Quantifying Variation in Soybean Due to Flood Using a Low-Cost 3D Imaging System
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Plants
2.2. Development of a Low-Cost 3D Imaging System
2.3. Extraction of Image Features
2.4. Soybean Biomass
2.5. Data Analysis
3. Results
3.1. Evaluation of Sensor Measurement
3.2. Variation in Plant Development
3.3. Estimation of Biomass
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgment
Conflicts of Interest
References
- USDA-ERS. Oil Crops Outlook. 2018. Available online: www.ers.usda.gov (accessed on 5 April 2019).
- Wu, C.; Zeng, A.; Chen, P.; Florez Palacios, L.; Hummer, W.; Mokua, J.; Cheng, Y. An effective field screening method for flood tolerance in soybean. Plant Breed. 2017, 136, 710–719. [Google Scholar] [CrossRef]
- Ahmed, F.; Rafii, M.; Ismail, M.R.; Juraimi, A.S.; Rahim, H.; Asfaliza, R.; Latif, M. Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Res. Int. 2012, 1. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, T.; Pallardy, S. Effect of flooding on water, carbohydrate, and mineral relations. In Flooding and Plant Growth; Elsevier Inc.: Amsterdam, The Netherlands, 1984; pp. 165–193. [Google Scholar]
- Cox, M.C.; Millenaar, F.F.; van Berkel, Y.E.D.J.; Peeters, A.J.; Voesenek, L.A. Plant Movement Submergence-Induced Petiole Elongation inRumex palustris Depends on Hyponastic Growth. Plant Physiol. 2003, 132, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Heydarian, Z.; Sasidharan, R.; Cox, M.C.; Pierik, R.; Voesenek, L.A.; Peeters, A.J. A kinetic analysis of hyponastic growth and petiole elongation upon ethylene exposure in Rumex palustris. Ann. Bot. 2010, 106, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Laan, P.; Tosserams, M.; Blom, C.; Veen, B. Internal oxygen transport inRumex species and its significance for respiration under hypoxic conditions. Plant Soil 1990, 122, 39–46. [Google Scholar] [CrossRef]
- Nguyen, V.; Vuong, T.; VanToai, T.; Lee, J.; Wu, X.; Mian, M.; Nguyen, H. Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop. Sci. 2012, 52, 2481–2493. [Google Scholar] [CrossRef]
- Pathan, S.M.; Lee, J.D.; Sleper, D.A.; Fritschi, F.B.; Sharp, R.E.; Carter, T.E., Jr.; Shannon, J.G. Two Soybean Plant Introductions Display Slow Leaf Wilting and Reduced Yield Loss under Drought. J. Agron. Crop. Sci. 2014, 200, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Zeng, A.; Chen, P.; Hummer, W.; Mokua, J.; Shannon, J.G.; Nguyen, H.T. Evaluation and development of flood-tolerant soybean cultivars. Plant Breed. 2017, 136, 913–923. [Google Scholar] [CrossRef]
- An, N.; Palmer, C.M.; Baker, R.L.; Markelz, R.C.; Ta, J.; Covington, M.F.; Weinig, C. Plant high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf length and rosette area. Comput. Electron. Agric. 2016, 127, 376–394. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Chen, H.; Zhou, J.; Fu, X.; Ye, H.; Nguyen, H.T. Development of an automated phenotyping platform for quantifying soybean dynamic responses to salinity stress in greenhouse environment. Comput. Electron. Agric. 2018, 151, 319–330. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, X.; Zhou, S.; Zhou, J.; Ye, H.; Nguyen, H.T. Automated segmentation of soybean plants from 3D point cloud using machine learning. Comput. Electron. Agric. 2019, 162, 143–153. [Google Scholar] [CrossRef]
