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Abstract: A four-feet walking-type rotary piezoelectric actuator with minute step motion was
proposed. The proposed actuator used the rectangular motions of four driving feet to push the rotor
step-by-step; this operating principle was different with the previous non-resonant actuators using
direct-driving, inertial-driving, and inchworm-type mechanisms. The mechanism of the proposed
actuator was discussed in detail. Transient analyses were accomplished by ANSYS software to
simulate the motion trajectory of the driving foot and to find the response characteristics. A prototype
was manufactured to verify the mechanism and to test the mechanical characteristics. A minimum
resolution of 0.095 µrad and a maximum torque of 49 N·mm were achieved by the prototype, and the
output speed was varied by changing the driving voltage and working frequency. This work provides
a new mechanism for the design of a rotary piezoelectric actuator with minute step motion.
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1. Introduction

In the field of modern precision operation, micro-nano operation has become the key technology;
there are strong demands for actuators with high resolutions. Piezoelectric actuators usually convert
electrical energies into mechanical energies by using the inverse piezoelectric effects and frictional
forces [1–3]. They have simple structures, fast responses, low speeds, self-locking when powered
off, and high positioning accuracies, which give them wide application prospects in robot joints,
optical instruments, MEMS, positioning stages, and space mechanisms [4–9].

Piezoelectric actuators can work at a resonant state [10–14] or non-resonant state [15–21]. From the
viewpoint of the connecting form of the piezoelectric element and the stator, the piezoelectric actuators
can also be divided into the bonded-type and clamped-type. A new bonded-type piezoelectric
driving micro-robot based on bending-bending resonant vibration was introduced by Su et al.,
the load capacity and speed were 200 g and 33.45 mm/s, respectively [22]. Yan et al. proposed
a three-DOF ultrasonic motor using four piezoelectric ceramic plates in a bonded-type structure,
the output velocities of three DOF can reach 280 rpm, 277 rpm, and 327 rpm, respectively [23].
Yu et al. proposed a U-shaped clamped-type linear piezoelectric ultrasonic motor using longitudinal
transducers [24], the maximum output speed and thrust force with the 100 Vrms were 416 mm/s and
21 N, respectively. Comparing with the bonded-type resonant piezoelectric actuators, the clamped-type
resonant ones have advantages of high speed and large stroke, but their positioning accuracies are
usually on micrometer scales. Kazumasa et al. proposed a V-shape transducer ultrasonic motor,
which has three operation modes: a fast motion mode driven by a single-phase resonance frequency,
a nanometer motion mode driven by DC voltage, and an inertial driving mode using a low-frequency
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saw-wave voltage for unlimited stroke motion in DC driving; under the non-resonance motion modes,
the resolution of the motor can reach nanometer scales [25].

