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Abstract: Pluvial flash floods in urban areas are becoming increasingly frequent due to climate
change and human actions, negatively impacting the life, work, production and infrastructure of
a population. Pluvial flooding occurs when intense rainfall overflows the limits of urban drainage and
water accumulation causes hazardous flash floods. Although flash floods are hard to predict given
their rapid formation, Early Warning Systems (EWS) are used to minimize casualties. We performed
a systematic review to define the basic structure of an EWS for rain flash floods. The structure
of the review is as follows: first, Section 2 describes the most important factors that affect the
intensity of pluvial flash floods during rainfall events. Section 3 defines the key elements and actors
involved in an effective EWS. Section 4 reviews different EWS architectures for pluvial flash floods
implemented worldwide. It was identified that the reviewed projects did not follow guidelines to
design early warning systems, neglecting important aspects that must be taken into account in their
implementation. Therefore, this manuscript proposes a basic structure for an effective EWS for pluvial
flash floods that guarantees the forecasting process and alerts dissemination during rainfall events.

Keywords: pluvial flooding; urban drainage; flash floods; early warning system; flood risk assessment;
real-time

1. Introduction

Flooding is considered as one of the major threats to human civilization and is directly attributed to
heavy precipitation leading to loss of life, infrastructure damage, as well as huge economic losses [1,2].
Climate change, intense natural resource exploitation and inappropriate land use have altered the
hydrological response of catchments. These factors increase the frequency and magnitude of floods.
Similarly, a combination of an exposed, vulnerable and ill-prepared population may exacerbate such
situations and even generate additional risks. The insufficient capacity of public authorities and rescue
services to act diligently in these situations increases later mentioned risks [3–5].

Cities with high population density present a higher disaster risk. They are expected to experience
the effects of climate change with the increment of intensity and frequency of harmful events such
as flash floods [6]. Vulnerability to disasters in urban areas is a combination of interrelated physical,
sociocultural, economic, and institutional conditions [7].

Different types of floods can affect urban areas and some of them may be more applicable to some
regions than others. These floods are mainly classified into four types: coastal, fluvial, pluvial and
flash floods.

Coastal flooding results from a combination of extreme climatic phenomena. The sea level exceeds
the elevation of the land or of a natural or human barrier; water flows and floods the land behind
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it [5,8]. When the coasts are constantly exposed to large waves, the natural and human-engineered
barriers break down, increasing the risk of flooding. Also, this flood can be caused by earthquakes,
submarine volcanic eruptions, subsidence and coastal erosion [9].

The flooding that affects the vast majority of the world’s regions is fluvial flooding or river
flooding. This type of flood occurs when the rivers overflow or burst their banks due to excessive
rainfall over an extended period of time and spill onto the floodplain [10,11]. It can also be caused by
rapid snowmelt and ice jams and occurs in any size channel from small streams to huge rivers.

Pluvial flooding or surface water flooding is a problem in many cities and occurs when,
during high intensity rainfall, the sewage and drainage system becomes overwhelmed and excess
water cannot be absorbed into the soil [12]. This problem is enhanced in cities with insufficient or
non-existent sewer systems. Although fluvial floods are more devastating than pluvial flooding,
they do not occur that often. Pluvial floods come with less damage but, the frequency is higher and
the cumulative damage over the years can be just as high as with fluvial flooding events [13,14].

Of all the negative impact generated by floods, none is as harmful as flash floods (based upon
the ratio of fatalities to people affected), which cause millions of dollars in property damage every
year [15]. The World Meteorological Organization (WMO) defines flash floods as “a flood of short
duration with a relatively high peak discharge” [16]. The American Meteorological Society states: “a flash
is a flood that rises and falls quite rapidly with little or no advance warning, usually as the result of intense
rainfall over a relatively small area” [6]. The U.S. National Weather Service describes them as: “a rapid
and extreme flow of high water into a normally dry area, or a rapid water level rise in a stream or creek above
a predetermined flood level, beginning within six hours of the causative event (e.g., intense rainfall, dam failure,
ice jam)” [7]. These floods are typically caused by coastal, fluvial and pluvial systems and convective
thunderstorms as well as extreme events such as hurricanes, severe thunderstorm, tropical storms or
tsunami [15]. Dam break, a levee break and snow melting in rivers during winter and spring months
can result in flash floods.

As reported by The World Bank, in 2008 half of the world’s population lived in urban areas but in
2030 this number will increase to 60% and 70% in 2050 [9]. This accelerated urbanization compounds
flood risk since, in most cases, it is done in an unplanned way [17]. Therefore, urban flood disaster
prevention and mitigation are a recognized international priority that includes assessing flood hazards
and risks and preparing effective flood mitigation measures [16,18].

Although, historically, the most reported flood events are fluvial followed by pluvial and sea
water, pluvial floods have increased in cities and have the highest proportion of occurrence since 2000
compared to other types of floods in the same period [19]. Figure 1 shows a preliminary assessment of
pluvial flood impacts for 571 cities across the continent of Europe developed by Guerreiro et al. [20]
using emerging global datasets and cloud computing.

The United Kingdom is one of the areas in Europe most affected by pluvial flooding. Around 5%
of the urban population is exposed to an annual pluvial flood risk of 0.5% or greater [21]. It is estimated
that, by 2050, 3.2 million people in urban areas could be at risk from pluvial flooding [21].

Not only European cities are affected by pluvial flooding. In Japan, approximately USD 1 billion
in damage occurs annually due to pluvial floods affecting densely populated urban areas with poor
drainage systems [22]. However, these pluvial events were recorded not only during heavy rainfall
but also during moderate to low rainfall events.

Due to the deficient drainage infrastructure in the cities, these pluvial floods turn into dangerous
flash floods and not only affect the economy but also lead to human losses as is the case for the city of
Barranquilla (Colombia). In this city, during high rainfall events, the streets become torrential streams
endangering pedestrians and drivers. Since there is no system that alerts in a timely manner the
community about the danger of these floods, pedestrians and drivers trying to cross the streets are
washed away by the dangerous streams [23].



Sensors 2018, 18, 2255 3 of 26

Sensors 2018, 18, x FOR PEER REVIEW    3 of 25 

 

 

Figure 1. Pluvial flood impact in European cities [20]. 

Chinese cities including Beijing, Shanghai, Guangzhou, Shenzhen, Nanjing, and Hangzhou are 

also affected by pluvial  flash  floods  [24].  In  July 2012, a pluvial  flash  flood event caused by road 

inundations was registered in Beijing and claimed 79 lives [25]. 

Pluvial flash floods are not simply caused by weather phenomena. They depend not only on the 

amount and duration of precipitation but also on the hydrological characteristics of the basin such as 

runoff  magnitude,  antecedent  moisture  condition,  drainage  area,  soil  type  and  land  [26,27]. 

Hydraulic parameters, such as water level and water velocity, are variables that are involved in the 

loss of stability of people and vehicles during urban flash floods [23], and it is necessary to measure 

and monitor these parameters in real time. If, during rain events, water level and speed exceed safety 

levels, it is necessary for the alarm system to warn the community about the imminent danger. 

Although there is a huge demand for understanding pluvial flash floods in cities, until now, few 

works have attempted to systematically examine the potential impacts of a pluvial flash flood in cities 

in order to develop efficient solutions [28].   

In order to mitigate the risk of human losses and economic damages caused by floods in cities, 

measures  of  adaptation  and minimization  should  be  considered.  The  International  Strategy  for 

Disaster Reduction (ISDR) has classified these measures into structural and non‐structural [29,30]: 

(a) Structural measures 

They  include  the  construction of physical  structures  to  reduce or avoid potential  impacts of 

hazards  such  as  protection,  retention  and  drainage  systems,  as well  as  the  use  of  engineering 

techniques to improve resistance and community resilience [29]. Most of these measures involve a 

high investment of economic resources and implementation time is medium‐ to long‐term. 

(b) Non‐structural measures 

These actions do not involve building physical structures, but rather use existing knowledge, 

laws or policies to reduce risk and its impacts [29,31]. These measures are classified as passive and 

active. Active nonstructural measures are those that promote direct interaction with people, such as 

training,  local management, early warning systems  (EWS)  for people, public  information, among 

others. Non‐structural passive measures  involve policies, building codes and standards, and  land   

use regulations. 

Early warning systems are nonstructural tools useful to populations that do not have sufficient 

resources to minimize the risk of flooding. They are tools to reduce economic losses, and protect the 

life and property of a community  [32].  Information sent by  the EWS allows people  to  take action 

before  the  disaster  takes  place.  Recent  studies  demonstrate  that  these  systems  have  significant 

benefits that greatly exceed their costs [33]. 

Figure 1. Pluvial flood impact in European cities [20].

Chinese cities including Beijing, Shanghai, Guangzhou, Shenzhen, Nanjing, and Hangzhou are
also affected by pluvial flash floods [24]. In July 2012, a pluvial flash flood event caused by road
inundations was registered in Beijing and claimed 79 lives [25].