- O’Neal, M.E.; Landis, D.A.; Isaacs, R. An Inexpensive, Accurate Method for Measuring Leaf Area and Defoliation through Digital Image Analysis. J. Econ. Entomol. 2002, 95, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Paulus, S.; Dupuis, J.; Riedel, S.; Kuhlmann, H. Automated analysis of barley organs using 3D lasers canning: An approach for high throughput phenotyping. Sensors 2002, 14, 12670–12686. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Liu, Y.; Han, J.; Doonan, J. Accurate Multi-View Stereo 3D Reconstruction for Cost-Effective Plant Phenotyping; Springer: Cham, Switzerland, 2014; pp. 349–356. [Google Scholar]
- Liu, S.; Acosta-Gamboa, L.; Huang, X.; Lorence, A. Novel Low Cost 3D Surface Model Reconstruction System for Plant Phenotyping. J. Imaging 2017, 3, 39. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, L.; Yang, W.; Liu, M.; Jiang, N.; Wu, D.; Chen, G.; Xiong, L.; Liu, K.; Liu, Q. A High-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods 2017, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Song, L.; Chen, H.; Valliyodan, B.; Ali, L.; Vuong, T.; Wu, C.; Orlowski, J.; Buckley, B.; Cheng, P.; et al. A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant Cell Environ. 2018, 41, 2169–2182. [Google Scholar] [CrossRef] [PubMed]
- Striker, G.G. Flooding Stress on Plants: Anatomical, Morphological and Physiological Responses; Mworia, J., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0355-4. [Google Scholar]
- Zhou, J.; Fu, X.; Schumacher, L.; Zhou, J. Evaluating Geometric Measurement Accuracy Based on 3D Reconstruction of Automated Imagery in a Greenhouse. Sensors 2018, 18, 2270. [Google Scholar] [CrossRef]
- Fang, W.; Feng, H.; Yang, W.; Duan, L. High-throughput volumetric reconstruction for 3D wheat plant architecture studies. J. Innov. Opt. Health Sci. 2016, 9, 1650037. [Google Scholar] [CrossRef]
- Paulus, S.; Schumann, H.; Kuhlmann, H.; Léon, J. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants. Biosyst. Eng. 2014, 121, 1–11. [Google Scholar] [CrossRef]
- Githiri, S.M.; Watanabe, S.; Harada, K. QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed. 2006, 125, 613–618. [Google Scholar] [CrossRef]
- Oosterhuis, D.M.; Scott, H.D.; Hampton, R.E. Physiological responses of two soybean [Glycine max (L.) Merr] cultivars to short-term flooding. Environ. Exp. Bot. 1990, 30, 85–92. [Google Scholar] [CrossRef]
- Nanjo, Y.; Nakamura, T.; Komatsu, S. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. J. Proteome Res. 2013, 12, 4785–4798. [Google Scholar] [CrossRef] [PubMed]
- Rhine, M.D.; Stevens, G.; Shannon, G. Yield and nutritional responses to waterlogging of soybean cultivars. Irrig. Sci. 2018, 28, 135–142. [Google Scholar] [CrossRef]
- Sugimoto, H.; Koesmaryono, Y.; Nakano, R. Effects of Excess Moisture in the Soil at Different Stages of Development on the Growth and Seed Yield of Soybean. Pak. J. Biol. Sci. 2000, 3, 1465–1467. [Google Scholar] [CrossRef]
- Scott, H.D.; DeAngulo, J.; Wood, L.S. Influence of temporary flooding at three growth stages on soybeans grown on a clayey soil. J. Plant Nutr. 1990, 13, 1045–1071. [Google Scholar] [CrossRef]
