Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Greenhouse Experiment
- (i)
- 0.3 kg ha−1 Sencor® WG (700 g a.i. kg−1 metribuzin, WG, Bayer CropScience) + 0.25 L ha−1 Centium® 36 CS (360 g a.i. L−1 clomazone, CS, Cheminova Deutschland GmbH) + 0.8 L ha−1 Spectrum® (720 g a.i. L−1 dimethenamid-P, EC, BASF);
- (ii)
- 2.0 kg ha−1 Artist® (175 g a.i. kg−1 metribuzin, 240 g a.i. kg−1 flufenacet, WG, Bayer CropScience), Harmony® SX® (500 g a.i. kg−1 thifensulfuron, SG, Du Pont);
- (iii)
- Harmony® SX® (500 g a.i. kg−1 thifensulfuron, SG, Du Pont) + Basagran® (480 g a.i. L−1 bentazon, SL, BASF), Harmony® SX® (500 g a.i. kg−1 thifensulfuron, SG, Du Pont) + Fusilade® MAX (125 g a.i. L−1 fluazifop-P-butyl, EC, Syngenta).
2.1.2. Field Experiment
- (i)
- 2.0 kg ha−1 Artist® (175 g a.i. kg−1 metribuzin, 240 g a.i. kg−1 flufenacet, WG, Bayer CropScience);
- (ii)
- 1.5 kg ha−1 Stomp® Aqua (455 g a.i. L−1 pendimethalin, CS, BASF) + 2.0 L ha−1 Quantum® (600 g a.i. L−1 pethoxamid, EC, Cheminova Deutschland GmbH);
- (iii)
- 0.4 L ha−1 Sencor® Liquid (600 g a.i. L−1 metribuzin, SC, Bayer CropScience) + 0.25 L ha−1 Centium® 36 CS (360 g a.i. L−1 clomazone, CS, Cheminova Deutschland GmbH);
- (iv)
- 0.4 L ha−1 Sencor® Liquid (600 g a.i. L−1 metribuzin, SC, Bayer CropScience) + 0.25 L ha−1 Centium® 36 CS (360 g a.i. L−1 clomazone, CS, Cheminova Deutschland GmbH) + 0.8 L ha−1 Spectrum® (720 g a.i. L−1 dimethenamid-P, EC, BASF).
2.2. Chlorophyll Fluorescence Sensor
2.3. Measurements and Data Analysis
3. Results
3.1. Greenhouse Experiment
3.2. Field Experiment
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviation
ANOVA | Analysis of Variance |
BBCH | Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie |
C1 | Inhibition of Photosystem II |
CS | Capsule Suspensions |
DOXP | 1-Deoxy- d-xylulose 5-phosphate |
EC | Emulsifiable Concentrates |
F4 | Inhibition of DOXP Synthase |
Fm | Maximal Fluorescence Yield |
Fo | Dark Fluorescence Yield |
Fv/Fm | Maximal PS II Quantum Yield |
HSD | Honest Significant Difference |
K1 | Inhibition of Microtubule Assembly |
K3 | Inhibition of Cell Division |
LED | Light-Emitting Diode |
MoA | Mode of Action |
PAM | Pulse Amplitude Modulation |
PS II | Photosystem II |
QB | a Protein-bound Plastoquinone |
SC | Suspension Concentrates |
SG | Soluble Granules |
SL | Soluble (liquid) Concentrates |
VLCFA | Very Long Chain Fatty Acid |
WG | Water-Dispersible Granules |
References
- FAOSTAT (Food and Agriculture Organization of the United Nations: Statistics Division). Soybean Production of Commodity of the World. Available online: http://faostat3.fao.org/browse/Q/QC/E (accessed on 29 October 2016).