The non-resonant piezoelectric actuators are suitable for a precision positioning system for its high
resolution, rapid response, and low energy consumption advantages [26,27]. Based on the working
mechanism, the non-resonant piezoelectric actuators can be divided into the direct-driving [28,29],
inertial-driving [30–32], and inchworm-type [33–35] actuators. The direct-driving actuators operate
using the axial direction deformations of the PZT stacks, they can achieve nanometer positioning easily
along the axial direction under the d33 working mode. However, the direct output displacement
of the PZT stack is usually small, which is approximately 0.1% of the total thickness. Thus,
mechanical magnification mechanisms, like the combination of levers and flexure hinges, are utilized
to magnify the output displacement. Clark et al. designed a flexure-based precision positioning stage,
their prototype achieved a rotary resolution of 0.075 µrad and a rotary stroke of 535.8 µrad [18];
Juuti et al. designed a bridge-type amplifier structure to amplify the displacement of the input
translation [28]; Li et al. compounded the parallelogram flexures and bridge-type displacement
amplifiers in an XY stage [29]; meanwhile, the use of the magnification mechanism decreases the output
stiffness of the actuator, making the output force relatively small. Inertia-driving actuators, based on the
inertia theorem, utilize the interaction between the stator and mover to produce the precision motion.
The inertia-driving actuators have flexible structures, the principles of which are simple. Wang et al.
proposed a novel inertia-driving rotary actuator based on compliant foot driving, and their prototype
produced a rotary resolution of 0.24 µrad [19]. Li et al. designed a dual-servo nano-positioning stage,
and it achieved a resolution of 1.54 µrad [20]. Nomura et al. developed an inertia-driven micro
robot using four PZT stacks, the differences between the static frictional force and the impulsive
inertial force caused by the rapid deformations of the PZT elements were used for the movement [32].
Due to the working mechanism, the driving forces of the inertia-driving actuators are relatively small;
additionally, the demands of the driving signals are strict. The inchworm-type actuators are inspired
by the mechanism of the inchworm, which usually include the driving component and the clamping
component; they usually have large output forces and long strokes. Kim et al. introduced a hybrid
linear actuator under the inchworm motion principle [33]; Moon et al. developed a fast inchworm type
actuator [35], which indicated that the positioning accuracy of the inchworm actuators can reach the
nanometer level and the output speed was usually less than 1 mm/s. However, the inchworm-type
actuators usually have complex structures and strict demands of manufacture accuracy. In addition,
most of the existing precision piezoelectric actuators are of the linear type; there are very few precision
rotary piezoelectric actuators, which limits the application of the non-resonant piezoelectric actuators.
Furthermore, they also have problems of low resolutions or limited strokes. Therefore, there is a great
deal to do to develop the rotary precision actuators.

The precise rotary motion is achieved by a piezoelectric actuator with large stroke and high
resolution in this study. A novel four-feet walking mechanism based on the rectangular trajectory is
proposed, in contrast to the traditional direct-driving, inertial-driving, and inchworm-type actuators.
Two orthogonal bending motions are used to form the rectangular motion on each driving foot;
a rotary stepping motion of the rotor is accomplished by the cooperation of four driving feet moving
in rectangular trajectories.

2. Structures and Principles

The structure of the proposed actuator is shown in Figure 1. It is comprised of a stator, a rotor,
and an output shaft; the stator contains a base and four bending vibrators with the same structure.
A nut-disk-spring system is used to apply the preload between the driving feet and the rotor.
Each vibrator is made up of one end cap, two groups of PZT elements, and one flange bolt, and the PZT
elements are clamped between the flange and the end cap by a bolt. The tip of the end cap serves as
the driving foot. Twenty pieces of PZT ceramic rings with an outer diameter of 30 mm and thickness of
1 mm are divided into two groups to excite the horizontal and vertical bending deformations, and they
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are named PZT-H and PZT-V respectively. Each PZT ring contains two half-ring partitions with inverse
polarizations, which are noted with “+” and “−”. Each vibrator has a total length of 80 mm. Beryllium
bronze sheets are clamped between each PZT ceramic to serve as electrodes. A plastic ring is set
between the electrodes and the bolt to achieve the isolations of the electrodes.
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Figure 1. Three-dimensional structure of the piezoelectric actuator.

The working mechanism of the proposed piezoelectric actuator is shown in Figure 2, in which the
four driving feet are marked as DF-I to DF-IV, respectively. The rotor is pushed by the static friction
between it and the driving feet. The driving foot will bend upwards and lock the rotor when a positive
direct current (DC) voltage is applied on PZT-V, while the driving foot will bend downwards when a
negative DC voltage is applied. In a similar way, the driving foot will bend leftwards when a positive
DC voltage is applied on PZT-H, and the driving foot will bend rightwards if a negative DC voltage
is applied.
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The motion sequences of the four driving feet are as follows:

(1) DF-I and DF-III bend downward and depart from the rotor, DF-II and DF-IV lock the rotor.
(2) DF-I and DF-III bend rightward, DF-II and DF-IV bend leftward synchronously and push the

rotor leftward for one step.
(3) DF-I and DF-III bend upward to lock the rotor.
(4) DF-II and DF-IV bend downward and depart from the rotor, DF-I and DF-III remain locking

the rotor.
(5) DF-I and DF-III bend leftward and push the rotor leftward for another step, DF-II and DF-IV

bend rightward synchronously.
(6) DF-II and DF-IV bend upward to lock the rotor.
(7) Repeat (1)–(2)–(3)–(4)–(5)–(6).

