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Abstract: According to the existing mainstream automatic parking system (APS), a parking path
is first planned based on the parking slot detected by the sensors. Subsequently, the path tracking
module guides the vehicle to track the planned parking path. However, since the vehicle is non-linear
dynamic, path tracking error inevitably occurs, leading to inclination and deviation of the parking.
Accordingly, in this paper, a reinforcement learning-based end-to-end parking algorithm is proposed
to achieve automatic parking. The vehicle can continuously learn and accumulate experience from
numerous parking attempts and then learn the command of the optimal steering wheel angle at
different parking slots. Based on this end-to-end parking, errors caused by path tracking can be
avoided. Moreover, to ensure that the parking slot can be obtained continuously in the process of
learning, a parking slot tracking algorithm is proposed based on the combination of vision and vehicle
chassis information. Furthermore, given that the learning network output is hard to converge, and it
is easy to fall into local optimum during the parking process, several reinforcement learning training
methods in terms of parking conditions are developed. Lastly, by the real vehicle test, it is proved
that using the proposed method can achieve a better parking attitude than using the path planning
and path tracking-based method.

Keywords: automatic parking system (APS); end-to-end parking; reinforcement learning; parking
slot tracking

1. Introduction

The average proportion of cars and parking slots in big cities is about 1:0.8, and that in small and
medium-sized cities is nearly 1:0.5, according to the data released by the National Development and
Reform Commission of China. The lack of parking space makes the designed parking slot increasingly
narrower. Accordingly, parking environment is becoming complex progressively, and the increasingly
higher requirement of the parking operation accuracy is raised, bringing great troubles to many drivers.
Automatic parking system (APS) can increase parking safety and utilization rate of parking slot, so it
has wide market application prospects.

However, the smaller size of the parking slot requires very high parking accuracy for APS. Take
the perpendicular parking slot as an example; it raises a higher demand of parking attitude for its
narrow width. The BS ISO 16787-2016 [1] stipulates that the perpendicular parking inclination angle of
APS should be confined within ±3◦, imposing huge challenges to the performance of APS.

The current mainstream APS architecture is a path planning and path tracking-based method.
To be specific, a parking path is first planned based on the parking slot detected by the sensors (e.g.,
camera and ultrasonic radar), and then the path tracking module controls the vehicle to track the
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planned parking path. However, since the vehicle is nonlinear dynamic, the control error of path
tracking is inevitable during the path tracking, leading to inappropriate parking attitude.

How can we avoid the path tracking error to ensure the ideal parking attitude? Let us think about
how humans park their cars. Actually, we directly turn the steering wheel according to the position of
the parking slot, which is an end-to-end parking mode. Moreover, as the number of parking increases,
we gain more experience, and parking is increasingly accurate. In fact, reinforcement learning is an
algorithm in which the agent gets the greatest reward in the process of interactive learning with the
environment, thus learning the optimal mapping from environment to action. Therefore, we try to
apply reinforcement learning to APS to improve the parking attitude.

1.1. Related Work

1.1.1. Mainstream APS

The mainstream APS first plans a parking path according to the parking slot detected by sensors.
Path planning can be split into geometric method, sampling method, and numerical optimization
method. The geometric method adopts Reeds–Shepp (RS) curve [2], B-spline curve [3], η3-splines [4],
and arcs optimized by cyclotron curve [5,6] to plan parking path based on the non-holonomic constraints
of the vehicle. The sampling method aims to spread the points evenly in the sampling space, filter
the points by a certain method, and connect the selected points into the required path, covering
Rapidly-exploring Random Tree (RRT) [7] and target bias RRT [8]. The numerical optimization method
is to consider the parking process as a dynamic system, and the length [9,10] or curvature [11,12] of
the parking path is the optimization goal of this dynamic system. The constraints of this dynamic
system include the non-holonomic constraints of the vehicle, the starting point, and the target location
of the parking.

After completing the path planning, the path tracking module of APS controls the vehicle to track
the planned parking path. Path tracking can be divided into Ackerman steering model-based open loop
control method and vehicle dynamics model-based closed loop control method. The Ackerman steering
model-based open loop control method considers that there is no tire sideslip, and vehicle satisfies
the non-holonomic constraints. The most typical one is the pure tracking control algorithm [13]. The
vehicle dynamics model-based closed loop control method considers tire sideslip. Feedforward control
is designed using the two-degree-of-freedom vehicle dynamics model, and closed-loop feedback
control is implemented by proportional-integral-differential (PID) algorithm [14,15] or sliding mode
control (SMC) algorithm [16,17]. In fact, no matter which control method is used, the control error of
the path tracking is inevitable since the vehicle is nonlinear dynamic [18,19], which makes the vehicle
unlikely to completely track the planned parking path. Though there have been studies to reduce the
path tracking error [20,21], the path tracking error cannot be eliminated.

1.1.2. Reinforcement Learning

As mentioned above, path planning and path tracking-based method may result in poor parking
attitude due to the inevitable control error (the experimental results in Section 3 also confirmed this).
Accordingly, we take the “human-like” parking mode based on reinforcement learning, which cannot
only avoid the error caused by path tracking through the end-to-end method of environment-to-action
but also continuously learn and accumulate experience from considerable parking attempts, as well
as learning the optimal steering wheel angle command at different parking slots relative to vehicle.
How to choose a suitable reinforcement learning method for APS? To answer this question, different
reinforcement learning methods are first reviewed.