Pluvial flash floods are not simply caused by weather phenomena. They depend not only on
the amount and duration of precipitation but also on the hydrological characteristics of the basin
such as runoff magnitude, antecedent moisture condition, drainage area, soil type and land [26,27].
Hydraulic parameters, such as water level and water velocity, are variables that are involved in the
loss of stability of people and vehicles during urban flash floods [23], and it is necessary to measure
and monitor these parameters in real time. If, during rain events, water level and speed exceed safety
levels, it is necessary for the alarm system to warn the community about the imminent danger.

Although there is a huge demand for understanding pluvial flash floods in cities, until now,
few works have attempted to systematically examine the potential impacts of a pluvial flash flood in
cities in order to develop efficient solutions [28].

In order to mitigate the risk of human losses and economic damages caused by floods in cities,
measures of adaptation and minimization should be considered. The International Strategy for Disaster
Reduction (ISDR) has classified these measures into structural and non-structural [29,30]:

(a) Structural measures

They include the construction of physical structures to reduce or avoid potential impacts of
hazards such as protection, retention and drainage systems, as well as the use of engineering techniques
to improve resistance and community resilience [29]. Most of these measures involve a high investment
of economic resources and implementation time is medium- to long-term.

(b) Non-structural measures

These actions do not involve building physical structures, but rather use existing knowledge,
laws or policies to reduce risk and its impacts [29,31]. These measures are classified as passive
and active. Active nonstructural measures are those that promote direct interaction with people,
such as training, local management, early warning systems (EWS) for people, public information,
among others. Non-structural passive measures involve policies, building codes and standards,
and land use regulations.

Early warning systems are nonstructural tools useful to populations that do not have sufficient
resources to minimize the risk of flooding. They are tools to reduce economic losses, and protect the
life and property of a community [32]. Information sent by the EWS allows people to take action before
the disaster takes place. Recent studies demonstrate that these systems have significant benefits that
greatly exceed their costs [33].
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The aim of this manuscript is to provide guidelines to develop an effective EWS for pluvial flash
floods in real time. Understanding the hazard posed by pluvial flash floods in cities and the limited
information available for EWS design to mitigate this risk is mandatory. The causes and variables
that influence the formation of flash floods in urban areas, as well as the key elements of an EWS,
are described. Likewise, different EWS for pluvial flash floods implemented worldwide were reviewed
to determine the primary and secondary instruments used to measure the variables and the methods
for processing information and alerting the community at risk.

Each architecture describes the instruments and methods used for the detection, monitoring and
real-time analysis of variables related to flash floods and alert dissemination. From the reviewed
projects, the most used instruments to measure hydrological and hydraulic variables during pluvial
flash floods were selected. Also studied were the communication protocols to send the information
and main media for alert dissemination.

In this review, we identified the need for forecasting and dissemination–communication processes
to have fail-safe systems. These processes guarantee that the community receives timely alerts.
However, none of the reviewed projects had a fail-safe system for these processes. The lack of these
systems makes early warning systems more susceptible to the loss of measured data. Therefore,
alerts cannot be sent timely to the community.

For this reason, this manuscript proposes a basic structure for an effective pluvial flash flood
early warning system that guarantees the dissemination and communication of alerts during rainfall
events. This proposed EWS suggests which hydrological and hydraulic variables should be monitored
in real-time during rainfall events; compares the characteristics of communication protocols and the
most effective media to disseminate the alerts.

2. Pluvial Flash Flood Intensity

Developing techniques and criteria for solving the complex problems associated with runoff
in urban areas is one of the most challenging tasks for hydrologic engineers. During high-intensity
rainfall events, drainage systems become rapidly saturated. For this reason, soil cannot absorb the
water quickly enough. There are a number of factors that affect the intensity of pluvial flash floods.
Climate change, extensive and rapid urbanization and unsustainable urban development combined
with management failure are considered the main factors for the development of pluvial flash floods.
In general, higher precipitation intensity can result in an additional runoff. A deficient drainage
system also increases the volume [6]. Likewise, there are other factors involved with runoff production
processes such as soil characteristics, land cover, land use and basin conditions that increase the
runoff intensity. This section briefly describes how climate change effects, urbanization, soil and basin
characteristics increase the runoff intensity in urban areas.

2.1. Climate Change

A number of studies and reviews have assessed the influence of a combination of climate change
and rapid urban development in flood risk [34–36]. In recent years, in China, the increment of
high intensity and short duration rainfalls has been observed. Also, changes in the upper extremes
of the distributions of high volume precipitation indexes have occurred in a broader area [37–39].
The increase of precipitation frequency and intensity aggravates the problem of pluvial flooding,
representing a changing biophysical condition for urban areas [13].

2.2. Urbanization

Urbanization and vegetation area reductions are significant threats that affect water quality
and increase the risk of flooding in urban areas. In the UK alone, over 80% of the population live
in urban areas and the population has risen from 32 million in 1901 to 64.6 million in 2014 [40].
During the period 1990–2015, China’s urban population increased from 302 million to 771 million,
implying an average annual growth rate of about 6.2%. Over the same period, China’s urbanized
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population had an average annual growth rate of 12% that was near twice the average annual growth
rate of the overall population [41]

Urban densification, deforestation and inadequate urban drainage design have led to greater
runoff volumes since the percentage of impermeable surfaces and compacted soils is greater [42].
Likewise, road grids, alterations to the natural vegetation, and sometimes channelization of streams
have produced faster runoff [43].

2.3. Soil Characteristics

In urban areas, soil moisture and soil permeability are critical properties that influence the
formation of flash floods. Soil moisture is considered the most important soil factor for rapid runoff
and flash flooding because it can vary significantly, even on a sub-daily time scale [44]. In dry
conditions, each soil has a specific rate at which it can absorb rainfall, called the infiltration capacity.
When the rainfall rate exceeds the infiltration capacity, runoff will occur [6]. If the soils are saturated
due to previous moisture conditions, the infiltration capacity is lower, resulting in higher runoff.

The infiltration capacity can also be affected by the permeability of the soil. This property
depends on the different characteristics of the soil, such as texture, crust formation, soil compaction,
soil contraction and expansion, microbial activity, soil hydraulic conductivity and root distribution.
Soil texture is the most important [6,45] and indicates percentages of different grain sizes such as sand,
silt and clay in the soil. Sandy soils have greater infiltration rates than clay and silt soils because sand
particles are larger and more separated.

2.4. Basin Characteristics

The physical properties of a basin-like size, shape and surface roughness and its streams, influence
the amount and the timing of runoff [6]. The size and shape of the basin directly influence the total
volume of runoff that drains from that basin. In large basins, the runoff will take longer to reach its
outlet than small basins because of the long distance to travel. In addition, rainfall events over larger
basins will probably impact only a portion, but it could cover the entire small basin.

The relation between the infiltration rate and the basin’s slope is inversely proportional. If the
basin’s slope increases, the infiltration rate decreases. The reason is that gravity pulls less water into
the land surface and more water across that surface [43]. Unlike the basin’s slope, surface roughness
has a directly proportional relation with infiltration rate; reducing channel roughness causes less
infiltration and faster streamflow velocities [6].

3. Early Warning System Basic Architecture

This section describes the architecture of an early warning system for the dissemination of timely
alerts during pluvial flash floods. EWS is understood as a set of procedures, steps or key elements
related and interconnected with each other [46]. The United Nations has defined early warning
systems as “An integrated system of hazard monitoring, forecasting and prediction, disaster risk
assessment, communication and preparedness activities systems and processes that enable individuals,
communities, governments, businesses and others to take timely action to reduce disaster risks in
advance of hazardous events” [29]. According to the World Meteorological Organization (WMO)
and International Strategy for Disaster Reduction (ISDR) [4,16] the architecture of an effective EWS
is divided into the following key elements or structures: Disaster risk knowledge, Forecasting,
Dissemination–Communication and Preparedness–Response.

(a) Disaster Risk Knowledge

An event becomes a disaster when it abruptly affects a community’s daily activities and involves
human and material losses and has economic or environmental impacts [46]. It would also be
considered as a disaster when damage exceeds the community’s ability to respond with their own
resources [18]. When there is a greater knowledge of the risk to which a population is exposed,
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this leads to the improvement of the processes of risk management, reduction and adaptation [47,48].
The knowledge contains information that can be used to make decisions and actions that allow the
community to improve their capacity to react to disaster risk in a timely manner [49,50].

In this key element, it is necessary to identify hazards, the exposure, vulnerabilities and risks
of a population. According to the United Nations Office for Disaster Risk Reduction (UNISDR) [29],
a hazard is any substance, phenomenon or situation that affects a community and has the potential to
damage people and their property. The hazards can be classified into natural, biological, technological
and societal. Hazard identification implies what might happen and where.

Vulnerability relates to a number of factors such as physical, economic, social and environmental [51].
The Asian Disaster Preparedness Center defines the concept of vulnerability as “the factors or constraints
of an economic, social, physical or geographic nature, which reduce the ability to prepare for and cope
with the impact of hazards” [52]. The UNISDR defined vulnerability as “the conditions determined by
physical, social, economic and environmental factors or processes which increase the susceptibility of
an individual, a community, assets or systems to the impacts of hazards” [29].

