wang, X.; Yao, S. An Electrochemical quartz crystal impedance study on cystine precipitation onto an Au Electrode surface during cysteine oxidation in aqueous solution. J. Electroanal. Chem. 2000, 484, 41–54. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, Y.; Xiang, C.; Tang, J.; Li, Y.; Zhao, Q.; Yao, S. A Comparative study on the viscoelasticity and morphology of polyaniline films galvanostatically grown on bare and 4-aminothiophenol-modified gold electrodes using an electrochemical quartz crystal Impedance system and SECM. Anal. Sci. 2001, 17, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, K.K.; Gordon, J.G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–106. [Google Scholar] [CrossRef]
- Fannin, A.A., Jr.; Floreani, D.A.; King, L.A.; Landers, J.S.; Piersma, B.; Stech, D.J.; Vaughn, R.L.; Wilkes, J.S.; Williams, J.L. Properties of 1, 3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. phase transitions, densities, electrical conductivities, and viscosities. J. Phys. Chem. 1984, 88, 2614–2621. [Google Scholar] [CrossRef]
- Moy, R.; Emmenegger, F.P. Co-solvents for chloroaluminate electrolytes. Electrochim. Acta 1992, 37, 1061. [Google Scholar] [CrossRef]
- Liao, Q.; Hussey, C.L. Densities, viscosities, and conductivities of mixtures of benzene with the Lewis acidic aluminum chloride+ 1-methyl-3-ethylimidazolium chloride molten salt. J. Chem. Eng. Data 1996, 41, 1126–1130. [Google Scholar] [CrossRef]
- Seddon, K.R.; Stark, A.; To, M.J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 2000, 72, 2275–2287. [Google Scholar] [CrossRef]
- Si, P.; Mortensen, J.; Komolov, A.; Denborg, J.; Møller, P.J. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures. Anal. Chim. Acta 2007, 597, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhou, J.; Chen, S.; Zeng, L.; Huang, Y. A highly sensitive QCM sensor coated with Ag+-Zsm-5 film for medical diagnosis. Sens. Actuator B 2004, 101, 316–321. [Google Scholar] [CrossRef]
- Xian, S.; Yu, Y.; Xiao, J.; Zhang, Z.J.; Xia, Q.B.; Wang, H.H.; Li, Z. Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101 (Cr) in humid atmosphere. RSC Adv. 2014, 5, 1827–1834. [Google Scholar] [CrossRef]
- Phillips, M. Method for the collection and assay of volatile organic compounds in breath. Anal. Biochem. 1997, 247, 272–278. [Google Scholar] [CrossRef] [PubMed]
Items | Gmax (mS) | (Hz) | Q | ΔR1 (Ω) | Δf0/ΔR1 (Hz/Ω) |
---|---|---|---|---|---|
Bare QCM | 26.30 | 750 | 12,004 | NA | NA |
[bmin][BF4]-modified QCM | 12.08 | 1700 | 5293 | 44.36 | 123 |
Interferents | C (ppmv) | Δf (Hz) |
---|---|---|
Isoprene | 29.98 | 18.1 |
1,2-pentadiene | 9.25 | 12.5 |
d-limonene | 5.20 | 11.7 |
dl-limonene | 1.43 | 13.4 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Lin, P.; Liu, S.; Xie, Q.; Ke, S.; Zeng, X. 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance. Sensors 2017, 17, 194. https://doi.org/10.3390/s17010194
Tao W, Lin P, Liu S, Xie Q, Ke S, Zeng X. 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance. Sensors. 2017; 17(1):194. https://doi.org/10.3390/s17010194
Chicago/Turabian StyleTao, Wenyan, Peng Lin, Sili Liu, Qingji Xie, Shanming Ke, and Xierong Zeng. 2017. "1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance" Sensors 17, no. 1: 194. https://doi.org/10.3390/s17010194