- Salzman, F.P.; Renner, K.A. Response of soybean to combinations of clomazone, metribuzin, linuron, alachlor, and atrazine. Weed Technol. 1992, 6, 922–929. [Google Scholar]
- Johnson, B.F.; Bailey, W.A.; Holshouser, D.L.; Herbert, D.A., Jr.; Hines, T.E. Herbicide effects on visible injury, leaf area, and yield of glyphosate-resistant soybean (Glycine max). Weed Technol. 2002, 16, 554–566. [Google Scholar] [CrossRef]
- Donald, W.W. Estimated soybean (Glycine max) yield loss from herbicide damage using ground cover or rated stunting. Weed Sci. 1998, 46, 454–458. [Google Scholar]
- Weidenhamer, J.D.; Triplett, G.B.; Sobotka, F.E. Dicamba injury to soybean. Agron. J. 1989, 81, 637–643. [Google Scholar] [CrossRef]
- Bailey, J.A.; Kapusta, G. Soybean (Glycine max) tolerance to simulated drift of nicosulfuron and primisulfuron. Weed Technol. 1993, 7, 740–745. [Google Scholar]
- Adcock, T.E.; Nutter, F.W., Jr.; Banks, P.A. Measuring herbicide injury to soybeans (Glycine max) using a radiometer. Weed Sci. 1990, 38, 625–627. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. In Chlorophyll a Fluorescence; Papageorgiou, G.C., Govindjee, G., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 279–319. [Google Scholar]
- Janka, E.; Körner, O.; Rosenqvist, E.; Ottosen, C.O. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora). Plant Phys. Biochem. 2015, 90, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, W.H.; Arntzen, C.J.; Stoller, E.W. Chlorophyll fluorescence assay for the determination of triazine resistance. Weed Sci. 1981, 29, 316–322. [Google Scholar]
- Ali, A.; Machado, V.S. Rapid detection of ‘triazine resistant’ weeds using chlorophyll fluorescence. Weed Res. 1981, 21, 191–197. [Google Scholar] [CrossRef]
- Hensley, J.R. A method for identification of triazine resistant and susceptible biotypes of several weeds. Weed Sci. 1981, 29, 70–73. [Google Scholar]
- Vencill, W.K.; Foy, C.L. Distribution of triazine-resistant smooth pigweed (Amaranthus hybridus) and common lambsquarters (Chenopodium album) in Virginia. Weed Sci. 1988, 36, 497–499. [Google Scholar]
- Van Oorschot, J.L.P.; Van Leeuwen, P.H. Use of fluorescence induction to diagnose resistance of Alopecurus myosuroides Huds. (black-grass) to chlorotoluron. Weed Res. 1992, 32, 473–482. [Google Scholar] [CrossRef]
- Kaiser, Y.I.; Menegat, A.; Gerhards, R. Chlorophyll fluorescence imaging: A new method for rapid detection of herbicide resistance in Alopecurus myosuroides. Weed Res. 2013, 53, 399–406. [Google Scholar] [CrossRef]
- Zhang, C.J.; Lim, S.H.; Kim, J.W.; Nah, G.; Fischer, A.; Kim, D.S. Leaf chlorophyll fluorescence discriminates herbicide resistance in Echinochloa species. Weed Res. 2016, 56, 424–433. [Google Scholar] [CrossRef]
- Wang, P.; Peteinatos, G.; Li, H.; Gerhards, R. Rapid in-season detection of herbicide resistant Alopecurus myosuroides using a mobile fluorescence imaging sensor. Crop Prot. 2016, 89, 170–177. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008; ISBN 3-900051-07-0. [Google Scholar]
- Dayan, F.E.; Watson, S.B. Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pestic. Biochem. Phys. 2011, 101, 182–190. [Google Scholar] [CrossRef]
- Dayan, F.E.; Zaccaro, M.L.D.M. Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pestic. Biochem. Phys. 2012, 102, 189–197. [Google Scholar] [CrossRef]
