Similarity Graph-Based Camera Tracking for Effective 3D Geometry Reconstruction with Mobile RGB-D Camera
Abstract
:1. Introduction
2. Previous Work
3. Preliminaries: 6-DOF Camera Pose Estimation
4. Similarity Graph-Based Camera Pose Estimation
4.1. Similarity Measure between Two Frames
- , i.e., is valid in ,
- for some threshold , and
- for some threshold .
4.2. Construction of Similarity Graph
4.3. Extraction of Maximum Spanning Tree
4.4. Pose Estimation through Tree Traversal
5. Extending the Idea of a Similarity Graph
5.1. Local Repair of a Maximum Spanning Tree
5.2. Component-Wise Camera Tracking
6. Experiments
6.1. Computational Costs
6.2. Comparison to a Frame-to-Frame Tracking Method
6.3. Comparison to the ElasticFusion Method
6.4. Comparison to the BundleFusion Method
6.5. Towards 3D World Modeling in a Mixed-Reality Environment
6.6. Towards Progressive 3D Reconstruction from a Live RGB-D Stream
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zollhöfer, M.; Stotko, P.; Görlitz, A.; Theobalt, C.; Nießner, M.; Klein, R.; Kolb, A. State of the art on 3D reconstruction with RGB-D cameras. Comput. Graph. Forum 2018, 37, 625–652. [Google Scholar] [CrossRef]
- Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis. In Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, Corfu, Greece, 21–22 September 1999; pp. 298–372. [Google Scholar]
- Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613. [Google Scholar]
- Lee, G.; Fraundorfer, F.; Pollefeys, M. Robust pose-graph loop-closures with expectation-maximization. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 556–563. [Google Scholar]
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136. [Google Scholar]
- Roth, H.; Vona, M. Moving volume KinectFusion. In Proceedings of the British Machine Vision Conference, Surrey, UK, 4–7 September 2012; pp. 112.1–112.11. [Google Scholar]
- Whelan, T.; McDonald, J.; Kaess, M.; Fallon, M.; Johannsson, H.; Leonard, J. Kintinuous: Spatially extended KinectFusion. In Proceedings of the RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia, 9–10 July 2012. [Google Scholar]
- Chen, J.; Bautembach, D.; Izadi, S. Scalable real-time volumetric surface reconstruction. ACM Trans. Graph. 2013, 32. [Google Scholar] [CrossRef]
- Nießner, M.; Zollhöfer, M.; Izadi, S.; Stamminger, M. Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph. 2013, 32. [Google Scholar] [CrossRef]
- Steinbrücker, F.; Sturm, J.; Cremers, D. Real-time visual odometry from dense RGB-D images. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 719–722. [Google Scholar]
- Audras, C.; Comport, A.; Meilland, M.; Rives, P. Real-time dense appearance-based SLAM for RGB-D sensors. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA), Melbourne, Australia, 7–9 December 2011. [Google Scholar]
- Tykkälä, T.; Audras, C.; Comport, A. Direct iterative closest point for real-time visual odometry. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 2050–2056. [Google Scholar]
- Glocker, B.; Shotton, J.; Criminisi, A.; Izadi, S. Real-time RGB-D camera relocalization via randomized ferns for keyframe encoding. IEEE Trans. Vis. Comput. Graph 2015, 21, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evalution of the RGB-D SLAM system. In Proceedings of the 2012 IEEE International Conference Robotics Automation (ICRA), St. Paul, MN, USA, 14–18 May 2012; pp. 1691–1696. [Google Scholar]
- Henry, P.; Krainin, M.; Herbst, E.; Ren, X.; Fox, D. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 2012, 31, 647–663. [Google Scholar] [CrossRef] [Green Version]
- Stückler, J.; Behnke, S. Integrating depth and color cues for dense multi-resolution scene mapping using RGB-D cameras. In Proceedings of the 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Hamburg, Germany, 13–15 September 2012. [Google Scholar]
- Kerl, C.; Sturm, J.; Cremers, D. Dense visual SLAM for RGB-D cameras. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 2100–2106. [Google Scholar]
- Maier, R.; Sturm, J.; Cremers, D. Submap-based bundle adjustment for 3D reconstruction from RGB-D data. In Proceedings of the German Conference on Pattern Recognition, Münster, Germany, 2–5 September 2014; pp. 54–65. [Google Scholar]