Therefore, the driving feet will move along rectangular motion trajectories with special temporal
shifts and the rotor will be pushed leftward for two steps in one cycle. A large stroke can be
accomplished through the accumulations of small steps. Four driving signals are needed to achieve the
above motion sequences: the two signals applied on the PZT elements of vibrator-I and vibrator-III are
the same, so as the two signals applied on the PZT elements of vibrator-II and vibrator-IV, as shown
in Figure 3. Here, T is the time of one cycle; t0 is the transitional time during the variation process
of voltage amplitude. The rotor will be pushed rightward by adjusting the temporal shift of the
driving signals.
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3. Simulation Analyses

Firstly, the bending displacements of the vibrators under DC voltages are calculated through
ANSYS software (Canonsburg, PA, USA) with static analysis. During the simulation, the material of
the flange bolt is set as steel with a density of 7800 kg/m3, a Poisson’s ratio of 0.30, and a modulus of
elasticity of 206 GPa; the material of the end cap is set as duralumin with a density of 2810 kg/m3,
a Poisson ratio of 0.33, and a modulus of elasticity of 72 GPa; the PZT elements are set as PZT-4,
the parameters of which are listed in Table 1. Fixed boundaries are applied on the top and bottom
surfaces of the flange. The bending displacements of the driving foot in horizontal and vertical
directions are calculated to be about 3.18 µm and 3.04 µm when DC voltages of 200 V are applied on
the PZT-H and PZT-V, respectively, as shown in Figure 4.

Table 1. The parameters of the PZT elements.

Parameters Unit Nomenclature Value

Density kg/m3 ρ 7600

Poisson’s ratio

×1010 N/m2

σE 0.32

Elastic modulus

c11 14.3
c12 7.85
c13 7.85
c33 11.5
c44 2.6
c66 2.45

Piezoelectric
constants C/m2

e31 −2.4
e33 17.3
e15 12.95

Relative dielectric
constants

εS
11/ε0 765

εS
33/ε0 640
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Next, the transient response characteristics of the vibrators are obtained through transient analysis.
Rayleigh damping (also known as alpha and beta damping) is adopted in the transient analysis.
The corresponding damping equation can be represented as:

C = αM + βK (1)

where αM represents mass damping, βK represents structural damping. The values of α and β are
calculated from the modal damping ratio ξ and are required as input parameters for the analysis [36].
The modal damping ratio ξ used in the simulation is 0.03, which is obtained from the spectrum
map tested by a scanning laser Doppler vibrometer (PSV-400M2, Polytec, Waldbronn, Germany).
The transient responses of bending motions in horizontal and vertical directions under step signals
with an amplitude of 200 V and rise times of 0 ms, 0.5 ms, 1.0 ms, and 2.0 ms are shown in Figure 5.
The steady displacements of bending motions are calculated to be about 3.18 µm in horizontal direction
and 3.04 µm in the vertical direction, which are identical to the static analysis results. Oscillations occur
at the beginning of response processes and the oscillations decrease with the increase of the rise time
of the excitation signal. Thus, the oscillations in the transient response processes can be significantly
reduced by extending the rise time of the driving signal, which can make the motions of the driving
feet more stable and reduce the slips between the driving feet and the rotor.
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The rotor is pushed through the static friction between it and the driving feet, so there will not
be slips when inertial force (FI) is less than the maximum static frictional force (fmax), which can be
described as:

µF = fmax ≥ FI =
1
2

J
..
θ

R
(2)

..
θ =

a
R

(3)

Here, µ is the static friction coefficient between steel and duralumin (µ = 0.3), F is the preload, J is
the moment of inertia of the rotor (J = 0.00578 kg·m2),

..
θ is the angular acceleration of the rotor, a is the

linear acceleration at the edge of the rotor, R is the radius of the rotor (R = 0.1025 m). When F is set
as 12 N, The linear acceleration a should not be larger than 13.1 m/s2 by solving Equations (2) and
(3).The maximum linear accelerations of the driving foot are calculated from the transient response
results, as shown in Table 2. Thus, there will not be slips if the rise time of the step signal is set as 5 ms
under a preload of 12 N.