Reinforcement learning mainly includes value-based method, policy-based method, and
Actor-Critic method.

The value-based method evaluates the cumulative expectation reward by the value function after
taking action and then chooses the action with the largest cumulative reward expectation [22]. Deep Q
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network (DQN) [23,24] is a typical value-based method. It is based on Q-learning and replaces Q-table
with deep neural network (DNN) to solve the problem that Q-learning is prone to dimension disasters
when state space is high-dimensional. However, value-based method makes value function continuous
and chooses action based on the value function of each action, so it is not suitable for continuous action
spaces (e.g., continuous steering wheel angle command for APS).

Compared with the value-based method, the policy-based method directly optimizes the policy
based on the sampling method and constantly calculates the gradient of the policy expectation reward
about the parameters of the policy network during the training process [25]. Though the policy-based
method is applicable to high-dimensional continuous action spaces, each iterative step should sample a
batch sequence to update the parameters, resulting in a large variance of the policy gradient estimation
and making it easy to fall into local optimum.

The Actor-Critic method, which combines the value-based method and the policy-based method,
adopts policy-based method to update the policy, and adopts the value function as the evaluation
method of the policy [26–28]. By introducing the value function as the evaluation criterion in the policy
search, the loss of sequential difference about the reward can be minimized, so that the variance of the
policy gradient estimation can be reduced effectively. Although Actor-Critic method can realize the
learning of continuous action space and can reduce the variance of the strategy gradient estimation,
it only has one actor network and one critic network, which easily leads to unstable training. Deep
Deterministic Policy Gradient (DDPG) algorithm [29,30] has made some improvements on the basis of
Actor-Critic method. On one hand, it creates target networks for actor network and critic network,
respectively, significantly enhancing the stability of learning. On the other hand, it uses experience
pool-based replay caching technology to cut off the data correlation.

As mentioned above, we believe that DDPG is applicable to APS for the following reasons: first,
Actor-Critic architecture can realize the learning of continuous action space (since the steering wheel
angle for APS is a continuous action). Second, introducing the value function as the evaluation criterion
in the policy search can reduce the variance of the policy gradient estimation, which is more efficient.
Lastly, DDPG creates target networks for actor network and critic network, respectively, which makes
it closer to the supervised learning and significantly enhance the stability of learning.

1.2. Objectives and Contributions

In brief, the current path planning and path tracking-based method cannot easily ensure the ideal
parking attitude, especially the perpendicular parking slot, for its narrow width, which requires a
higher demand for parking. To solve this problem, a reinforcement learning-based end-to-end parking
algorithm is proposed in this paper for perpendicular parking. The main contributions are as follows:

• We innovatively apply DDPG to perpendicular parking so that the vehicle can continuously
learn and accumulate experience from considerable parking attempts, learn the optimal steering
wheel angle command at different parking slots relative to vehicle, as well as achieve the real
“human-like” intelligent parking. Moreover, because it realizes the end-to-end control from the
parking slot to the steering wheel angle command, the control errors caused by path tracking are
fundamentally avoided;

• Since the parking slot needs to be continuously obtained in the course of learning, we propose a
parking slot tracking algorithm, which uses extended Kalman filter (EKF) to fuse the parking slot
information with vehicle chassis information to achieve continuous tracking of parking slot;

• Given that the learning network output is hard to converge and it is easy to fall into local optimum
in the parking process, several reinforcement learning training methods in terms of parking
conditions, e.g., manual guided exploration for accumulating initial experience sequence, control
cycle phased setting, and training condition phased setting, are designed. Besides, the well-trained
network in the simulation environment is migrated to the real vehicle training.
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1.3. Paper Outline

The rest of this paper is organized as follows. In Section 2, our reinforcement learning-based
end-to-end parking method is introduced. In Section 3, the experimental results are showed. In
Section 4, some discussions are contained. Lastly, this paper is concluded in Section 5.

2. Method

The overview of the proposed method is shown in Figure 1. It primarily includes two modules,
parking slot tracking and reinforcement learning-based planning. Parking slot tracking is used to
provide continuous position of parking slot for reinforcement learning, and reinforcement learning is
adopted to achieve end-to-end planning from the parking slot to steering wheel angle.
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2.1. Parking Slot Tracking

In this section, the parking slot detection is first introduced, followed by the EKF-based parking
slot tracking.

2.1.1. Parking Slot Detection

The sensors of surround view parking slot detection system are outfitted with four fisheye cameras
in the front, rear, left, and right positions of the vehicle, respectively, with 180◦ of FOV horizontally
and 140◦ of FOV vertically, as shown in Figure 2a.

The parking slot detection consists of two steps: one is to yield a surround view based on the
images taken by the four fisheye cameras; the other is to detect the corner points of parking slots using
the surround view. The flow chart is shown in Figure 2b.

For the generation of surround view, first, the distortion parameters of fisheye camera are
calculated by Zhang Zhengyou’s calibration method [31], and the mapping table TUF from undistorted
image coordinate system (CS) to fisheye image CS is yielded. Subsequently, based on the checkerboard
calibration site, the homography matrix MVU from vehicle CS to undistorted image CS is calculated
using the least square method. Lastly, after confirming the scope and the image size of the surround
view, the similarity transformation matrix MSV of surround view CS to vehicle CS is calculated. Four



Sensors 2019, 19, 3996 5 of 24

fisheye perspectives are joined into one surround view by the comprehensive mapping table TBF

constructed above. The whole process is illustrated in Figure 3.Sensors 2019, 19, x FOR PEER REVIEW 5 of 24 
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Figure 3. Surround view generation process.