The exposure is “The situation of people, infrastructure, housing, production capacities and other
tangible human assets located in hazard-prone areas” [29].

The risk is “the probability that negative consequences may arise when hazards interact with
vulnerable areas, people, property, environment” [52].

To reduce the risk of flooding in urban areas, the data collected should be relevant and concise,
qualitative or quantitative, and should be obtained through official sources [16,53]. The following
areas should be covered:

• Historical background
• Geographical aspects
• Environmental and physical aspects
• Socio-cultural aspects
• Economic aspects

Likewise, vulnerability assessment of the area at risk is necessary. The various components and
essential functions of a city that may be at the heart of possible dangers should be considered [54].
Furthermore, the dynamic nature of hazards and vulnerabilities arising from processes such as
urbanization, environmental degradation and climate change should be taken into account [16].
Developing a risk map allows the needs of the early warning system to be prioritized and preparations
for disaster prevention and response to be guided [55].

The following questions must be answered:

• Are the hazards and the vulnerabilities well known?
• What are the patterns and trends in these factors?
• Are risk maps and data widely available?

To answer these questions, Fakhruddin et al. [56] propose an assessment methodology for flood
risk by elaborating a map. The elaboration of the map is divided into two sections:

• First, the initial data processing, establishment of the hydrological model to predict runoff,
probability analysis and elaboration of a flood risk map is performed.

• Second, interviews, discussion groups and workshops are conducted with the community at risk
to determine vulnerability, taking into account community perceptions and historical records.

Finally, the result of these processes resulted in the development of an integrated system, flood risk
map and response option.

Once a detailed risk map is made and relevant information from the area is obtained, the warning
design must be established. This process is complex and requires the integration of different activities,
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devices and the processing of large volumes of information. The Forecasting section describes the
procedure for designing timely, clear and useful alerts for the community.

(b) Forecasting

For urban flash floods, the main goal of this key element is forecasting and establishing alert
levels in real time. This process is divided into two sections: Monitoring and Information Processing.
The Monitoring section monitors and transmits information on meteorological and hydraulic variables
related to urban flash floods [57].

The Information Processing section receives the data of the meteorological and hydraulic variables,
and through analysis tools, computer models and simulator design alert [58].

The forecasting process requires the use of a number of technologies and areas of expertise for the
analysis of large volumes of data and predictions based on simulations. These technologies include
sensors to measure meteorological and hydraulic variables and computational models and simulation
software to process the information. It is necessary to provide an advanced visualization technology
to interact with people at risk and a decision support system with remote access to assist public
authorities and citizens in timely decision making [48,59].

According to the UNISDR [46], this section should answer the following questions:

• Are the right parameters being monitored?
• Is there a scientific basis for making forecasts?
• Can accurate and timely warnings be generated?

As part of the decision support tools during high rainfall events, different runoff and
hydraulic models are available for urban flooding forecasting. They are a rainfall-runoff model
and hydrodynamic models in 1D, 2D and 3D. Most of these models use as input the measurements
of the amount of precipitation, water level and water velocity. Therefore, these variables should be
monitoring in real time [60,61].

The alerts must be sent in a timely manner and the message transmitted must be clear and
understandable for all people. The Dissemination–Communication section details the characteristics
of alert messages during flash floods and the means used to send them.

(c) Dissemination–Communication

Sending and communicating warnings is the determining step between forecast and action [62].
Dissemination refers to sending the warning, while communication is achieved only when the
information is received and understood [16]. Sending the alerts to people at risk during high-intensity
precipitations is an extremely important phase in which the message should be simple and useful.
This allows for adequate responses that help safeguard lives and livelihoods [55]. Dissemination and
communication systems for alerts should be able to answer the following questions:

• Do warnings reach all those at risk?
• Are the risk and warnings understood?
• Is the warning information clear and usable?

To achieve positive answers to these questions, alerts must be available in different formats,
such as text, graphics, colour coding, audio, etc. This facilitates the reception and action on
warnings. According to the WMO [16], for alerts to be effective, their content should be brief, concise,
understandable, and answer questions such as “What?”, “Where?”, “When?“, “Why?” and “How to
respond?”. Also, detailed threat information using localized geographic references should be included.
Dissemination of alerts must be done through multiple channels in order to reduce delays in delivery
to end-users, as well as ensure it reaches as many people as possible. Channel failure should be
prevented [4,53]. Likewise, credible sources, pre-identified and approved, should deliver warnings.
Measures must be taken to promote trust among the public so that prompt action is taken once the
message is received [63]. Some actions included are as follows:
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• Dissemination of warnings through organizations or leaders
• Sending warnings through multiple credible sources
• Periodic and constant warnings
• Scientifically certified warnings

According to The Economist Intelligence Unit, Hong Kong is considered to be one of the safest
cities in the world today, due to its ability to prepare and respond to disasters [54,56]. In 2015,
they carried out a study to assess the preparedness of Hong Kong residents for community disasters
and to identify factors that affect their behaviour during these events [31]. A total of 1023 residents
aged 18 years or more were interviewed to answer a 19-item questionnaire, which evaluated the
following aspects of disaster preparedness and response:

• Having information regarding their preparation
• A communication plan, evacuation strategies
• First-Aid and disaster knowledge
• Financial resilience
• Preparedness behaviours

Table 1 shows survey results regarding which sources people would use during a disaster.
The study found that people over 65 were more likely to seek information through television and
radio, while younger people responded more to social media.

Table 1. Preference of information sources during a disaster.

Source Population Surveyed

Television 52%
Facebook 18.9%

WhatsApp 9.6%
Radio 8.2%

News Agency Websites 6.1%
Government Websites 2.9%

Regarding which information they considered most important, the results show the following:

(1) Places to seek medical attention (92.2%)
(2) Evacuation routes (85.2%)
(3) Shelter information (84.8%)
(4) Details of the disaster (67.4%)
(5) Missing persons (65.2%)
(6) Victims (45.2%)

For the communication process, 65% of respondents would use emergency contact numbers on
their mobile phones, but 73.1% had password-protected phones. In the event that the mobile phone
network failed, 37.4% of the respondents stated that they would use a landline to communicate with
their family, 32.5% said they would go home and 4% reported having a place to meet your family.
This study concludes that, ultimately, most residents are interested in receiving additional information
on disaster preparedness through the Internet using mobile devices and television.

EWS are considered effective not only when an alert is sent in a timely manner but when this
alert is correctly understood and the community takes protective actions [64]. This implies active
community participation in the design of EWS, as well as the preparation and response to the risk of
flash floods.

(d) Preparedness–Response
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Disaster preparedness includes all the activities necessary for a community to react to such
an event [65]. It is necessary for the community to receive and correctly interpret issued alerts,
so they may draw the necessary conclusions for actions to be taken, such as alerting local police or
firefighters [64]. Many deaths have been recorded during flash floods worldwide, as people try to
drive or walk across the streams of water unknowingly or poorly assessing the risk [63,66]. Therefore,
it is necessary not only to issue flood warnings in a timely manner but also to identify the community’s
perception of flash floods and the factors that influence their responses when receiving the warning.

The results of a public survey of 418 people in Boulder, Colorado, USA, on how people perceive,
understand, and respond to flash floods and warnings received through different means were presented
in 2015 [67]. They establish that people have different perceptions and concepts about flash floods and
understandings of risk. The survey structure was divided into three main sections:

(1) Perceptions and understandings of flash flood risks
(2) Perceptions and interpretations of flash flood forecasts, warnings, and other alerts
(3) Protective decision making in response to flash flood warnings

In Section 3 of the survey, the ability of people to take protective measures during flash floods
was examined. The survey mentions different types of warnings that could be sent during a flash
flood and respondents answered what they will do if they heard the warning while driving, while in
a building on the ground floor or below, or while outdoors. Table 2 shows the alert messages and the
response actions of the respondents. The column on the left shows the warnings, the central column
shows the percentage of respondents coded in that category, and the column on the right shows the
responses obtained in this survey.

Table 2. Summary of respondents’ descriptions of actions that a person should take in response to
a flash flood warning [67].

Action % of Respondents Example Public Response (s)

Move to a higher location 84%

“Climb to safety”

“Run to higher ground”

“Get to higher ground and hold on”

“Climb a tree...”

“Get to a multilevel building and get to the top”

“Drive uphill, get out of the car and continue uphill on foot”

“Get as high as possible”

Move to a different location 18%

“Drive to flatland, away from Boulder Creek away from
mountains and to higher land”

“Run like nuts”

“Get to nearest safety shelter, hospital, firehouse”

Avoid risky areas 12%

“Stay away from creeks + rivers”

“Move away from creek areas”

“Find higher ground away from electric lines”

Go inside 10%
“Get inside a strong building”

“Go in a commercial building or knock on a door”

Assess situation 4%

“Think! Assess the vulnerability of location and
act accordingly...”