Table 2. Maximum linear accelerations of driving foot under different signals.

Time Rise Time of Signal (ms) a (m/s2)

0 1555
0.5 123.5
1 68.34
2 30.87
5 12.35

The horizontal and vertical steady displacements are calculated to be about 6.36 µm and 6.08 µm
when two trapezoidal signals with a frequency of 1 Hz, an amplitude of 400 Vp-p, and a rise time of
5 ms are applied on the PZT-H and PZT-V, respectively. The motion trajectory of the driving foot is
shown in Figure 6, it is obvious that the foot moves along a rectangular trajectory and there are slight
oscillations when the voltage starts to change. It can be predicted that the rotor will be moved along
the circumferential direction with 6.36 µm for each step.
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4. Experiments and Discussion

A prototype was manufactured to verify the feasibility of the proposed actuator, as shown in
Figure 7. The average internal capacitance of PZT-H and PZT-V in each vibrator is tested to be 52.25 nF
and 49.8 nF, respectively. A laboratory-designed power source was used to provide the excitation
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signals; its output voltage range, resolution, maximum output current are −210 V~+210 V, 1 V and
150 mA, respectively. A capacitance displacement sensor (PI D-E20.200, PI, Karlsruhe, Germany) with
a resolution of 4 nm and a range of 200 µm used to measure the output linear displacement (the linear
displacement was approximately equal to the arc length as the angular displacement of the rotor is
very small), then the angular displacement and speed were calculated.
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Firstly, the step-displacements (horizontal displacements) of the four vibrators under trapezoidal
signals with a frequency of 1 Hz, an amplitude of 400 Vp-p, and rise time of 5 ms were measured,
as shown in Table 3. There are little discrepancies among the horizontal displacements of the
four driving feet because of manufacturing errors and assembly errors. From the experimental
results we can see that the experimental displacements of the driving feet are in good agreement
with the simulation ones (6.36 µm) shown in Figure 6. The very small deviations between the
tested displacements and the simulation results are mainly caused by the differences of models,
material properties, and boundary conditions between the simulation model and the actual prototype.

Table 3. The step-displacements of the four vibrators.

Vibrator No. Step-Displacement (µm)

I 6.27
II 6.43
III 6.68
IV 6.55

The hysteresis of PZT is a key factor affecting the output displacement of piezoelectric actuators;
however, it has little effect on the displacement of the foot in this work because the step displacement of
the rotor depends on the horizontal static displacement of the driving feet, and the working frequency
is very low (1 Hz in the experiment), which means that the foot has enough time to reach the static state.