- Stückler, J.; Behnke, S. Multi-resolution surfel maps for efficient dense 3D modeling and tracking. J. Vis. Commun. Image Represent. 2014, 25, 137–147. [Google Scholar] [CrossRef]
- Choi, S.; Zhou, Q.; Koltun, V. Robust reconstruction of indoor scenes. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5556–5565. [Google Scholar]
- Kähler, O.; Prisacariu, V.; Murray, D. Real-time large-scale dense 3D reconstruction with loop closure. In Proceedings of the 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 500–516. [Google Scholar]
- Dai, A.; Nießner, M.; Zollöfer, M.; Izadi, S.; Theobalt, C. BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface re-integration. ACM Trans. Graph. 2017, 36. [Google Scholar] [CrossRef]
- Cao, Y.; Kobbelt, L.; Hu, S. Real-time high-accuracy three-dimensional reconstruction with consumer RGB-D cameras. ACM Trans. Graph. 2018, 37. [Google Scholar] [CrossRef]
- Keller, M.; Lefloch, D.; Lambers, M.; Izadi, S.; Weyrich, T.; Kolb, A. Real-time 3D reconstruction in dynamic scenes using point-based fusion. In Proceedings of the 2013 International Conference on 3D Vision, Seattle, WA, USA, 29 June–1 July 2013; 1 July 2013; pp. 1–8. [Google Scholar]
- Ruhnke, M.; Kümmerle, R.; Grisetti, G.; Burgard, W. Highly accurate 3D surface models by sparse surface adjustment. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 751–757. [Google Scholar]
- Whelan, T.; Kaess, M.; Leonard, J.J.; McDonald, J. Deformation-based loop closure for large scale dense RGB-D SLAM. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robot Systems, Tokyo, Japan, 3–7 November 2013; pp. 548–555. [Google Scholar]
- Whelan, T.; Salas-Moreno, R.; Glocker, B.; Davison, J.; Leutenegger, S. ElasticFusion: Real-time dense SLAM and light source estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 2017, 33, 1225–1262. [Google Scholar] [CrossRef]
- Yousif, K.; Taguchi, Y.; Ramalingam, S. MonoRGBD-SLAM: Simultaneous localization and mapping using both monocular and RGBD cameras. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4495–4502. [Google Scholar]
- Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 2014, 30, 177–187. [Google Scholar] [CrossRef]
- An, J.; Lee, J.; Jeong, J.; Ihm, I. Tracking an RGB-D camera on mobile devices using an improved frame-to-frame pose estimation method. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision 2018 (WACV 2018), Lake Tahoe, NV, USA, 12–14 March 2018; pp. 1142–1150. [Google Scholar]
- Solomon, J. Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Sedgewick, R. Algorithms in C: Part 5 Graph Algorithms, 3rd ed.; Addison-Wesley: Reading, MA, USA, 2002. [Google Scholar]
- Handa, A.; Whelan, T.; McDonald, J.; Davison, A. A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–5 June 2014. [Google Scholar]
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In Proceedings of the International Conference on Intelligent Robot Systems, Vilamoura, Algarve, Portugal, 7–12 October 2012. [Google Scholar]
Sim-Gr | Mst | Paths | Pose-Est | Amortized | |
---|---|---|---|---|---|
200 | 0.77 | 0.0068 | 0.0022 | 5.15 (0.0258) | 0.0297 |
400 | 2.86 | 0.0332 | 0.0044 | 10.62 (0.0266) | 0.0338 |
800 | 10.83 | 0.1879 | 0.0128 | 22.59 (0.0282) | 0.0420 |
1600 | 40.52 | 1.0450 | 0.0520 | 46.50 (0.0291) | 0.0551 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; Lee, S.; Park, S.; Ihm, I. Similarity Graph-Based Camera Tracking for Effective 3D Geometry Reconstruction with Mobile RGB-D Camera. Sensors 2019, 19, 4897. https://doi.org/10.3390/s19224897
An J, Lee S, Park S, Ihm I. Similarity Graph-Based Camera Tracking for Effective 3D Geometry Reconstruction with Mobile RGB-D Camera. Sensors. 2019; 19(22):4897. https://doi.org/10.3390/s19224897
Chicago/Turabian StyleAn, Jaepung, Sangbeom Lee, Sanghun Park, and Insung Ihm. 2019. "Similarity Graph-Based Camera Tracking for Effective 3D Geometry Reconstruction with Mobile RGB-D Camera" Sensors 19, no. 22: 4897. https://doi.org/10.3390/s19224897
APA StyleAn, J., Lee, S., Park, S., & Ihm, I. (2019). Similarity Graph-Based Camera Tracking for Effective 3D Geometry Reconstruction with Mobile RGB-D Camera. Sensors, 19(22), 4897. https://doi.org/10.3390/s19224897