Intrinsic Sensing Properties of Chrysotile Fiber Reinforced Piezoelectric Cement-Based Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of PZT Nanoscale Powders, PZT Wafer, and PZTCC Composite
2.3. Characterization of PZT Nanoscale Powders, PZT Wafer, and PZTCC Composite
3. Results and Disscussion
3.1. The Crystalline Structures of PZT and PZTCC Composite
3.2. Microstructure and Piezoelectric Coefficient of PZT and PZTCC Composite
3.3. Microhardness Toughness Properties of PZTCC Composite
3.4. Piezoelectric Sensing Properties of PZTCC Wafer
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
PZT | Lead-zirconate-titanate |
XRD | X-ray powder diffraction |
SEM | Scanning electronic microscopy |
OP | Optical microscope |
CSF | Chrysotile Fiber |
SHM | Structural health monitoring |
PZTCC | PZT/CSF/cement composite |
d33 | Piezoelectric coefficient |
ef | Repeatability |
UF.S | Full-scale output of electricity (U) |
Δmax | Maximum deviation between U- force (F) curve and the linear fitting line |
Δ′max | Maximum deviation in forward and reverse stroke of U-F curve |
References
- Han, B.; Yu, X.; Ou, J. Self-Sensing Concrete in Smart Structures; Butterworth-Heinemann, Elsevier Science: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Yi, J.H.; Kim, D.; Feng, M.D. Periodic seismic performance evaluation of highway bridges using structural health monitoring system. Struct. Eng. Mech. 2009, 31, 527–544. [Google Scholar] [CrossRef]
- Li, X.X.; Ren, W.X.; Bi, K.M. FBG force-testing ring for bridge cable force monitoring and temperature compensation. Sens. Actuators A Phys. 2015, 223, 105–113. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 2016, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.W.; Chung, D.D.L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Mater. Struct. 1993, 2, 22–33. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.D.L. Model of piezoresitivity in carbon fiber cement. Cem. Concr. Res. 2006, 36, 1879–1885. [Google Scholar] [CrossRef]
- Azhari, F.; Banthia, N. Cement-based sensors with carbon fibers and carbon nanotubes for peizoresistive sensing. Cem. Concr. Compos. 2012, 34, 866–873. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.G.; Ou, J.P. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites. Cem. Concr. Compos. 2006, 28, 824–828. [Google Scholar] [CrossRef]
- Xiao, H.G.; Liu, M.; Wang, G.J. Anisotropic electrical and abrasion-sensing properties of cement-based composites containing aligned nickel powder. Cem. Concr. Compos. 2018, 87, 130–136. [Google Scholar] [CrossRef]
- Han, B.G.; Han, B.Z.; Ou, J.P. Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity. Sens. Actuators A Phys. 2009, 149, 51–55. [Google Scholar] [CrossRef]
- Lan, C.M.; Xiao, H.G.; Liu, M.; Wang, G.J.; Ma, M.L. Improved piezoresistivity of cement-based composites filled with aligned nickel powder. Smart Mater. Struct. 2018, 27, 095003. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xiao, H.G.; Ou, J.P. A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem. Concr. Res. 2004, 34, 435–438. [Google Scholar] [CrossRef]
- Ruan, Y.F.; Han, B.G.; Yu, X.; Zhang, W.; Wang, D.N. Carbon nanotubes reinforced reactive powder concrete. Compos. Part A Appl. Sci. Manuf. 2018, 112, 371–382. [Google Scholar] [CrossRef]
- Schumacher, T.; Thostenson, E.T. Development of structural carbon nanotube–based sensing composites for concrete structures. J. Intell. Mater. Syst. Struct. 2014, 25, 1331–1339. [Google Scholar] [CrossRef]
- Camacho-Ballesta, C.; Zornoza, E.; Garcés, P. Performance of cement-based sensors with CNT for strain sensing. Adv. Cem. Res. 2016, 28, 274–284. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, A.; Rallini, M.; Ubertini, F.; Materazzi, A.L.; Kenny, J.M. Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cem. Concr. Compos. 2016, 65, 200–213. [Google Scholar] [CrossRef]
- Meoni, A.; D’Alessandro, A.; Downey, A.; García-Macías, E.; Rallini, M.; Materazzi, A.L.; Torre, L.; Laflamme, S.; Castro-Triguero, R.; Ubertini, F. An experimental study on static and dynamic strain sensitivity of embeddable smart concrete sensors doped with carbon nanotubes for SHM of large structures. Sensors 2018, 18, 831. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.L.; Chung, K.L.; Li, Q.Y.; Chen, S.J.; Li, L.; Hou, D.S.; Zhang, C.W. Piezoresistive properties of cement composites reinforced by functionalized carbon nanotubes using photo-assisted Fenton. Smart Mater. Struct. 2017, 26, 035025. [Google Scholar]