“Determine if the flood will be in your area and take
appropriate action”

“Have high ground picked out nearby and go to it if you see
the water and debris coming”
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Table 2. Cont.

Action % of Respondents Example Public Response (s)

Be alert 3%
“Raise alert level and make a plan for possible action”

“Be aware of nearby floodways/drainages”

Seek more information 1% “Try to obtain more info about where to go for safety

Depends 7%
“Go to a higher place or leave the area if there is time”

“It depends on where you are?”

Don’t know 1% “Honestly, I have no idea”

Other 8%
“Check to hear if it is a practice warning or a real one—then
call loved ones and go to a safe location”

“Call for help and look for high ground”

It is necessary not only to notify people about the danger of a sudden flood but also to motivate
them to take protective measures. According to Quevauiller and Innocenti [68], the following
recommendations could improve people’s response:

• Institutional and social conditions that must be fulfilled to ensure timely decision-making
regarding the warnings should be as follows:

1. Alert dissemination and communication
2. Clarity regarding responsibilities in case of warning
3. Preparing authorities and communities to respond to the disaster

• The involvement of local communities and authorities in the design of EWS increases the
effectiveness of the entire early warning process and thus leads to a greater and better response to
an alert.

According to the ISDR, each key element has key actors that should be involved to develop
a people-centred Early Warning System. Table 3 shows the key actors for each key element.

Table 3. Key elements and Key actors of an Early Warning System [55].

Key Element Key Actors

Disaster risk knowledge

1. International, national and local disaster management agencies.
2. Meteorological and hydrological organizations.
3. Geophysical experts
4. Social scientists
5. Engineers
6. Land use and urban planners
7. Researchers and academics
8. Organizations and community representatives involved in disaster management

Forecasting

1. National meteorological and hydrological services
2. Specialized observatory and warning centres
3. Universities and research institutes
4. Private sector equipment supplier telecommunications authorities
5. Quality management experts
6. Regional technical centres

Dissemination and
communication

1. International, national and local disaster management agencies
2. National meteorological and hydrological services
3. Military and civil authorities
4. Media organizations (print, television, radio and online)
4. Businesses in vulnerable sectors (e.g., tourism, aged care facilities, marine vessels)
5. Community-based and grassroots organizations
6. International and local agencies

Preparedness and
response

1. Community-based and grassroots organizations
2. Schools, universities and informal education sector.
3. Media (print, radio, television, online)
4. Technical agencies with specialized knowledge of hazards
5. International, national and local disaster management agencies
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Another feature of the effectiveness of an EWS is that the key elements must be interrelated.
The activities carried out in each section should be aimed at the satisfactory development of the
following section.

4. Real-Time EWS for Pluvial Flash Floods

This section presents different architectures of early warning systems for pluvial flash floods
implemented worldwide. Each project installed different types of sensors to monitor variables used in
urban flood forecasting and modelling.

Wireless communication was the most used technology for transmitting data to the processing
centre. On the other hand, each one developed a different method for information processing and
alert dissemination.

4.1. Florida, United States

Chang and Guo [69] proposed a motes-based sensor network for water level monitoring and
real-time video delivery of channel status. This system consists of three modules: Ultrasonic Water
Level Monitoring Module, the Network Video Recording Module and Data Processing Module.
All modules are connected to a photovoltaic system for power supply. Figure 2 illustrates a general
structure of motes-based sensor network for the Florida (United States) project.
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• The Ultrasonic Water Level Monitoring module uses an ultrasonic sensor to measure water level
and it is connected to a data acquisition board and this, in turn, is connected to a wireless system.
The wireless system is an MDA300CA unit manufactured by Crossbow Technology (t) and uses
IEEE 802.15 standard to send the information to the data processing module.

• The Network Video Recording Module is composed of a group of cameras installed at main
intersections. Cameras provide traffic monitoring information in video and images. This system
includes four Redeye Z205 network cameras and can be connected via Ethernet to the data
processing module. Each camera has an IP address assigned to which users will have access from
any Web searcher.

• The Data Processing Module combines all sources of information. This module provides three types
of information: raw data, predicted data, and video information. The raw data is the information
obtained by the sensors, while the predicted data are obtained through mathematical models.
All of this must be accessible online.

4.2. Barranquilla, Colombia

The city of Barranquilla is located in the Caribbean Region of Colombia and does not have
an efficient rainwater drainage system; therefore, during rainy events, streets become dangerous
streams called “arroyos” [70,71]. Researchers at the Universidad de la Costa developed an EWS with
a wireless sensor network and a WEB application [72]. Figure 3 illustrates the Wireless Sensor Network
(WSN) architecture in the Barranquilla (Colombia) project.
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• The wireless sensor network has six nodes and each node has a temperature, humidity and
atmospheric pressure sensor connected to a mote (Waspmote from Libelium, Zaragoza, Spain)
and powered by a photovoltaic system. This system was used by Ramírez-Cerpa et al. [73] to
determine through an analysis the influence of the variation of these atmospheric variables in the
formation of precipitations that cause flash floods in the city of Barranquilla. Information obtained
via nodes is sent to a server using Zigbee technology with the XBee-PRO ZB (S2) radio module [74].
This module uses ZigBee technology under the IEEE 802.15.4 standard to communicate with other
nodes and with the base station. Previously, in Caicedo-Ortíz et al. [75], a test was conducted to
verify the transmission range of the Waspmote pro. It established an efficient communication
between the transmitter node and the receiving node at a distance of 1000 m with line of sight.

• A server receives the data from the wireless sensor network and, through a Web and mobile
application, gives information to end-users.
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4.3. Manila, Philippines

In two streets near the Manila subway, a real-time urban flood monitoring system was
installed [76]. A flood prediction model was developed to identify flooded streets and alternative routes
for drivers. The system is divided into three main sections: Electronic instrumentation, Server and
Web services.

• The Electronic Instrumentation has a ground-based pressure sensor and a tipping bucket rain gauge
connected to the data logger and powered by a photovoltaic system. The obtained information is
sent through a General Packet Radio Service (GPRS) module to a server. Two nodes were installed
on two nearby streets (Earnshaw and San Diego) on Boulevard Spain, Manila.

• The Server receives the data and processes it to provide real-time information. A Web application
provides real-time information, historical data and flood data to users. Likewise, a mobile
application shows the real-time variation of flash floods in the streets so that users can adjust their
routes and travel schedules. Figure 4 illustrates the urban flood monitoring system for Manila
(Philippines) Metro project.
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4.4. Nakhon Si Thammarat, Thailand

In Nakhon Si Thammarat, a province in southern Thailand, a wireless flood monitoring system
was developed for the mitigation and management of flood disasters in urban and suburban areas [77].
The system consists of two main modules, Remote Site and Control centre, as shown in Figure 5.
Sensors 2018, 18, x FOR PEER REVIEW    13 of 25 

 

 

Figure 5. Wireless flood monitoring system implemented in the Nakhon Si Thammarat project [77]. 

 The Remote Site. The monitoring section contains 15 remote devices located around the Nakhon 

Si Thammarat flood risk zone. A tipping bucket rain gauge was used to measure the amount 

and  intensity of  the  rain. These  remote devices use an ultrasonic Doppler  instrument  called 

STARFLOW  (Unidata,  Perth,  Australia)  to  measure  water  level  and  velocity.  Since  the 

STARFLOW equipment  is very sensitive  to  fluctuations  in water velocity  in  the channel,  the 

average velocity was used in a time interval rather than raw measurement data. The STARFLOW 

unit is connected to the GPRS Data Unit (GDU) and sends the information every 10 min to the 

control centre 

 The Control Center has a server that contains the historical database, processes in real time the 

information  and  displays  it  through  a WEB  application.  End‐users  can  access  this  system 

through the Internet or mobile devices. The alert messages are also sent via text messages (SMS), 

FAX and email to the community. 

To avoid unexpected power disruptions, an uninterruptible power supply (UPS) and a surge 

protector was installed. This allows the whole equipment to work for at least 24 h with a continuous 

electrical energy supply when not available. 

4.5. Mayagüez, Puerto Rico 

The University of Puerto Rico, Mayagüez (UPRM) campus developed a weather radar network 

that provides  accurate  and  real‐time hydro‐meteorological  information  to  the west  region of  the 

island [78,79]. These radars have a temporal resolution of 3 min, spatial resolution of 15 m and operate 

at a frequency of 9.1 GHz. The information obtained by the radars is sent to a data centre placed at 

Mayagüez campus with a high‐performance directional grid parabolic antenna with a frequency of 

2.4 GHz. A photovoltaic system provides the power supply to the radars and the data is deployed in 

a Web application.   

This weather radar network information was used to develop a flood alert system in western 

Puerto Rico for convective precipitation of time periods of a few hours or less (nowcasting) [80].   