- Ventrella, A.; Catucci, L.; Agostiano, A. Herbicides affect fluorescence and electron transfer activity of spinach chloroplasts, thylakoid membranes and isolated Photosystem II. Bioelectrochemistry 2010, 79, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hardcastle, W.S. Differences in the tolerance of metribuzin by varieties of soybeans. Weed Res. 1974, 14, 181–184. [Google Scholar] [CrossRef]
- Barrentine, W.L.; Edwards, C.J.; Hartwig, E.E. Screening soybeans for tolerance to metribuzin. Agron. J. 1976, 68, 351–353. [Google Scholar] [CrossRef]
- Falb, L.N.; Smith, A.E., Jr. Metribuzin metabolism in soybeans. Characterization of the intraspecific differential tolerance. J. Agric. Food Chem. 1984, 32, 1425–1428. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Rohmer, M.; Schwender, J. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plantarum 1997, 101, 643–652. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Biol. 1999, 50, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Morrissette, N.S.; Mitra, A.; Sept, D.; Sibley, L.D. Dinitroanilines bind α-tubulin to disrupt microtubules. Mol. Biol. Cell 2004, 15, 1960–1968. [Google Scholar] [CrossRef] [PubMed]
- Moreland, D.E.; Farmer, F.S.; Hussey, G.G. Inhibition of photosynthesis and respiration by substituted 2, 6-dinitroaniline herbicides: I. Effects on chloroplast and mitochondrial activities. Pestic. Biochem. Phys. 1972, 2, 342–353. [Google Scholar] [CrossRef]
- Moreland, D.E.; Farmer, F.S.; Hussey, G.G. Inhibition of photosynthesis and respiration by substituted 2, 6-dinitroaniline herbicides: II. Effects on responses in excised plant tissues and treated seedlings. Pestic. Biochem. Phys. 1972, 2, 354–363. [Google Scholar] [CrossRef]
- Böger, P. Mode of action for chloroacetamides and functionally related compounds. J. Pestic. Sci. 2003, 28, 324–329. [Google Scholar] [CrossRef]
- Weisshaar, H.; Böger, P. Primary effects of chloroacetamides. Pestic. Biochem. Phys. 1987, 28, 286–293. [Google Scholar] [CrossRef]
- Gilmore, A.M. Mechanistic aspects of xanthophylls cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 1997, 99, 197–209. [Google Scholar] [CrossRef]
Treatments | Days after Sowing | ||||||
---|---|---|---|---|---|---|---|
Before Emergence | After Emergence | ||||||
4 | 11 | 24 | 31 | 33 | 38 | 45 | |
H1ED1 | metribuzin, clomazone, dimethenamid-P | ||||||
H1ED0.5 | |||||||
H1LD1 | metribuzin, clomazone, dimethenamid-P | ||||||
H1LD0.5 | |||||||
H2ED1 | metribuzin, flufenacet | thifensulfuron | |||||
H2ED0.5 | |||||||
H2LD1 | metribuzin, flufenacet | thifensulfuron | |||||
H2LD0.5 | |||||||
H3ED1 | thifensulfuron, bentazon | thifensulfuron, fluazifop-P-butyl | |||||
H3ED0.5 | |||||||
H3LD1 | thifensulfuron, bentazon | thifensulfuron, fluazifop-P-butyl | |||||
H3LD0.5 |
Treatments | Days after Sowing | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
19 | 21 | 26 | 31 | 38 | 47 | |||||||
H1ED1 | 0.264 | b | 0.241 | cd | 0.271 | cd | 0.484 | bc | 0.717 | a | 0.724 | a |
H1ED0.5 | 0.425 | ab | 0.520 | abc | 0.483 | abc | 0.608 | abc | 0.739 | a | 0.731 | a |
H1LD1 | 0.330 | b | 0.386 | bcd | 0.361 | bcd | 0.605 | abc | 0.740 | a | 0.725 | a |
H1LD0.5 | 0.463 | ab | 0.466 | abcd | 0.405 | abcd | 0.577 | abc | 0.708 | a | 0.716 | a |
H2ED1 | 0.296 | b | 0.285 | cd | 0.295 | cd | 0.476 | bc | 0.723 | a | - | |
H2ED0.5 | 0.420 | ab | 0.419 | abcd | 0.336 | cd | 0.515 | abc | 0.720 | a | 0.697 | a |
H2LD1 | 0.235 | b | 0.201 | d | 0.152 | d | 0.432 | c | 0.720 | a | 0.705 | a |
H2LD0.5 | 0.306 | b | 0.267 | cd | 0.345 | cd | 0.567 | abc | 0.727 | a | 0.714 | a |
H3ED1 | 0.655 | a | 0.695 | a | 0.425 | abcd | 0.644 | abc | 0.737 | a | 0.724 | a |