The method proposed by Li et al. [32] is adopted to detect parking slot, which is an AdaBoost-based
slot detection method that detects parking slots from surround view. This method is primarily used to
detect common “L” and “T” corner points, as shown in Figure 4. The basic principle is to use Adaboost
algorithm and decision tree to design a binary classifier to detect corner point patterns. The input of
the classifier refers to an image patch, and the output is a Boolean value, indicating whether the input
local block is a corner pattern. Because of the limited FOV of surround view, the length of the parking
slot can be inferred following some prior rules after the detection of the corner points.
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The above analysis reveals that when detecting the corner points, the parking slot relative to the
vehicle can be calculated through coordinate transformation. However, we find that the parking slot is
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difficult to continuously identify by relying solely on the vision. For instance, the corner points of the
parking slot are sometimes not detected during parking due to image distortion, illumination change,
occlusion, as well as the limited FOV, as shown in Figure 5.Sensors 2019, 19, x FOR PEER REVIEW 6 of 24 
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2.1.2. EKF-Based Parking Slot Tracking

To track parking slot continuously and accurately, EKF is employed to achieve the fusion of
vision and vehicle chassis information. First, we take the position of the corner point of parking slot
relative to vehicle as the EKF’s observation, building the constraint relationship between the position
of vehicle and parking slot in the reference CS, i.e., the EKF’s observation model. Second, the vehicle
kinematics model is taken as the EKF’s motion model, and the steering wheel angle and velocity
obtained from vehicle chassis act as the EKF’s control input. Lastly, based on EKF’s “prediction” and
“update” process, the fusion is completed to achieve the maximum posterior estimation of parking slot
in the presence of noise.

The definition of CS and parameters is shown in Figure 6, where (x, y), ϕ and (xi, yi) are the
vehicle coordinates, vehicle heading angle and the i th corner points (i = 1 and 2 represent the left and
right corner point of parking slot, respectively) coordinates in the reference CS, respectively. (xvi, yvi)

obtained by parking slot detection system in Section 2.1.1 denotes the coordinates of the i th corner
point in the vehicle CS. Its distance from the center of the rear axle of the vehicle is ri, and its angle
relative to the axis of the vehicle CS is θi. ri and θi can be derived from the Equation (1).

θi(k) = arctan
(

yvi(k)
xvi(k)

)
ri(k) =

√
xvi(k)

2 + yvi(k)
2

(1)
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The state variable of EKF is X = (x, y,ϕ, xi, yi)
T, and its covariance matrix of the error is denoted

as P. The observed variable of the system is expressed as Z = (ri,θi)
T.

The discrete observation model is expressed as Equation (2),

Z(k) = h(X(k)) + ϑ(k)
√√√

(xi(k) − x(k))2 + (yi(k) − y(k))2

arctan
(

yi(k)−y(k)
xi(k)−x(k)

)
−ϕ(k)

+ ϑ(k)
(2)

where ϑ(k) denotes the noise of parking slot detection system, assuming a Gaussian distribution; its
covariance matrix is R.

According to the Ackerman steering model of the vehicle, the discrete motion model can be
expressed as Equation (3),

X(k) = f (X(k− 1), U(k)) + w(k)

=



x(k− 1) + Tv(k)cosϕ(k)
y(k− 1) + Tv(k)sinϕ(k)

ϕ(k− 1) + Tv(k) tan(δ(k)/i0)
L

xi(k− 1)
yi(k− 1)


+ w(k)

(3)

where δ denotes the steer wheel angle; v the velocity; δ and v can be obtained directly from the vehicle
chassis; i0 the steering gear ratio; L the wheelbase; T the period; w(k) the noise of the motion model,
assumed to be Gaussian noise, and its covariance matrix is expressed as Q.

EKF can be split into two steps (prediction and update). First, the system state and its error
covariance matrix at the k th iteration time are predicted, as expressed in Equation (4),

X̂(k)− = f
(
X̂(k− 1), U(k)

)
P(k)− = F(k)P(k− 1)F(k)T + Q

(4)

where F(k) denotes the Jacobian of function f (X(k), U(k)) with respect to X(k).
Subsequently, it is the update process. First, the Kalman gain K(k) is calculated, which is the

key to the maximum posteriori estimation of X(k) in the presence of noise, as shown in Equation (5).
Second, X(k) and P(k) are updated by K(k), as expressed in Equation (6),

K(k) = P(k)−H(k)T
(
H(k)P(k)−H(k)T + R

)−1
(5)

X̂(k) = X̂(k)− + K(k)
[
Z(k) −H(k)X̂(k)−

]
P(k) = (I −K(k)H(k))P(k)−

(6)

where H(k) is the Jacobian of function h(X(k)) with respect to X(k).
Equation (6) reveals that K(k) helps fuse the vision and vehicle chassis information, and the

updated X̂(k) is calculated by K(k) in the presence of noise, satisfying the maximum posterior estimate
of X(k). Accordingly, EKF-based fusion is more accurate than relying solely on vision detection.
Moreover, X(k) is continuous because the vehicle chassis information continues to be inputted. Thus,
the continuous and accurate position of the parking slot relative to the vehicle can be derived from
the above.