Next, the output displacements of the rotor versus time under different voltages were measured,
as shown in Figure 8, during which trapezoidal signals with a frequency of 1 Hz and rise time of 5 ms
were used. The rotor is driven twice in one cycle, once by the DF-I and DF-III (Group I) simultaneously
(the first step), and another by the DF-II and DF-IV (Group II) simultaneously (the second step). Due to
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the difference in driving feet’s step-displacements of each group, the step-displacement of the first
step is determined by the DF-I with smaller step-displacement, which is approximately 6.27 µm.
For the same reason, the step-displacement of the second step is approximately 6.43 µm. The overall
average step-displacement is about 6.35 µm, which is consistent with the measured value of 6.32 µm
(60.19 µrad). Figure 8 states that the step-displacement can be varied by changing the input voltages,
and the rotor is moved with two steps in one cycle.
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The rotor is pushed forward with retracement under a voltage of 100 Vp-p, and it is pushed
forward step-by-step under a voltage of 150 Vp-p and above. The step-displacements under voltages of
150 Vp-p, 200 Vp-p and 300 Vp-p are about 1.15 µm, 2.43 µm and 4.55 µm, respectively. The speed versus
the input voltage is plotted in Figure 9, and it can be seen that a maximum speed of 120.38 µrad/s
is achieved under a voltage of 400 Vp-p. The rotor is in a reciprocating motion under input voltages
of 50 Vp-p, as shown in Figure 8, which results in the rotor being unable to move macroscopically.
The main reason of the reciprocating motion is that the driving feet cannot depart from the rotor
completely under a voltage of 25 V (under the preload of 12 N); thus, the driving feet maintain contact
with the rotor during the whole driving cycle; the forward displacement is nearly the same as the
backward one under the horizontal voltage shown in Figure 3.
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The step-displacement is shown in Figure 10, it was tested when the signals applied to PZT-V
were fixed at 400 Vp-p and the signals applied to PZT-H were changed. The step distance is measured
to be about 10.5 nm under voltage with step increment of 3 Vp-p, as shown in Figure 11. The radius
of the rotor is 110 mm; therefore, the minimum stable output displacement is calculated to be about
0.095 µrad, which is limited by the measurement noise, accuracy of the driving voltage, and the
resolution of the capacitance displacement sensor. Theoretically speaking, the output displacement of
the piezoelectric element is proportional to the applied voltage, thus, the piezoelectric actuator can
achieve higher displacement resolution by using a power supply with higher output voltage resolution.
A proper closed-loop control method can achieve higher positioning accuracy and the next step in this
work is to implement the control-loop to enhance the system accuracy.
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Finally, the mechanical property of the proposed actuator was tested under trapezoidal signals
with a frequency of 1 Hz, an amplitude of 400 Vp-p, and rise time of 5 ms, and the preload was still set
as 12 N. The speed versus output torque curve is shown in Figure 12. It was found that the maximum
no-load speed is 120.38 µrad/s and the maximum torque is 49 N·mm.
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Table 4 shows the comparison between the proposed actuator and several existing rotary precision
actuators of their presented excellent performances [18–20]. Although the velocity (steady state: no slip)
and output torque that the proposed actuator can achieve are relatively lower, it exhibits several
advantages as well. Firstly, the proposed actuator achieves the rotary driving with unlimited stroke by
a new mechanism: four-feet walking. The structure of this actuator is relatively simple since it uses the
bending vibrators, not PZT stacks. Furthermore, the rotary resolution of the proposed actuator is quite
high, which means that it will be very valuable for a system with a high-precision requirement.
In summary, the proposed actuator achieves simple structure, high resolution, and unlimited
stroke. Additionally, the speed of the actuator can be varied by changing the driving voltage and
working frequency.

Table 4. Comparisons of several rotary precision actuators.

Actuator Mechanism Structure Resolution (µrad) Stroke (µrad)

The proposed actuator Walking Clamped
transducer 0.095 2π × 106

The actuator by Clark et al. [18] Direct driving Flexure hinge 0.075 535.8
The actuator by Wang et al. [19] Inertial driving Flexure hinge 0.24 2π × 106

The actuator by Li et al. [20] Inertial driving Flexure hinge 1.54 2π × 106

5. Conclusions

A stepping piezoelectric actuator using a four-feet walking mechanism was proposed, designed,
fabricated, and tested in this work for the aim of rotary driving with high resolution. The desired
rotary stepping motion of the rotor was accomplished by the cooperation of four driving feet moved
in rectangular trajectories, and two orthogonal bending motions were used to form the rectangular
motion on each driving foot. The horizontal and vertical displacements of the driving foot were
designed to be about 6.36 µm and 6.08 µm, respectively, by using a bolt-clamped vibrator with a total
length of 80 mm. The transient response gained by the FEM stated that we could obtain different linear
accelerations of the driving feet by using driving signals with different transitional times, and a rise
time of 5 ms was determined to ensure that there were no slipping motions between the driving feet
and the rotor. The experiments of the prototype proved the feasibility of the proposed mechanism:
the rotor was moved step-by-step smoothly, a minimum resolution of 0.095 µrad and a maximum
torque of 49 N·mm were achieved., The proposed actuator achieved rotary driving with unlimited
stroke and high resolution by a new four-feet walking mechanism by comparing with the previous
rotary piezoelectric actuators. Future work will focus on the development of a proper closed-loop
control method.
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