Average Change Rate | Period | Group I | Group II | Group III | Group IV | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | std | Mean | std | Mean | std | Mean | std | ||
Plant height | 1 | 0.125a | 0.042 | 0.101ab | 0.027 | 0.064 b | 0.051 | 0.087 ab | 0.039 |
2 | 0.240 a | 0.047 | 0.170 b | 0.046 | 0.151 b | 0.067 | 0.179 b | 0.044 | |
3 | 0.318 a | 0.078 | 0.205 b | 0.049 | 0.201 b | 0.079 | 0.223 b | 0.057 | |
4 | 0.435 a | 0.107 | 0.281 b | 0.050 | 0.297 b | 0.079 | 0.272 b | 0.056 | |
Canopy width | 1 | 0.192 a | 0.136 | 0.175 a | 0.079 | 0.091 a | 0.128 | 0.170 a | 0.089 |
2 | 0.230 ab | 0.192 | 0.312 a | 0.092 | 0.155 b | 0.130 | 0.279 a | 0.093 | |
3 | 0.269 ab | 0.200 | 0.298 ab | 0.249 | 0.109 b | 0.163 | 0.331 ab | 0.123 | |
4 | 0.041 b | 0.225 | 0.462 a | 0.128 | −0.156 b | 0.198 | 0.366 a | 0.179 | |
Petiole length | 1 | 0.226 a | 0.099 | 0.257 a | 0.167 | 0.237 a | 0.070 | 0.211 a | 0.096 |
2 | 0.275 a | 0.114 | 0.429 a | 0.205 | 0.280 a | 0.118 | 0.339 a | 0.189 | |
3 | 0.292 b | 0.132 | 0.476 a | 0.189 | 0.280 b | 0.118 | 0.383 ab | 0.188 | |
4 | 0.328 b | 0.16 | 0.576 a | 0.250 | 0.294 b | 0.112 | 0.455 ab | 0.253 | |
Petiole angle | 1 | 0.131 a | 0.133 | 0.046 a | 0.110 | 0.168 a | 0.106 | 0.069 a | 0.184 |
2 | 0.629 a | 0.182 | -0.008 b | 0.126 | 0.636 a | 0.342 | 0.017 b | 0.259 | |
3 | 0.819 a | 0.238 | -0.004 b | 0.134 | 0.852 a | 0.339 | 0.028 b | 0.217 | |
4 | 0.898 a | 0.256 | 0.066 b | 0.200 | 0.936 a | 0.311 | 0.084 b | 0.204 |
Plant Number | Group 1 | Group 2 | Group 3 | Group 4 |
---|---|---|---|---|
1 | 8.17 | 12.61 | 5.57 | 11.69 |
2 | 6.06 | 14.46 | 5.89 | 14.26 |
3 | 9.73 | 11.48 | 8.80 | 13.77 |
4 | 6.85 | 12.01 | 4.97 | 16.76 |
5 | 7.15 | 13.56 | 4.79 | 13.02 |
6 | 6.06 | 12.38 | 4.49 | 15.66 |
7 | 5.73 | 14.17 | 3.21 | 12.82 |
8 | 6.23 | 13.99 | 7.05 | 13.39 |
9 | 5.74 | 19.81 | 4.90 | 13.83 |
10 | 7.13 | 15.50 | 5.24 | 14.27 |
11 | 6.10 | 16.57 | 7.26 | 9.74 |
12 | 9.95 | 12.78 | 6.79 | 11.96 |
Mean | 7.05 b | 14.11 a | 5.75 b | 13.43 a |
Source | DF * | Adj SS * | Adj MS * | F-Value | p-Value | VIF * |
---|---|---|---|---|---|---|
Regression | 4 | 591.0 | 147.7 | 29.20 | 0.000 | -- |
Plant height | 1 | 0.0 | 0.0 | 0.00 | 0.947 | 1.77 |
Canopy width | 1 | 74.6 | 74.6 | 14.75 | 0.000 | 2.59 |
Petiole length | 1 | 0.0 | 0.0 | 0.00 | 0.951 | 2.10 |
Petiole angle | 1 | 62.1 | 69.2 | 13.68 | 0.001 | 2.22 |
Error | 43 | 217.6 | 5.1 | |||
Total | 47 | 808.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Zhou, J.; Yuan, Y.; Ye, H.; Nguyen, H.T.; Chen, J.; Zhou, J. Quantifying Variation in Soybean Due to Flood Using a Low-Cost 3D Imaging System. Sensors 2019, 19, 2682. https://doi.org/10.3390/s19122682
Cao W, Zhou J, Yuan Y, Ye H, Nguyen HT, Chen J, Zhou J. Quantifying Variation in Soybean Due to Flood Using a Low-Cost 3D Imaging System. Sensors. 2019; 19(12):2682. https://doi.org/10.3390/s19122682
Chicago/Turabian StyleCao, Wenyi, Jing Zhou, Yanping Yuan, Heng Ye, Henry T. Nguyen, Jimin Chen, and Jianfeng Zhou. 2019. "Quantifying Variation in Soybean Due to Flood Using a Low-Cost 3D Imaging System" Sensors 19, no. 12: 2682. https://doi.org/10.3390/s19122682