2.2. Reinforcement Learning-Based Planning

In this section, reinforcement learning is adopted to achieve end-to-end planning from the parking
slot to steering wheel angle. We first introduce the appropriate reinforcement learning model for APS,
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followed by the system settings and training process of DDPG, and finally the improved training
measures applied in parking.

2.2.1. Appropriate Reinforcement Learning Model for APS

The basic process of reinforcement learning is a Markov decision-making process, which can be
expressed by the quaternion {S, A, P, R} composed of state S, action A, state transition probability P
and reward R.

When a policy π is executed at time t, cumulative reward Gt can be calculated:

Gt = Rt + γRt+1 + γ2Rt+2 + · · · =
∑
k=0

γkRt+k+1 (7)

where γ is the discount factor, which is used to reduce the reward weight corresponding to the
long-term decision.

The action value function Qπ(s, a) is the expectation of the cumulative reward Gt after taking
action a at the current state s, as expressed in Equation (8).

Qπ(s, a) = Eπ[Gt
∣∣∣St = s, At = a] (8)

The action valued function Qπ(s, a) satisfies the Bellman equation (Equation (9)), which transforms
the solution of Qπ(s, a) into an iterative process of dynamic programming.

Qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)
∣∣∣St = s, At = a] (9)

The goal of reinforcement learning is to find an optimal policy for obtaining the maximum Q∗(s, a),
as shown in the following equation.

Q∗(s, a) = max
π

Qπ(s, a) (10)

According to the different optimization objects, reinforcement learning methods can be divided
into value-based method, policy-based method, and Actor-Critic method.

• Value-based method

Q-learning is a basic value-based method. Q-learning first chooses action a according to Q value at
the current state s in each step of the cycle (e.g., using ε− greedy method: 1− ε probability of selecting
action argmax

a
Q(s, a), ε probability of randomly selecting action). After the selected action is taken, the

immediate reward R and the next state s′ are observed, and then Q(s, a) is updated, as expressed in
Equation (11). Repeat the process until the final state is reached,

Q(s, a)← Q(s, a) + α
[
R + γ max

a
Q(s′, a) −Q(s, a)

]
(11)

where α is the learning rate.
DQN replaces Q-table with DNN with parameter w (Equation (12)) to solve the problem that

Q-learning is prone to dimension disasters when state space is high-dimensional.

Qw(s, a) ≈ Q(s, a) (12)

The updating objective of Qw(s, a) is to minimize the mean square deviation of the objective
value Qπ(s, a) and the actual value Qw(s, a), as shown in Equation (13). If gradient descent method is
used, the gradient ∇w J(w) of the objective function J(w) relative to the parameter w is first calculated,
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and then the parameter w changes along the opposite direction of the gradient ∇w J(w), as shown in
Equation (14),

J(w) = Eπ
[
(Qπ(s, a) −Qw(s, a))2

]
(13)

w← w + α∇w J(w) = w + α[R + γQw(s′, a′) −Qw(s, a)]∇Qw(s, a) (14)

where Qπ(s, a) can be solved by temporal-difference method, i.e., Qπ(s, a) = R + γQw(s′, a′).
Since the action space of the value-based method is discrete, it is not suitable for the continuous

action space of parking control. Though the continuous action space can be discretized, too large
discrete spacing will lead to the algorithm not getting the optimal action, and too small discrete spacing
will lead to dimension disaster.

• Policy-based method

The policy-based method directly optimizes the policy based on the sampling method, and
constantly calculates the gradient ∇θ J(θ) of the policy expectation reward J(θ) about the policy
parameter θ during the training process, as expressed in Equations (15) and (16),

J(θ) = Eπθ [R] =
∑
s∈S

dπ(s)
∑
a∈A

πθ(s, a)Rs,a (15)

∇θ J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(s, a)∇θlogπθ(s, a)Rs,a = Eπθ [∇θlogπθ(s, a)Rs,a] (16)

where πθ(s, a) is the policy of action selection, which represents the probability of choosing action a
under the state s; dπ(s) is the static distribution of the state s under the policy π.

If the Monte Carlo policy gradient algorithm is used, the iteration equation of the policy parameter
θ is as follows:

θ← θ+ α∇θ logπθ(s, a)v (17)

where v is equal to the cumulative reward Gt of the current step minus the average cumulative reward
(1/T)

∑T
t=1 Gt, i.e., if the action gets better evaluation than before and v is positive, it will increase the

probability of this action being selected.
Though the policy-based method is applicable to high-dimensional continuous action spaces, each

iterative step should sample a batch sequence to update the parameters, resulting in a large variance of
the policy gradient estimation and making it easy to fall into local optimum.

• Actor-Critic method

The Actor-Critic method, which combines the value-based method and the policy-based method,
consists of two updating processes: The critic network is responsible for updating the network
parameters of the action value function, observing the action and reward, and evaluating the policy.
The actor network is responsible for updating the actor network parameters according to the guidance
of the critic networks. By introducing the value function as the evaluation criterion in the policy search,
the loss of sequential difference about the reward can be minimized so that the variance of the policy
gradient estimation can be reduced effectively.

Although Actor-Critic method can realize the learning of continuous action space and can reduce
the variance of the policy gradient estimation, it only has one policy network and one critic network,
which easily leads to unstable training.