Weather radars provide information on cloud reflectivity and this data can be transformed into 

rainfall amount using empirical equations. There is an empirical relationship between the amount of 

precipitation and radar reflectivity, which in turn depends on the distribution of raindrops. The Rain 

Rate R  (mm/h)  is  related with  the  reflectivity  factor Z  (mm6 m−3)  through  the Marshall–Palmer  [81] 

equation:   

R	 ቀ
mm
h
ቁ ൌ 0.036 ൈ 10.ଶହ∗ୢ  (1) 

Figure 5. Wireless flood monitoring system implemented in the Nakhon Si Thammarat project [77].

• The Remote Site. The monitoring section contains 15 remote devices located around the Nakhon
Si Thammarat flood risk zone. A tipping bucket rain gauge was used to measure the amount
and intensity of the rain. These remote devices use an ultrasonic Doppler instrument called
STARFLOW (Unidata, Perth, Australia) to measure water level and velocity. Since the STARFLOW
equipment is very sensitive to fluctuations in water velocity in the channel, the average velocity
was used in a time interval rather than raw measurement data. The STARFLOW unit is connected
to the GPRS Data Unit (GDU) and sends the information every 10 min to the control centre

• The Control Center has a server that contains the historical database, processes in real time the
information and displays it through a WEB application. End-users can access this system through
the Internet or mobile devices. The alert messages are also sent via text messages (SMS), FAX and
email to the community.
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To avoid unexpected power disruptions, an uninterruptible power supply (UPS) and a surge protector
was installed. This allows the whole equipment to work for at least 24 h with a continuous electrical
energy supply when not available.

4.5. Mayagüez, Puerto Rico

The University of Puerto Rico, Mayagüez (UPRM) campus developed a weather radar network
that provides accurate and real-time hydro-meteorological information to the west region of the
island [78,79]. These radars have a temporal resolution of 3 min, spatial resolution of 15 m and operate
at a frequency of 9.1 GHz. The information obtained by the radars is sent to a data centre placed at
Mayagüez campus with a high-performance directional grid parabolic antenna with a frequency of
2.4 GHz. A photovoltaic system provides the power supply to the radars and the data is deployed in
a Web application.

This weather radar network information was used to develop a flood alert system in western
Puerto Rico for convective precipitation of time periods of a few hours or less (nowcasting) [80].

Weather radars provide information on cloud reflectivity and this data can be transformed
into rainfall amount using empirical equations. There is an empirical relationship between the
amount of precipitation and radar reflectivity, which in turn depends on the distribution of
raindrops. The Rain Rate R (mm/h) is related with the reflectivity factor Z (mm6 m−3) through
the Marshall–Palmer [81] equation:

R
(mm

h

)
= 0.036 × 100.625∗dBZ (1)

Knowing the precipitation rate of different hydrological models for the prevention of floods can
be developed thus enabling the community to be informed opportunely. Likewise, the aeronautical
operations can be planned with greater precision [71].

Torres-Molina [80] used equation 1 to obtain the precipitation rate from weather radars and
routed through a rainfall-runoff model Vflo. Using a coupled rainfall-runoff forecasting procedure
obtained results with lead-times of 10, 20 and 30 min. These results were analyzed and compared
using statistical methods. The flooding model Inundation Animator showed the extent of flooding
superimposed onto a land map.

4.6. Barcelona, Spain

Llort et al. [82] presented a pluvial flood EWS, called FloodAlert, based on the use of radar
observations to issue local flood warnings. This project, like the one developed in Mayaguez
(Puerto Rico), uses the radar data and through the climatological Z–R relationship converts the
reflectivity measurement into the amount of precipitation (mm/h).

Due to different errors affecting radar precipitation data, this project implemented a quality
control process that includes statistical calibration of radar reflectivity estimations, correction of
non-meteorological echoes and correction for underestimation due to beam blockages.

This project not only provides real-time radar information but also the precipitation movement
field can be calculated using the last radar observations by means of cross-correlation techniques.
Once both the radar data and radar nowcasting is available, the system calculates the 30 min
accumulation in a moving window scheme.

To visualize the information, a web platform dynamically displays geo-referenced information of
real-time radar observations and nowcasting. Likewise, the areas are shown that will be potentially
affected by rainfall accumulation in 30 min exceeding the user-defined thresholds and the evolution of
the maximums of the 30 min accumulation in the intelligent area surrounding the point of interest.

In order to send the alerts, this system uses email and text messages and the devices can be
configured under different profiles (e.g., standard, 24 h, weekends, emergency, etc.). For example,
on 29 October 2013 for an observation point in Palma de Mallorca, the forecasting accumulation values
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(30 min accumulation) exceeded the user-defined red threshold and an email was sent 90 min before
the flooding at the city caused several problems. In the email, the top panel shows the areas forecasted
to be over the thresholds (5, 10 and 20 mm/30 min in this case) and how those areas affect the point
centred in the city.

Unlike the other projects reviewed, this one does not describe the type of communication used to
send the information to the data processing centre, or if the data was processed at the radar installation
site. Similarly, it does not describe the power supply system.

Table 4 summarizes the instruments implemented in the projects mentioned above to measure the
variables related to the formation of pluvial flash floods. Likewise, Table 4 shows the communication
protocols to send sensors’ data, the alert dissemination methods and the power supply system.

All the reviewed projects focused their early warning system design on the forecasting and
alert dissemination processes. The project developed in Nakhon Si Thammarat (Thailand) included
the greatest number of hydrological and hydraulic variables for establishing alert levels. Likewise,
this project used more than three communication channels to send alerts but it was the only one that
was connected to the electrical grid.

Table 4. Instruments, communication protocols and methods for alert dissemination.

Location
Sensors

Communication
System

Alert Dissemination Power Supply
Type Variables to

Measure

Nakhon Si
Thammarat,

Thailand

STARLFLOW Ultrasonic
Doppler sensor

Water level
and velocity

GPRS module Web application. SMS,
FAX, email.

Connected to the
electrical grid

and UPSTipping bucket rain
gauge Amount of rain

Florida,
United States

Ultrasonic sensor WL700 Water level Wireless unit
(IEEE 802.15)

Online access to raw and
predicted data,

video information
Photovoltaic system

Redeye Z205 Cameras Ethernet

Barranquilla,
Colombia

Humidity sensor
Atmospheric

variables
ZigBee

(IEEE 802.15)
Web and

mobile application Photovoltaic systemTemperature sensor

Atmospheric pressure

Manila,
Philippines

Pressure sensor Water level
GPRS module Web application Photovoltaic systemTipping bucket

rain gauge Amount of rain

Mayagüez,
Puerto Rico Weather radar

Radar
reflectivity and
amount of rain

Parabolic
antenna

(IEEE 802.15)
Web application Photovoltaic system

Barcelona,
Spain Weather radar

Radar
reflectivity and
amount of rain

Web application,
SMS, E-mail

5. Discussion

With regard to pluvial flash floods, for an early warning system to be effective, the alerts must
be issued timely, be clear and understandable to the entire community at risk. Through this review,
the key elements of an EWS for flash floods in urban areas were described as well as the variables that
influence their formation.

Early Warning Systems implemented in different locations worldwide were reviewed to identify
the main elements used for the forecasting process such as measurement instruments, data transmission
protocols and power supply equipment, as well as information processing methods. Also reviewed
were the means and strategies for alert dissemination to the community.
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5.1. Forecasting Process

The forecasting process is linked to the detection, monitoring and analysis of meteorological
and hydraulic variables related to flash floods. It can be carried out using various instruments and
methods, but there are indispensable devices for this work.

From the reviewed projects, three considered the amount of rain (mm) as a basic element for
the development of alerts for urban flash floods. The most used instrument for direct precipitation
measurement is the rain gauge and for indirect measurement is weather radars.

Rain gauges measure the liquid precipitation expressed in mm during a period of time. Once this
measure is registered, it is sent to an information-processing centre. The reviewed projects implemented
tipping bucket rain gauges and consist of a light metal container or bucket divided into two compartments.
The liquid precipitation is collected into the uppermost compartment and, after a predetermined amount
has entered, the bucket becomes unstable and tips toward its alternative rest position [83].

Weather radars are widely used instruments to locate precipitation, identify the types and monitor
their movements. This instrument emits microwave pulses and measures the reflected signal from the
raindrops [84]; the higher the reflected signal value, the higher the rain intensity.

One of the advantages of weather radars is that they have a higher coverage than rain gauges.
Since they can also monitor the movement of the clouds, weather radars can predict phenomena
ahead of time, and serve as a backup system in case the on-site devices are removed by flooding
or high winds. However, weather radars are more expensive than rain gauges, have higher power
consumption and need more technical and social requirements for their implementation.

Three projects included sensors for measuring the water level and can be classified into pressure
sensors and ultrasonic sensors. Pressure sensors measure the uniform weight of a column of water.
Since weight is a force, a column of water with a specific height will always exert the same amount
of pressure on the sensor. At the output, the sensor produces a voltage equivalent to the received
pressure and then this voltage value translates it to a level measurement [85].