- Konsta-Gdoutos, M.S.; Aza, C.A. Self-sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 2014, 53, 110–128. [Google Scholar] [CrossRef]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garces, P. Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 2014, 46, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Gao, R.D.; Tam, V.W.Y.; Li, W.G.; Xiao, J.Z. Strain monitoring for a bending concrete beam by using piezoresistive cement-based sensors. Constr. Bulid. Mater. 2018, 167, 338–347. [Google Scholar] [CrossRef]
- Han, B.G.; Yu, X.; Ou, J.P. Effect of water content on the piezoresistivity of MWNT/cement composites. J. Mater. Sci. 2010, 45, 3714–3719. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, I.S.; Lee, H.K. Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio. Compos. Struct. 2014, 116, 713–719. [Google Scholar] [CrossRef]
- Proto, A.; Penhaker, M.; Bibbo, D.; Vala, D.; Conforto, S.; Schmid, M. Measurements of generated energy/electrical quantities from locomotion activities using piezoelectric wearable sensors for body motion energy harvesting. Sensors 2016, 16, 524. [Google Scholar] [CrossRef] [PubMed]
- Kozielski, L.; Erhart, J.; Clemens, F.J. Light-intensity-induced characterization of elastic constants and d33 piezoelectric coefficient of PLZT single fiber based transducers. Sensors 2013, 13, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Wang, H.; Wang, T.; Liu, G.; Li, Y.; Song, G.B. Dynamic cooperative identification based on synergetic for pipe structural health monitoring with piezoceramic transducers. Smart Mater. Struct. 2013, 22, 045003. [Google Scholar] [CrossRef]
- Jaitanong, N.; Yimnirun, R.; Zeng, H.R.; Li, G.R.; Yin, Q.R.; Chaipanich, A. Piezoelectric properties of cement based/PVDF/PZT composites. Mater. Lett. 2014, 130, 146–149. [Google Scholar] [CrossRef]
- Wang, D.; Song, H.; Zhu, H. Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer. Smart Mater. Struct. 2014, 23, 115019. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Du, G.F.; Song, G.B. Damage detection of L-shaped concrete filled steel tube (L-CFST) columns under cyclic loading using embedded piezoceramic transducers. Sensors 2018, 18, 2171. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Zhang, D.; Wu, K.R. Cement-based 0–3 piezoelectric composites. J. Am. Ceram. Soc. 2002, 85, 305–313. [Google Scholar] [CrossRef]
- Dong, B.Q.; Li, Z.J. Cement-based piezoelectric ceramic smart composites. Compos. Sci. Technol. 2005, 65, 1363–1371. [Google Scholar] [CrossRef]
- Li, Z.J.; Dong, B.Q.; Zhang, D. Influence of polarization on properties of 0–3 cement-based PZT composites. Cem. Concr. Compos. 2005, 27, 27–32. [Google Scholar] [CrossRef]
- Lan, K.H.; Chan, H.L.W. Piezoelectric cement-based 1–3 composites. Appl. Phys. A 2005, 81, 1451–1454. [Google Scholar]
- Huang, S.F.; Chang, J.; Lu, L.C.; Chen, X. Preparation and polarization of 0–3 cement-based piezoelectric composites. Mater. Res. Bull. 2006, 41, 291–297. [Google Scholar] [CrossRef]
- Chaipanich, A. Dielectric and piezoelectric properties of PZT-silica fume cement composites. Curr. Appl. Phys. 2007, 7, 532–536. [Google Scholar] [CrossRef]
- Jaitanong, N.; Chaipanich, A.; Tunkasiri, T. Properties 0–3 PZT-Portland cement composites. Ceram. Int. 2008, 34, 793–795. [Google Scholar] [CrossRef]
- Chaipanich, A.; Rianyoi, R.; Potong, R.; Jaitanong, N. Aging of 0–3 piezoelectric PZT ceramic–Portland cement composites. Ceram. Int. 2014, 40, 13579–13584. [Google Scholar] [CrossRef]
- Li, Z.J.; Gong, H.Y.; Zhang, Y.J. Fabrication and piezoelectricity of 0–3 cement based composite with nano-PZT powder. Curr. Appl. Phys. 2009, 9, 588–591. [Google Scholar] [CrossRef]
- Gong, H.Y.; Zhang, H.Y.; Che, S.W. Influence of carbon black on properties of PZT-cement piezoelectric composites. J. Compos. Mater. 2010, 44, 2547–2557. [Google Scholar]
- Pan, H.H.; Chiang, C.K. Effect of aged binder on piezoelectric properties of cement-based piezoelectric composites. Acta Mech. 2014, 225, 1287–1299. [Google Scholar] [CrossRef]
- Pan, H.H.; Lin, D.H.; Yang, R.H. High piezoelectric and dielectric properties of 0-3 PZT/cement composites by temperature treatment. Cem. Concr. Compos. 2016, 72, 1–8. [Google Scholar] [CrossRef]