In order to solve this problem, DDPG constructs the target network with parameter θ′, which is
used to calculate the target value. The target network is adopted to track the actor network and critic
network slowly to update the parameter θ′, as expressed in Equation (18). This means that the target
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value is limited to slow change, which greatly improves the stability of learning. This improvement
brings the reinforcement learning closer to supervised learning.

θ′ ← τθ+ (1− τ)θ′, τ ≤ 1 (18)

In addition, a challenge in reinforcement learning using neural networks is that most optimization
algorithms assume that the samples are independent and identically distributed. Obviously, this
assumption is no longer valid when the samples are sequentially explored in the environment. DDPG
uses a finite size experience pool to cut off the data correlation. The experience sequence is sampled
from the environment according to the exploratory strategy, and the tuples are stored in the experience
pool. When the experience pool is full, discard the oldest sample. At each time step, the actor network
and critic network are updated by uniformly sampling small batches from the experience pool.

As mentioned above, we believe that DDPG is applicable to APS for the following reasons: First,
Actor-Critic architecture can realize the learning of continuous action space (since the steering wheel
angle for APS is a continuous action). Second, introducing the value function as the evaluation criterion
in the policy search can reduce the variance of the policy gradient estimation, which is more efficient.
Third, DDPG creates target networks for actor network and critic network, respectively, which makes
it closer to the supervised learning and significantly enhances the stability of learning. Lastly, the
experience pool is adopted to cut off the data correlation.

2.2.2. System Settings of DDPG

In this section, we mainly introduce the system settings of DDPG, including input and output,
reward and network.

• Input and output

The input state s of DDPG refers to the parking slot relative to the vehicle, i.e., the coordinates
of the four corner points in the vehicle CS. The output action a of DDPG is the steering wheel angle,
capable of controlling the vehicle backing into the parking slot.

• Reward

At present, the reward of reinforcement learning mainly depends on expert experience. The
goal of proposed algorithm is to make the vehicle parked in the middle of the parking slot, avoiding
inclination, deviation, and line-pressing. We take these factors into consideration and through a large
number of simulation training get a better reward setting as shown in Equations (19) to (24).

The total reward R consists of three parts, as expressed in Equation (19). The first part Rcp considers
the reward that the vehicle tends to the center of the parking slot, and vehicle longitudinal axis parallels
to the parking slot. The second part Pl and the last part Pd consider the punishment of line-pressing
and the punishment of the vehicle’s deviation to one side of the parking slot, respectively.

R = Rcp + Pl + Pd (19)

As shown in Figure 7a, when the rear axle center of the vehicle is outside the outer line of the
parking slot, Pcp is defined as:

Pcp = Pc + Pp

=
(
5− 5

(
1
2 abs

(
Yp0 + Yp1

)
+ 1

2 abs
(
Yp2 + Yp3

)))
+

(
5− 5abs

(
Yp0−Yp3
Xp0−Xp3

)) (20)

where Pc denotes the reward for the vehicle to be close to the center of the parking slot; Pp the reward
for the vehicle’s longitudinal axis parallel to the parking slot; (X, Y) the coordinates of the corner
points (P0 − P3 in Figure 7) of the parking slot in the vehicle CS.
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As shown in Figure 7b, when the rear axle center of the vehicle crosses the outer line of the parking
slot, Rcp is defined as:

Rcp = min
{
Rc, Rp

}
+

1
2

max
{
Rc, Rp

}
+ Rn (21)

The reason why the larger values in Rc and Rp are reduced is to prevent falling into one better and
conceal the worse performance of the other, so more attention is paid to the worse performance of
the two. Besides, when the vehicle enters the parking slot, we pay more attention to the parallelism
between the vehicle and the parking slot. Accordingly, a reward Rn is set, which is expressed in
Equation (22). It is limited to a value of less than 10 to avoid covering other rewards.

Rn = abs(
1
10

min
{

1/abs
(

Yp0 −Yp3

Xp0 −Xp3

)
+ eps

)
, 100})) (22)

If any outer contour boundary of the vehicle intersects with the parking slot lines, it is considered a
line-pressing, Pl is defined as:

Pl = −10 (23)

If the vehicle is biased towards one side of the parking slot, Pd is defined as:

Pd = −10 (24)

• Network

The input of our network is not the image but the result of the parking slot detection. Thus,
the deep neural networks are not necessarily required to be used. For actor network and critic
network of DDPG, we just use back propagation neural network in this paper. Besides, we build
the target network with an identical structure but different parameters for actor network and critic
network and the relationship between network parameter θ and its target network parameters θ′ is
θ′ ← τθ+ (1− τ)θ′, τ� 1 , significantly enhancing the stability of learning.

The structure of actor network and target actor network is illustrated in Figure 8. The number of
nodes for the coordinates of four corner points is 8, and the number of nodes in hidden layer la1 and
hidden layer la2 is 100 and 200, respectively. Then, the number of nodes for steering wheel angle is 1.
All activation functions are Rectified Linear Unit (ReLU).

The structure of critic network and target critic network is shown in Figure 9. The number of
nodes for the coordinates of four corner points is 8, and the number of nodes in hidden layer ls1 and
hidden layer ls2 are both 100. The number of nodes for steering wheel angle is 1, and the number of
nodes in hidden layer lc1 is 200. Subsequently, the number of nodes in hidden layer l1 and hidden
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layer l2 is 300 and 200, respectively. Lastly, the number of nodes for reward is l. All activation functions
are also ReLU.
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2.2.3. Training Process of DDPG

First, the training is conducted in the simulation environment. The simulation platform is shown
in Figure 10. We use PreScan, MATLAB/Simulink, and Python in sequence to build the parking
environment, build the vehicle model, and then run our algorithm, respectively. After the simulation
training, the well-trained network migrates to the real vehicle training. In Section 3, the real vehicle
platform will be introduced.