Ultrasonic sensors send a sound wave with a specific frequency to an object and receive the
reflected sound wave. The sensor measures the distance by calculating the sending and receiving
time of this sound wave [86]. Ultrasonic sensors are not affected by colour, transparency of objects,
design or type of surface. They are resistant to external disturbances such as vibration and ambient
noise. These sensors have great accuracy and they are easy to connect with different interfaces [87].
However, environmental variables such as air temperature and humidity can affect the echo transit
time and therefore the measurement accuracy of an ultrasonic sensor [88].

Ultrasonic wave propagation speed depends on both the nature of the propagation medium and
the temperature. When the air temperature and humidity increase, the speed of sound increases and
the reach is shorter. This reduction is not linear and differs from sensor to sensor [89].

For some applications, one of the disadvantages of the ultrasonic sensor is that it cannot work
underwater, but for flooding applications, this is suitable because the streams sweep away different
objects that can collide with the sensor, introducing wrong measurements and causing damage to the
equipment. Thus, it is suggested that non-submersible sensors be used for the implementation of early
warning systems for flash floods in urban areas.

For the communication technology implemented to send the sensors’ data, most of the reviewed
projects used wireless communication. Wireless modules under IEEE 802.15 standard and GPRS
modules were implemented to send the information from the measurement stations to a data centre.
However, these projects only implemented one communication channel for sending the data. If there
are failures in the communication system, the alert will not be timely. Therefore, it is necessary to have
a minimum of two communication channels for sending the alerts.

Ch. Saad et al. [90] performed a comparative analysis of wireless communication protocols for
intelligent sensors with a focus on their performance. Table 5 presents the differences between some
wireless communication protocols in terms of the frequency band, the range of coverage, max data
rate and transmitted power.
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Table 5. Differences between wireless communication protocols.

Protocols Bluetooth Ultrawide Band
(UWB) ZigBee/IP Wi-Fi Wi-Max GSM/GPRS

Frequency band 2.4 GHz 3.1–10.6 GHz 868/915 MHz;
2.4 GHz 2.4; 5 GHz 2.4; 5.1–66 GHz 850/900;

1800/1900 MHz

Nominal range 10 m 10–102 m 10–1000 m 10–100 m 0.3–49 km 2–35 km

Max data rate (Mbit/s) 0.72 110 0.25 54 70 0.168

Bit time (µs) 1.39 0.009 4 0.0185 0.0143 5.95

Transmitted Power (W) 0.1 0.04 0.0063 1 0.25 2

The transmission time of a wireless system depends on the data rate, the message size, and the
distance between two nodes [91]. From Table 5, GSM/GPRS has the lowest data rate, therefore,
its transmission time is longer than the other protocols. Likewise, GSM/GPRS has the highest power
transmission consumption, but it has the best range of coverage from these protocols.

During high rainfall events, the power supply may fail. It is recommended to have a photovoltaic
system connected to the equipment as a primary source of power supply or as a backup system in
case of failure. Almost all projects use photovoltaic systems to supply electricity for measuring and
communication instruments. Only one project was connected to the electric power grid and used
a UPS as a protection measure.

Information processing is carried out in a data centre equipped with applications, and analysis
software necessary for alert design. The data centre processes the sensor data and transforms it into
alerts in real time. Some of these data centres have a historical database and provide online access to
them like the projects implemented in Nakhon Si Thammarat (Thailand) and Florida (United States).

Figure 6 consolidates the overall structure of the forecasting process with the main and secondary
elements. It also shows the communication protocols used in the reviewed projects to transmit the
information from sensors to a data centre.

The measurement of water velocity as a hydraulic variable should be included in all pluvial flash
flood EWS. The parameters, water level, water velocity and their combined effect, are responsible for
the stability loss of pedestrians and drivers when trying to cross hazardous streams.Sensors 2018, 18, x FOR PEER REVIEW    17 of 25 
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5.2. Dissemination Process

The dissemination of information must be timely, gathered and understood by the whole
community. Warnings must be simple, clear and useful messages so that opportune decisions may
be taken. It is necessary to have an integrated system that allows the information to be sent through
different channels, ensuring that it is received and understood by everybody.

Studies by Fakhruddin et al. [56] and Lam et al. [31] agree that the preferred channel for receiving
information is television. However, younger people prefer to receive information through digital
media and the use of social networks. Older people show their preference for using radio and audio
alerts such as sirens.

The most used methods for sending alerts to the community at risk were Web and mobile
applications. Four projects developed a Web application to visualize the alerts, water level and
precipitation measurements. One of these projects developed a mobile application too.

Another project offers online access to raw data and video information. However, none of the
projects integrated television or radio to send the alerts.

According to WMO, the alerts should be brief, concise and understandable [5], but during high
precipitation events it is also necessary to send the alerts through different communication channels.
This will avoid the loss of messages due to channel failures; nevertheless, just two projects had more
than one media for sending alerts.

Television and radio were not included in any of the reviewed projects for alert dissemination,
but they are very useful media for broadcasting messages to a large part of the population at risk.
Likewise, an up-to-date system that visualizes streets during floods and applications that provide
alternate routes for drivers is ideal. Figure 7 shows the different media that can be used for the
dissemination of alerts according to this review.Sensors 2018, 18, x FOR PEER REVIEW    18 of 25 
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Taking into account the guidelines provided in Section 3 for each key element of a pluvial
flash flood EWS and the instruments, methods and media implemented in the reviewed projects for
forecasting and alert dissemination, an effective and real-time pluvial flash flood Early Warning System
is proposed. Figure 8 shows the main and secondary elements of each key element of the pluvial flash
flood EWS proposed in this review.
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Disaster risk knowledge is a necessary phase, prior to EWS design. It comprises identification
and mapping of the risk. First, hazards, exposure, vulnerabilities and risk in the population are
identified. This information must be obtained from official sources and must be relevant and concise.
The next step is to develop a risk map to prioritize the EWS’s needs and guide preparations for disaster
prevention and response.

The forecasting process is divided into four sections: main section, complementary elements,
communication protocols and information processing. The main section is compounded by water
level and water velocity sensors and the rain gauge. This set is powered by a photovoltaic system.
Radar and video cameras can be considered as complementary elements. Weather radars are the
most suitable instruments for monitoring during extreme rainfall events but they are quite expensive.
Figure 8 presents different wireless communication protocols to send the information to the main
system. It is necessary to implement at least two different protocols for redundancy. In case of failures
in one protocol, the data can be sent timely to the information-processing centre and without loss of
packages. This centre is in charge of the data processing and designs the flood warnings.

Once the alerts are ready, there are different media to send them. Web and mobile applications
were implemented in all the reviewed projects to visualize the alerts, but it is necessary to have more
than one channel to cover the entire community at risk. Television is the preferred media to receive the
alerts, but government support is needed to be able to send broadcast messages [56].

Sending warning messages to the community at risk is not the last action in an EWS.
The communication is established when people receive, understand the message and take timely
decisions. To achieve this, it is necessary that the community and the local authorities participate
actively in the decision-making process. One proposal on this topic is the project named FloodCitiSense
“Early warning service for urban pluvial floods for and by citizens and city authorities”. The aim of this
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project is to reduce urban areas and citizen vulnerability to pluvial floods. They propose integrating
crowdsourced hydrological data measured by different participants such as citizens, local authorities,
research units and industrial partners. Furthermore, they suggest implementing low-cost sensors and
web-based technologies to display warnings [92]. This project will be developed during 2017–2020.

After implementation of an early warning system, it is very important to measure its performance
in order to determine its effectiveness. Parker [93] mentioned the most common ways of measuring
flood warning performance. They are classified in technical and socials measures. The following
characteristics are related to technical measures:

- Probability of detection
- Accuracy: Forecast flood levels compared with measured flood levels.
- Reliability: Flood-hit, miss and false alarm rates.
- Probability (i.e., uncertainty): Amount or percentage of certainty/uncertainty associated with

the forecast
- Time range ahead of the flood: How far ahead in time a forecast can be made
- Timeliness: Warning lead time
- Spatial resolution: The smallest area for which a forecast can be made

According to Parker [93], to measure the EWS acceptance by the community, social survey
responses are required that consider the following characteristics:

- Warning information: Recipients’ assessments of the degree to which the warning provided them
with the flood information they needed.

- Satisfaction with the flood warning service: Levels of satisfaction among those for whom flood
warnings were/should have been provided.

- Damage Reduction: The amount of flood damage saved by the warning.
- Protection of life and limb: The assessed number of lives and injuries avoided by the warning.
- Benefit–cost ratio: The ratio of the assessed benefits and costs of providing a flood warning.

Some of the reviewed projects evaluated the EWS performance, considering only technical aspects.
However, after their implementation, they did not register the level of acceptance by the community at
risk or the damage reduction.

The information obtained from this review study was applied to the development of an early
warning system for detection in real-time of urban pluvial flooding hazard levels in an ungauged
basin in Barranquilla, Colombia [23]. This design used the structure suggested in this study for
the selection and installation of the main and complementary elements to measure in real-time the
hydro-meteorological variables that influence the formation of urban flash floods. It also considered
the types of sensors for measuring the water level and water velocity and the power supply system.
Figure 9 illustrates the set of a water level sensor, a rain gauge, a gateway, and a photovoltaic and
communication system for this project.