H3ED0.5 | 0.652 | a | 0.690 | a | 0.537 | abc | 0.679 | ab | 0.746 | a | 0.729 | a |
H3LD1 | 0.641 | a | 0.691 | a | 0.667 | a | 0.668 | ab | 0.666 | a | 0.705 | a |
H3LD0.5 | 0.616 | a | 0.671 | ab | 0.650 | ab | 0.673 | ab | 0.707 | a | 0.722 | a |
ConH | 0.641 | a | 0.674 | a | 0.694 | a | 0.720 | a | - | 0.751 | a | |
Con | 0.636 | a | 0.636 | ab | 0.643 | ab | 0.672 | ab | - | 0.733 | a |
Sites | Treatment | MoA | Fv/Fm | Biomass (g m2) | Stress Efficacy | ||
---|---|---|---|---|---|---|---|
Date 1 | Date 2 | Date 3 | |||||
Böblingen | Control | - | 0.575a | 0.587a | 0.666a | 310b | |
i | C1 K3 | 0.423b | 0.503a | 0.681a | 394b | * | |
ii | K1 K3 | 0.543a | 0.607a | 0.639a | 476a | ||
iii | C1 F4 | 0.490ab | 0.567a | 0.674a | 450a | ||
iv | C1 F4 K3 | 0.428b | 0.524a | 0.639a | 356b | * | |
Calw | Control | - | 0.584a | 0.558ab | 0.672a | 40b | |
i | C1 K3 | 0.575a | 0.524bc | 0.645ab | 296a | ||
ii | K1 K3 | 0.585a | 0.571ab | 0.647ab | 226ab | ||
iii | C1 F4 | 0.596a | 0.464c | 0.563c | 130b | * | |
iv | C1 F4 K3 | 0.585a | 0.593a | 0.627b | 248ab | ||
Nürtingen | Control | - | 0.586a | 0.602a | 0.722a | 580a | |
i | C1 K3 | 0.629a | 0.531ab | 0.706a | 548a | ||
ii | K1 K3 | 0.586a | 0.516b | 0.644b | 490b | * | |
iii | C1 F4 | 0.583a | 0.592a | 0.714a | 558a | ||
iv | C1 F4 K3 | 0.601a | 0.577ab | 0.709a | 526a | ||
Renningen | Control | - | 0.411a | 0.472a | 0.645ab | 102b | |
i | C1 K3 | 0.440a | 0.513a | 0.613b | 206a | ||
ii | K1 K3 | - | 0.474a | 0.666a | 242a | ||
iii | C1 F4 | 0.498a | 0.490a | 0.426c | 136b | * | |
iv | C1 F4 K3 | - | 0.514a | 0.632ab | 216a | ||
Tübingen | Control | - | 0.545a | 0.545a | 0.662a | 85b | |
i | C1 K3 | 0.529a | 0.478a | 0.659a | 147a | ||
ii | K1 K3 | 0.555a | 0.472a | 0.663a | 125a | ||
iii | C1 F4 | 0.517a | 0.518a | 0.658a | 150a | ||
iv | C1 F4 K3 | 0.545a | 0.520a | 0.667a | 110a |
Sites | Treatment | MoA | Relative Fv/Fm | Relative Biomass | ||
---|---|---|---|---|---|---|
Date 1 | Date 2 | Date 3 | ||||
Böblingen | i | C1 K3 | 0.736 | 0.857 | 1.023 | 1.271* |
ii | K1 K3 | 0.944 | 1.034 | 0.959 | 1.535 | |
iii | C1 F4 | 0.852 | 0.966 | 1.012 | 1.452 | |
iv | C1 F4 K3 | 0.744 | 0.893 | 0.959 | 1.148* | |
Calw | i | C1 K3 | 0.985 | 0.939 | 0.96 | 7.4 |
ii | K1 K3 | 1.002 | 1.023 | 0.963 | 5.65 | |
iii | C1 F4 | 1.021 | 0.832 | 0.838 | 3.250* | |
iv | C1 F4 K3 | 1.002 | 1.063 | 0.933 | 6.2 | |
Nürtingen | i | C1 K3 | 1.074 | 0.882 | 0.978 | 0.945 |
ii | K1 K3 | 1 | 0.857 | 0.892 | 0.845* | |
iii | C1 F4 | 0.995 | 0.983 | 0.989 | 0.962 | |
iv | C1 F4 K3 | 1.026 | 0.958 | 0.982 | 0.907 | |
Renningen | i | C1 K3 | 1.071 | 1.087 | 0.95 | 2.02 |
ii | K1 K3 | - | 1.004 | 1.033 | 2.373 | |
iii | C1 F4 | 1.212 | 1.038 | 0.66 | 1.333* | |
iv | C1 F4 K3 | - | 1.089 | 0.98 | 2.118 | |
Tübingen | i | C1 K3 | 0.971 | 0.877 | 0.995 | 1.729 |
ii | K1 K3 | 1.018 | 0.866 | 1.002 | 1.471 | |
iii | C1 F4 | 0.949 | 0.95 | 0.994 | 1.765 | |
iv | C1 F4 K3 | 1 | 0.954 | 1.008 | 1.294 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, P.; Weber, J.F.; Gerhards, R. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology. Sensors 2018, 18, 21. https://doi.org/10.3390/s18010021
Li H, Wang P, Weber JF, Gerhards R. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology. Sensors. 2018; 18(1):21. https://doi.org/10.3390/s18010021
Chicago/Turabian StyleLi, Hui, Pei Wang, Jonas Felix Weber, and Roland Gerhards. 2018. "Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology" Sensors 18, no. 1: 21. https://doi.org/10.3390/s18010021