The training architecture of DDPG is shown in Figure 11, and the corresponding training process
is shown in Algorithm 1.
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Algorithm 1: DDPG Algorithm

Randomly initialize critic network Q
(
s, a/θQ

)
and actor network µ(s/θµ) with parameters θQ and θµ

Initialize target critic network Q′ and target actor network µ′ with parameters θQ′ and θµ
′

Set up a replay memory buffer (experience pool) for the sampling experience sequence with the total number
of buffers M
for each episode:
Initialize a random process for action exploration
Receive initial state s1
for t = 1, T:

1. Select action at according to the current policy and exploration noise:

at = µ(st/θµ) + Nt

where Nt denotes Gaussian noise.
2. Execute action at and obtain the reward rt and the next state st+1

3. Store the transition (st, at, rt, st+1) in the experience pool
4. Randomly sample N experience sequences from experience pool as a mini-batch training data for the

critic network and actor network
5. This step is adopted to update the parameters of the critic network. With a method similar to supervised

learning, loss is defined as:

L =
1
N

∑
i

(
yi −Q

(
si, ai/θQ

))2

where yi is calculated based on µ′ and Q′:

yi = Ri + γQ′
(
si+1,µ′

(
si+1/θµ

′
)
/θQ′

)
Calculate the gradient ∇θQ L, and then update θQ with gradient descent method:

θQ = θQ + α ∇θQ L

where α is the learning rate.
6. After the critic network is updated, the actor network is updated using the policy gradient method:

∇θµ J ≈
1
N

∑
i

∇aQ
(
s, a/θQ

)
/s=si,a=µ(si)∇θµµ(s/θµ)/si

Update θµ with ∇θµ J based on gradient descent method:

θµ = θµ + α∇θµ J

7. Update the target networks:
θQ′
← τθQ + (1− τ)θQ′

θµ
′

← τθµ + (1− τ)θµ
′

end for
end for

2.2.4. Improved Training Measures Applied in Parking

Given that the learning network output is hard to converge and it is easy to fall into local optimum
in the parking process, several reinforcement learning training methods in terms of parking conditions
are designed.

• Manual guided exploration for accumulating initial experience sequence



Sensors 2019, 19, 3996 14 of 24

Before the training of network, exploration should be conducted to gain the initial experience
sequence database. In the initialization stage, instead of random exploration, we conduct manual
guidance on exploration, which is realized by setting a series of control commands for the initial
parking slot relative to the vehicle (the driver’s control sequence is collected in the simulation or
real vehicle test). Based on the manual control commands, the appropriate noise is added to give
the model a better space for policy exploration and trial-and-error. In such a way, compared with
random exploration, considerable experience sequences will receive higher rewards, which can make
the training converge to excellent policy faster. The reward can converge eventually with manual
guided exploration, as shown in Figure 12.
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Figure 12. (a) Training process by manual guided exploration. (b) Training process by
random exploration.

• Control cycle phased setting

Given that the vehicle model has inertia delay characteristics, it is found that if the period of
steering wheel angle change is too small, it will cause the loss of Markov characteristics of some
collected experience sequences. The state of the current cycle of the vehicle depends on both the state
of the previous cycle and the action taken. To weaken this adverse effect, the first round of training
sets the control cycle to 1000 ms. In such a way, the actions executed in the current cycle will retain
sufficient execution time, which will be the major factor affecting the state of the next cycle and can be
approximated to Markov decision-making process. When the network converges to the optimum, the
training control cycle of the following training can be reduced, which can make the control cycle closer
to the actual situation and achieve better results. Figure 13a shows that the 1000 ms control cycle is
first trained, then the 100 ms control cycle is trained, and lastly the reward lastly converges. Figure 13b
suggests that the reward does not converge if we start with a 100 ms control cycle training directly.Sensors 2019, 19, x FOR PEER REVIEW 15 of 24 
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Figure 13. (a) Training process first by 1000 ms control cycle and followed by 100 ms control cycle. (b)
Training process only by 100 ms control cycle.

• Training condition phased setting

Usually the perpendicular parking can be split into two steps, as shown in Figure 14. Just like
human parking, the “step two” plays a major role in the final parking attitude. Thus, we currently
primarily apply reinforcement learning to the “step two”.
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Figure 14. Common perpendicular parking process.

Since there will be different initial angles of “step two” between the vehicle and the parking
slot, we first train at 30◦ and then expand the initial angle to 0◦ to 90◦ to continue training. Figure 15
suggests that based on 30◦ well-trained network, the networks between 0◦ to 90◦ can converge quickly,
i.e., the 30◦ well-trained network has ideal generalization ability. Since the initial angle of the vehicle
relative to the parking slot is different in different episodes, the sequence of states experienced in each
episode is different, so the average single step reward is also different.
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Figure 15. Extended training of other initial angles based on 30◦ well-trained network.