This project developed a Web application considering the recommendations about the diffusion
of information. The aim was to generate an effective and timely response from the population during
flash floods. The information was updated every 5 min with the received precipitation value.

The application offers the option to subscribe to receive notifications during rainy events through
the social networks Twitter and Telegram. Likewise, it allows the addition of more streams as well
as the inclusion of as many observation points and rain gauges. In the future, it will display the
atmospheric information obtained by different sensors. Figure 10 shows the Web application interface.
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6. Conclusions

The effects of climate change have become evident in the increased formation of natural
phenomena that can adversely affect people’s lives [94]. The increasing intensity and duration of
rainfall in urban areas makes them more prone to flash floods, as the capacity of drainage systems is
saturated, placing city inhabitants at risk and causing material losses. Flash floods, unlike other floods,
are of very fast onset, with a relatively short spike and rapid withdrawal [94]. Therefore, it is necessary
to design adequate and intelligent adaptation measures to reduce the negative impact on society.

EWS has been established worldwide as a useful tool for populations to adapt and mitigate
the impact of flash floods in urban areas. Through this review, the basic architecture of EWS
for flash floods in urban areas was determined. This EWS is people-centred and the community
can have an active participation from design to implementation. The EWS is divided into four
structures: Disaster Risk Knowledge, Forecasting, Dissemination and Communication of information
and Preparedness and Response.

Through this review, it was identified that the variables that must be monitored in real time
during the rain events are the amount of rain and water level. The information of these variables is also

http: //www.isatbaq.com.co
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processed in real time to issue alerts in a timely manner. Rain gauges, weather radars, ultrasonic and
pressure sensors were the instruments implemented to measure these variables. Although weather
radars have more coverage than rain gauges, they are more expensive and need more technical
requirements for their implementation.

Since flash flood stream flow is turbulent and can wash away different objects in its path, the use
of submersible sensors such as pressure sensors is not recommended. Therefore, ultrasonic or radar
sensors are more suitable for flooring applications.

To send the sensor data measurements to a data centre, the reviewed projects used wireless
communication systems; GPRS modules and wireless modules under 802.15 standard were the most
used. GPRS modules have a better range of coverage than other wireless communication protocols;
nevertheless, they have higher power consumption and longer transmission time.

This article has shown that not all the reviewed projects fully comply with the suggested norms for
an effective early warning system. This article serves as a guide for the design of early warning systems
for pluvial flash floods that affect urban areas, taking into account the instruments, protocols and
primary and secondary means for the forecasting and alert dissemination process.

Funding: Administrative Department of Science, Technology and Innovation of the presidency of the Republic of
Colombia (COLCIENCIAS) #728.

Acknowledgments: This project was developed in collaboration with the Institute for Molecular Imaging
Instrumentation (I3M) of Polytechnic University of Valencia, Spain, in the area of Electronic Systems Design.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Kundzewicz, Z.W. Non-structural flood protection and sustainability. Water Int. 2002, 27, 3–13. [CrossRef]
2. Singh, P.; Sinha, V.S.P.; Vijhani, A.; Pahuja, N. Vulnerability assessment of urban road network from urban

flood. Int. J. Disaster Risk Reduct. 2018, 28, 237–250. [CrossRef]
3. Birkmann, J.; von Teichman, K. Integrating disaster risk reduction and climate change adaptation:

Key challenges—Scales, knowledge, and norms. Sustain. Sci. 2010, 5, 171–184. [CrossRef]
4. International Strategy for Disaster Reduction (ISDR). Emerging Challenges for Early Warning Systems in

context of Climate Change and Urbanization. Available online: http://www.preventionweb.net/files/
15689_ewsincontextofccandurbanization.pdf (accessed on 9 August 2017).

5. Chaumillon, E.; Bertin, X.; Fortunato, A.B.; Bajo, M.; Schneider, J.-C.; Dezileau, L.; Walsh, J.P.; Michelot, A.;
Chauveau, E.; Créach, A.; et al. Storm-induced marine flooding: Lessons from a multidisciplinary approach.
Earth Sci. Rev. 2017, 165, 151–184. [CrossRef]

6. The University Corporation for Atmospheric Research. Flash Flood Early Warning System Reference Guide;
The University Corporation for Atmospheric Research: Boulder, CO, USA, 2010.

7. National Weather Service. Flood Safety Awareness Week: Flood Hazards. 2017. Available online: http:
//www.weather.gov/aly/fldsafetyWednesday (accessed on 7 July 2017).

8. Ministère de l’Écologie and du Développement Durable et de l’Énergie. Submersion Marine; Ministère de
l’Écologie and du Développement Durable et de l’Énergie: Paris, France, 2016.

9. The World Bank; Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding A Guide to Integrated Urban Flood Risk
Management for the 21st Century; The World Bank: Washington, DC, USA, 2012.

10. Alfieri, L.; Cohen, S.; Galantowicz, J.; Schumann, G.J.-P.; Trigg, M.A.; Zsoter, E.; Prudhomme, C.;
Kruczkiewicz, A.; de Perez, E.C.; Flamig, Z.; et al. A global network for operational flood risk reduction.
Environ. Sci. Policy 2018, 84, 149–158. [CrossRef]

11. Maggioni, V.; Massari, C. On the performance of satellite precipitation products in riverine flood modeling:
A review. J. Hydrol. 2018, 558, 214–224. [CrossRef]

12. Da Cruz Simoes, N.E. Urban Pluvial Flood Forecasting; Imperial College London: London, UK, 2012.
13. Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and stormwater management: A contemporary

review of China’s challenges and ‘sponge cities’ strategy. Environ. Sci. Policy 2018, 80, 132–143. [CrossRef]

http://dx.doi.org/10.1080/02508060208686972
http://dx.doi.org/10.1016/j.ijdrr.2018.03.017
http://dx.doi.org/10.1007/s11625-010-0108-y
http://www.preventionweb.net/ files/15689_ewsincontextofccandurbanization.pdf
http://www.preventionweb.net/ files/15689_ewsincontextofccandurbanization.pdf
http://dx.doi.org/10.1016/j.earscirev.2016.12.005
http://www.weather.gov/aly/fldsafetyWednesday
http://www.weather.gov/aly/fldsafetyWednesday
http://dx.doi.org/10.1016/j.envsci.2018.03.014
http://dx.doi.org/10.1016/j.jhydrol.2018.01.039
http://dx.doi.org/10.1016/j.envsci.2017.11.016


Sensors 2018, 18, 2255 23 of 26

14. Ten Veldhuis, J.A.E. How the choice of flood damage metrics influences urban flood risk assessment. J. Flood
Risk Manag. 2011, 4, 281–287. [CrossRef]

15. World Meteorological Organization. Global Approach to Address Flash Floods. 2017. Available online:
http://www.hrc-lab.org/publicbenefit/downloads/wmo-flashflood.pdf (accessed on 1 August 2017).

16. World Meteorological Organization. Guidelines on Early Warning Systems and Application of Nowcasting and
Warning Operations; Pws-21, No. 1559; World Meteorological Organization: Geneva, Switzerland, 2010; p. 25.

17. Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban flood risk warning under rapid urbanization.
Environ. Res. 2015, 139, 3–10. [CrossRef] [PubMed]

18. Intergovernmental Panel on Climate Change. Climate Change 2014—Impacts, Adaptation and Vulnerability:
Part B: Regional Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report;
Cambridge University Press: Cambridge, UK, 2014; Volume 2.

19. European Commission and Water Group Floods (WGF). Pluvial Flooding: An EU Overview;
European Commission and Water Group Floods (WGF): Berlin, Germany, 2016.

20. Guerreiro, S.B.; Glenis, V.; Dawson, R.J.; Kilsby, C. Pluvial Flooding in European Cities—A Continental
Approach to Urban Flood Modelling. Water 2017, 9, 296. [CrossRef]

21. Houston, D.; Werritty, A.; Bassett, D.; Geddes, A.; Hoolachan, A.; McMillan, M. Pluvial (Rain-Related) Flooding
in Urban Areas: The Invisible Hazard; JRF: London, UK, 2011.

22. Bhattarai, R.; Yoshimura, K.; Seto, S.; Nakamura, S.; Oki, T. Statistical model for economic damage from
pluvial floods in Japan using rainfall data and socioeconomic parameters. Nat. Hazards Earth Syst. Sci. 2016,
16, 1063–1077. [CrossRef]

23. Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M. Early warning system for detection of urban pluvial
flooding hazard levels in an ungauged basin. Nat. Hazards 2018, 92, 1237–1265. [CrossRef]

24. Zhang, W.; Li, S.M.; Shi, Z. Formation causes and coping strategies of urban rainstorm waterlogging in
China. J. Nat. Disasters 2012, 21, 180–184.