- Luo, J.L.; You, C.L.; Zhang, S.; Chung, K.L.; Li, Q.Y.; Hou, D.S.; Zhang, C.W. Numerical analysis and optimization on piezoelectric properties of 0–3 type piezoelectric cement-based materials with interdigitated electrodes. Appl. Sci. 2017, 7, 233. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhang, Y.M.; Li, Z.J. Ultrasonic monitoring of setting and hardening of slag blended cement under different curing temperatures by using embedded piezoelectric transducers. Constr. Bulid. Mater. 2018, 159, 553–560. [Google Scholar] [CrossRef]
- Xu, K.; Deng, Q.S.; Cai, L.J.; Ho, S.C.; Song, G.B. Damage detection of a concrete column subject to blast loads using embedded piezoceramic transducers. Sensors 2018, 18, 1377. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.M.; Wan, D.M.; Lee, S.E.; Wang, J. Mechanochemical synthesis of lead zirconate titanate from mixed oxides. J. Am. Ceram. Soc. 1999, 82, 1687–1692. [Google Scholar] [CrossRef]
- Brankovic, Z.; Brankovic, G.; Jovalekic, C.; Maniette, Y.; Cilense, M.; Varela, J.A. Mechanochemical synthesis of PZT powders. Mater. Sci. Eng. A 2003, 345, 243–248. [Google Scholar] [CrossRef]
- Sharma, P.K.; Ounaies, Z.; Varadan, V.V.; Varadan, V.K. Dielectric and piezoelectric properties of microwave sintered PZT. Smart Mater. Struct. 2001, 10, 878–883. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, L.; Cheng, Y.; Nan, C.W.; Zhao, S.J. Hydrothermal synthesis and characterization of nanocrystalline PZT powders. Mater. Lett. 2003, 57, 1675–1678. [Google Scholar] [CrossRef]
- Rao, K.R.M.; Rao, A.V.P.; Komarneni, S. Reactive PZT precursor powder by coprecipitation. Mater. Lett. 1996, 28, 463–467. [Google Scholar]
- Barrow, D.A.; Petroff, T.E.; Tandon, R.P.; Sayer, M. Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. J. Appl. Phys. 1997, 81, 876–880. [Google Scholar] [CrossRef]
- Mu, G.H.; Yang, S.Y.; Li, J.F.; Gu, M.Y. Synthesis of PZT nanocrystalline powder by a modified sol-gel process using water as primary solvent source. J. Mater. Process. Technol. 2007, 182, 382–386. [Google Scholar] [CrossRef]
- Xu, Z.J.; Chu, R.Q.; Li, G.R.; Shao, X.; Yin, Q.R. Preparation of PZT powders and ceramics via a hybrid method of sol–gel and ultrasonic atomization. Mater. Sci. Eng. B 2005, 117, 113–118. [Google Scholar] [CrossRef]
- Zheng, H.; Reaney, I.M.; Lee, W.E.; Jones, N.; Thomas, H. Effects of octahedral tilting on the piezoelectric properties of strontium/barium/niobium-doped soft lead zirconate titanate ceramics. J. Am. Ceram. Soc. 2002, 85, 2337–2344. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Podworny, J. Utilisation of cement-asbestos wastes by thermal treatment and the potential possibility use of obtained product for the clinker bricks manufacture. J. Mater. Sci. 2015, 50, 6757–6767. [Google Scholar] [CrossRef] [Green Version]
- Cross, W.M.; Sabnis, K.H.; Kjerengtroen, L.; Kellar, J.J. Microhardness testing of fiber-reinforced cement paste. ACI Mater. J. 2000, 97, 162–167. [Google Scholar]
Parameter | Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Mean |
---|---|---|---|---|---|
e | 25.94% | 3.04% | 2.86% | 2.41% | 2.42% |
16.08% | 2.18% | 2.01% | 2.02% | ||
k | 1.1751 | 1.5080 | 1.4973 | 1.5132 | 1.505 mV/N |
1.3844 | 1.5064 | 1.5049 | 1.5003 | ||
ef | 2.4% | 2.4% | 1.5% | 2.42% | 2.11% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Zhang, C.; Li, L.; Wang, B.; Li, Q.; Chung, K.L.; Liu, C. Intrinsic Sensing Properties of Chrysotile Fiber Reinforced Piezoelectric Cement-Based Composites. Sensors 2018, 18, 2999. https://doi.org/10.3390/s18092999
Luo J, Zhang C, Li L, Wang B, Li Q, Chung KL, Liu C. Intrinsic Sensing Properties of Chrysotile Fiber Reinforced Piezoelectric Cement-Based Composites. Sensors. 2018; 18(9):2999. https://doi.org/10.3390/s18092999
Chicago/Turabian StyleLuo, Jianlin, Chunwei Zhang, Lu Li, Baolin Wang, Qiuyi Li, Kwok L. Chung, and Chao Liu. 2018. "Intrinsic Sensing Properties of Chrysotile Fiber Reinforced Piezoelectric Cement-Based Composites" Sensors 18, no. 9: 2999. https://doi.org/10.3390/s18092999
APA StyleLuo, J., Zhang, C., Li, L., Wang, B., Li, Q., Chung, K. L., & Liu, C. (2018). Intrinsic Sensing Properties of Chrysotile Fiber Reinforced Piezoelectric Cement-Based Composites. Sensors, 18(9), 2999. https://doi.org/10.3390/s18092999