• Real vehicle training migration

Because the real vehicle training takes a lot of manpower, time and resources, it is better to train in
the simulation environment and then transfer it to the real vehicle. Since the sensor model and vehicle
model used in simulation will differ from the real vehicle, the same control command may produce
different observation results. Accordingly, the real vehicle should be continuously trained based on
well-trained network in simulation. Figure 16 reveals that the result of real vehicle migration training
is ideal.
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3. Experimental Results

After the above training, we can ascertain the performance of the trained algorithm. This section
shows the experimental platform, experimental scenes, and results.

3.1. Experimental Platform

The experimental platform is refitted from Rongwei E50 pure electric vehicle (Figure 17). Four
fisheye cameras act as sensors for parking slot detection. The algorithm running platform is an
industrial computer (i5 processor, 8G memory, 128G solid-state hard disk). Chassis control and
information exchange is performed in the vehicle control unit, i.e., the controller of vehicle chassis.
The RT3000 navigation system is employed to acquire the position information of the vehicle. During
the test, notebook computer is employed to record data.Sensors 2019, 19, x FOR PEER REVIEW 17 of 24 
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3.2. Experimental Scenes

To ascertain the performance of the proposed algorithm in the “step two” perpendicular parking,
we choose three parking scenes with initial angles of 60◦, 45◦, and 30◦ between the vehicle and the
parking slot, which are common “step two” scenes. Figure 18 illustrates the experimental scenes
expressed in the surround view. The blue marking points represent the target parking slots; the width
of these parking slots ranges from 2.4 m to 2.44 m and the length is between 5.6 m and 5.8 m, which
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basically meets the test requirements of BS ISO 16787-2016. As described in Section 2.1.1, since the FOV
of surround view cannot cover the entire parking slot, only the nearby corner points can be detected,
i.e., the width of the parking slot can be detected, and the length can only be inferred from priori rules.
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Figure 18. Experimental scenes. (a), (b) and (c) present parking scenes with initial angles of 60◦, 45◦,
and 30◦, respectively.

Three parking methods are adopted in the experiment: geometric method-based path planning
with PID-based path tracking, geometric method-based path planning with SMC-based path tracking,
and reinforcement learning-based end-to-end parking. The first two represent the current mainstream
parking methods, and the last one represents the method used in this paper. Each parking method is at
the same starting point and reversed at the same speed (4km/h).

Subsequently, the parking performances of different parking methods are compared. According
to BS ISO 16787-2016, the inclination angle of the vehicle with respect to the parking slot, the deviation
between the four tire contact points of the vehicle and the parking slot, and the deviation between the
rear of the vehicle and the parking slot are measured. The measurement parameters are presented in
Figure 19.
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Figure 19. Measurement of parking attitude.

3.3. Results

The experimental results of 60◦ perpendicular parking are presented in Figure 20. Figure 20b
shows that only planned path can ensure the ideal parking attitude, whereas the two path tracking
methods (PID and SMC) cannot completely track the planned parking path. The existing control error
causes the final vehicle to deviate from the ideal parking attitude, as shown in Figure 20b,c. Figure 20b
also shows that the parking performance of reinforcement learning is better than those of the other two
methods. Besides, the changes of the parking slot in the vehicle CS are recorded in the case of only
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visual detection and parking slot tracking in the experiment of reinforcement learning, as shown in
Figure 20d. It is suggested that visual detection has missed detection, and it cannot provide continuous
parking slot for reinforcement learning. Thus, the test cannot be performed normally. However, the
parking slot tracking has not missed detection.
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Figure 20. Experimental results of 60◦ perpendicular parking. (a) Parking performance of different
methods; (b) and (c) present the control effect and error of different path tracking methods, respectively.
(d) Parking slot detection and tracking in the parking process.

The experimental data corresponding to Figure 20 is listed in Table 1. This table suggests that
reinforcement learning can achieve an inclination angle of –0.747◦, satisfying the requirements of the BS
ISO 16787-2016 (≤±3◦). Moreover, these deviations are relatively uniform, satisfying the requirements
of the BS ISO 16787-2016 (>0.1 m). As mentioned above, only planned path can ensure that the ideal
parking and inclination angle and deviation meet the requirements of the standard. However, when
path tracking is practically performed, these deviations of path planning with PID and path planning
with SMC are not uniform, and the inclination angles are –3.638◦ and –3.126◦, respectively, which do
not satisfy the requirements. These two path tracking methods have errors of more than 0.02 m in both
X and Y directions. Lastly, it is suggested that the loss rate of visual detection is 37.35%, and that of the
parking slot tracking reaches 0%.
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Table 1. Experimental data of 60◦ perpendicular parking.

Planned Path Planned
Path+PID

Planned
Path+SMC

Reinforcement
Learning

Inclination angle β (◦) −1.051 −3.638 −3.126 −0.747
Deviation dfr (m) 0.423 0.304 0.379 0.457
Deviation df l (m) 0.468 0.589 0.514 0.463
Deviation drr (m) 0.465 0.45 0.504 0.487
Deviation drl (m) 0.425 0.443 0.388 0.434
Deviation de (m) 1.087 1.016 1.047 1.053

X average error (m) \ 0.021 0.028 \

Y average error (m) \ 0.033 0.048 \

Loss rate of visual detection (%) \ \ \ 37.35
Loss rate of parking slot

tracking (%) \ \ \ 0

The experimental results of perpendicular parking at 45◦ and 30◦ initial angle are shown in
Figures 21 and 22. On the whole, the results are consistent with the 60◦ test. The parking performance
of reinforcement learning is obviously superior over those of the other two methods, suggesting that
our algorithm can adapt to parking scenario with different initial angles. Likewise, both PID and
SMC have control errors, making it unlikely for the vehicle to track the parking path accurately, and
eventually the vehicle has inclination angle and uniform deviation.
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Figure 21. Experimental results of 45◦ perpendicular parking. (a) Parking performance of different
methods; (b) and (c) represent the control effect and error of different path tracking methods, respectively.
(d) Parking slot detection and tracking in the parking process.
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Figure 22. Experimental results of 30◦ perpendicular parking. (a) Parking performance of different
methods; (b) and (c) present the control effect and error of different path tracking methods, respectively.
(d) Parking slot detection and tracking in the parking process.