25. Yin, J.; Ye, M.; Yin, Z.; Xu, S. A review of advances in urban flood risk analysis over China. Stoch. Environ.
Res. Risk Assess. 2015, 29, 1063–1070. [CrossRef]

26. Azam, M.; Kin, H.S.; Maeng, S.J. Development of flood alert application in Mushim stream watershed Korea.
Int. J. Disaster Risk Reduct. 2017, 21, 11–26. [CrossRef]

27. Creutin, J.D.; Borga, M.; Gruntfest, E.; Lutoff, C.; Zocatelli, D.; Ruin, I. A space and time framework for
analyzing human anticipation of flash floods. J. Hydrol. 2013, 482, 14–24. [CrossRef]

28. Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban
road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [CrossRef]

29. International Strategy for Disaster Reduction (ISDR). UNISDR Terminology on Disaster Risk Reduction.
Available online: https://www.unisdr.org/we/inform/publications/657 (accessed on 24 July 2017).

30. Einfalt, T.; Hatzfeld, F.; Wagner, A.; Seltmann, J.; Castro, D.; Frerichs, S. URBAS: Forecasting and management
of flash floods in urban areas. Urban Water J. 2009, 6, 369–374. [CrossRef]

31. Lam, R.; Leung, L.P.; Balsari, S.; Hsiao, K.-H.; Newnham, E.; Patrick, K.; Pham, P.; Leaning, J. Urban disaster
preparedness of Hong Kong residents: A territory-wide survey. Int. J. Disaster Risk Reduct. 2017, 23, 62–69.
[CrossRef]

32. United Nations Environment Programme; Grasso, V.; Singh, A.; Pathak, J. Early Warning Systems a State of the
Art Analysis and Future Directions; United Nations Environment Programme: Nairobi, Kenya, 2012.

33. Bouwer, L.; Papyrakis, E.; Poussin, J.; Pfurtscheller, C.; Thieken, A. The costing of measures for natural
hazard mitigation in Europe. Nat. Hazards Rev. 2014, 15. [CrossRef]

34. Praskievicz, S.; Chang, H. A review of hydrological modelling of basin-scale climate change and urban
development impacts. Prog. Phys. Geogr. 2009, 33, 650–671. [CrossRef]

35. Hunt, A.; Watkiss, P. Climate change impacts and adaptation in cities: A review of the literature. Clim. Chang.
2011, 104, 13–49. [CrossRef]

36. Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I. Flood risk and climate change: Global and regional
perspectives. Hydrol. Sci. J. 2013, 59, 1–28. [CrossRef]

37. You, Q.; Kang, S.; Aguilar, E. Changes in daily climate extremes in China and their connection to the large
scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [CrossRef]

38. Ding, Y.H.; Ren, G.Y.; Shi, G.Y. National assessment report of climate change (I): Climate change in China
and its future trend. Adv. Clim. Chang. Res. 2016, 2, 3–8.

http://dx.doi.org/10.1111/j.1753-318X.2011.01112.x
http://www.hrc-lab.org/publicbenefit/downloads/wmo-flashflood.pdf
http://dx.doi.org/10.1016/j.envres.2015.02.028
http://www.ncbi.nlm.nih.gov/pubmed/25769509
http://dx.doi.org/10.3390/w9040296
http://dx.doi.org/10.5194/nhess-16-1063-2016
http://dx.doi.org/10.1007/s11069-018-3249-4
http://dx.doi.org/10.1007/s00477-014-0939-7
http://dx.doi.org/10.1016/j.ijdrr.2016.11.008
http://dx.doi.org/10.1016/j.jhydrol.2012.11.009
http://dx.doi.org/10.1016/j.jhydrol.2016.03.037
https://www.unisdr.org/we/inform/publications/657
http://dx.doi.org/10.1080/15730620902934819
http://dx.doi.org/10.1016/j.ijdrr.2017.04.008
http://dx.doi.org/10.1061/(ASCE)NH.1527-6996.0000133
http://dx.doi.org/10.1177/0309133309348098
http://dx.doi.org/10.1007/s10584-010-9975-6
http://dx.doi.org/10.1080/02626667.2013.857411
http://dx.doi.org/10.1007/s00382-009-0735-0


Sensors 2018, 18, 2255 24 of 26

39. Liu, Z.; Xia, J. Impact of climate change on flood disaster risk in China. Chin. J. Nat. 2016, 3, 177–181.
40. Office for National Statistics (ONS). Population Projections: 2014-Based Statistical Bulletin. 2014.

Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/
populationprojections/bulletins/nationalpopulationprojections/2015-10-29) (accessed on 15 June 2018).

41. National Bureau of Statistics of China (NBSC). China Statistical Yearbook 2016; National Bureau of Statistics
Press: Beijing, China, 2016.

42. Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water
quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362.
[CrossRef]

43. Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J.D. Flash flood forecasting, warning and risk management:
The HYDRATE project. Environ. Sci. Policy 2011, 14, 834–844. [CrossRef]

44. Grillakis, M.G.; Koutroulis, A.G.; Komma, J.; Tsanis, I.K.; Wagner, W.; Blöschl, G. Initial soil moisture effects
on flash flood generation—A comparison between basins of contrasting hydro-climatic conditions. J. Hydrol.
2016, 541, 206–2017. [CrossRef]

45. Zhang, J.; Yu, Z.; Yu, T.; Si, J.; Feng, Q.; Cao, S. Transforming flash floods into resources in arid China.
Land Use Policy 2018, 76, 746–753. [CrossRef]

46. United Nations Office for Disaster Risk Reduction (UNISDR). Living with Risk a Global Review of Disaster
Reduction Initiatives, 2004th ed.; United Nations Publications: New York, NY, USA, 2004.

47. Spiekermann, R.; Kienberger, S.; Norton, J.; Briones, F.; Weichselgartner, J. The Disaster-Knowledge
Matrix—Reframing and evaluating the knowledge challenges in disaster risk reduction. Int. J. Disaster
Risk Reduct. 2015, 13, 96–108. [CrossRef]

48. Weichselgartner, J.; Pigeon, P. The Role of Knowledge in Disaster Risk Reduction. Int. J. Disaster Risk Sci.
2015, 6, 107–116. [CrossRef]

49. Hunt, D.P. The concept of knowledge and how to measure it. J. Intellect. Cap. 2003, 4, 100–113. [CrossRef]
50. United Nations Development Programme. Energy and the Challenge of Sustainability; United Nations

Development Programme: New York, NY, USA, 2000.
51. The Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters

to Advance Climate Change Adaptation. Special Report of the Intergobernmental Panel on Cimate Change;
Cambridge University Press: New York, NY, USA, 2012.

52. United Nations Development Programme (UNDP) and Regional Crisis Prevention and
Recovery Programme. Strengthening Capacities for Disaster Risk Reduction, A Primer.
2008. Available online: https://www.preventionweb.net/files/globalplatform/entry_bg_paper~
strengtheningcapacityfordrraprimerfullreport.pdf (accessed on 30 August 2017).

53. Unidad Nacional Para la Gestión del Riesgo de Desastres (UNGRD) and Programa de las Naciones Unidas
Para el Desarrollo (PNUD). Guía Metodológica Para la Elaboración de Planes Departamentales Para la
Gestión del Riesgo. 2012. Available online: http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/
20871?show=full (accessed on 3 August 2017).

54. Surjan, A.; Sharma, A.; Shaw, R. Understandig Urban resilience. In Community, Environment and Disaster Risk
Management; Shaw, A.S.R., Ed.; Emerald: Bingley, UK, 2011; pp. 17–45.

55. International Strategy for Disaster Reduction (ISDR) and German Committee for Disaster Reduction.
Developing Early Warning Systems: A Checklist. In Proceedings of the Third International Conference on
Early Warning (EWC III), Bonn, Germany, 27–29 March 2006; pp. 1–13.

56. Fakhruddin, S.H.M.; Kawasaki, A.; Babel, M.S. Community responses to flood early warning system:
Case study in Kaijuri Union, Bangladesh. Int. J. Disaster Risk Reduct. 2015, 14, 323–331. [CrossRef]

57. Balis, B.; Kasztelnik, M.; Bubak, M.; Bartynski, T.; Gubał, T.; Nowakowski, P.; Broekhuijsen, J. The UrbanFlood
common information space for early warning systems. Procedia Comput. Sci. 2011, 4, 96–105. [CrossRef]

58. Krzhizhanovskaya, V.V.; Shirshov, G.S.; Melnikova, N.B.; Belleman, R.G.; Rusadi, F.I.; Broekhuijsen, B.J.;
Gouldby, B.P.; Lhomme, J.; Balis, B.; Bubak, M.; et al. Flood early warning system: Design, implementation and
computational modules. Procedia Comput. Sci. 2011, 4, 106–115. [CrossRef]

59. Chang, C.L.-H.; Lin, T.-C. The role of organizational culture in the knowledge management process.
J. Knowl. Manag. 2015, 19, 433–455. [CrossRef]

60. Mark, O.; Weesakul, S.; Apirumanekul, C.; Boonya-Aroonet, S.; Djordjević, S. Potential and limitations of 1D
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