Tables 2 and 3 suggest that reinforcement learning can achieve an inclination angle below 1◦,
satisfying the standard requirements. The other two methods have large inclination angle due to
control error, especially the PID exceeding 3◦. The path tracking errors of these two methods in X and
Y directions are basically above 0.02 m. Besides, the loss rate of visual detection in these two scenarios
reaches over 30%, and the parking slot tracking ensures that the position of the target parking slot can
be continuously achieved.

Table 2. Experimental data of 45◦ perpendicular parking.

Planned Path Planned
Path+PID

Planned
Path+SMC

Reinforcement
Learning

Inclination angle β (◦) 0.313 3.088 2.011 −0.573
Deviation dfr (m) 0.493 0.557 0.59 0.438
Deviation df l (m) 0.377 0.315 0.281 0.436
Deviation drr (m) 0.48 0.433 0.509 0.461
Deviation drl (m) 0.391 0.439 0.361 0.413
Deviation de (m) 0.872 0.788 0.795 0.918

X average error (m) \ 0.032 0.042 \

Y average error (m) \ 0.024 0.019 \

Loss rate of visual detection (%) \ \ \ 43.68
Loss rate of parking slot

tracking (%) \ \ \ 0
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Table 3. Experimental data of 30◦ perpendicular parking.

Planned Path Planned
Path+PID

Planned
Path+SMC

Reinforcement
Learning

Inclination angle β (◦) −0.223 −3.782 2.416 −1.02
Deviation dfr (m) 0.394 0.363 0.552 0.376
Deviation df l (m) 0.456 0.49 0.299 0.474
Deviation drr (m) 0.403 0.515 0.455 0.417
Deviation drl (m) 0.447 0.339 0.396 0.434
Deviation de (m) 1.031 0.952 0.948 1.056

X average error (m) \ 0.056 0.043 \

Y average error (m) \ 0.028 0.031 \

Loss rate of visual detection (%) \ \ \ 31.48
Loss rate of parking slot

tracking (%) \ \ \ 0

4. Discussion

The above experimental results reveal that the existing mainstream parking methods of path
planning with path tracking can basically park the vehicle into the parking slot, whereas the final
inclination angle of the vehicle does not meet the strict requirements of the standard. This method is
feasible for some wide parking slots. However, with the increasing number of vehicles, the design of
parking slot will become narrower and narrower. Thus, the accuracy of parking should be enhanced.
Besides, we can also see that it is not difficult to plan an ideal parking path according to the parking
slot. However, due to the nonlinear dynamic characteristics of the vehicle, path tracking will inevitably
produce control errors that cause the vehicle to deviate from the planned path, thereby resulting in
inclination angle and uniform deviation of the parking attitude.

The reinforcement learning-based end-to-end planning method can not only achieve the end-to-end
parking from parking slot to steering wheel angle, avoiding errors caused by path tracking, but also
learn the best steering wheel angle through a lot of training. Thus, the reinforcement learning-based
end-to-end planning can achieve better parking attitude. Besides, because we have fused the vision
and vehicle chassis information, we can continuously get the position of parking slot to ensure the
normal training and testing of reinforcement learning.

However, future research can still make some improvements: (1) The reward setting of this article
is obtained by artificial setting and experimental adjustment. Though the final effect converges to an
ideal level, it cannot be proved that it is the optimal reward setting. Accordingly, we will consider
the method of inverse reinforcement learning [33,34] to optimize the reward. (2) In this paper, the
reinforcement learning-based parking only has the function of reversing (e.g., “step two” in Figure 14),
and it cannot automatically adjust the gear forward and backward. If the vehicle needs to judge the
gear, we will consider selecting the Long Short-Term Memory (LSTM) network [35].

5. Conclusions

In this study, we innovatively adopt reinforcement learning to perpendicular parking so that the
vehicle can continuously learn and accumulate experience from considerable parking attempts, learn
the command of the optimal steering wheel angle at different parking slots relative to vehicle, as well
as achieve real, “human-like” intelligent parking. Moreover, such end-to-end planning can avoid
errors caused by path tracking. Besides, to ensure that the parking slot can be obtained continuously
in the course of learning, a parking slot tracking algorithm is proposed based on fusion of vision and
vehicle chassis information. Besides, since the learning network output is hard to converge and it is
easy to fall into local optimum in the parking process, several reinforcement learning training methods
in terms of parking conditions are designed (e.g., manual guided exploration for accumulating initial
experience sequence, control cycle phased setting, and training condition phased setting). Lastly, the
well-trained network in the simulation environment is migrated to the real vehicle training.
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In the subsequent study, on one hand, inverse reinforcement learning will be used to set rewards
to ensure optimal reward settings; on the other hand, the LSTM network will be used to achieve gear
adjustment in the parking process.
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