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Abstract: In Airborne Light Detection and Ranging (LiDAR) data acquisition practice, discrepancies
exist between adjacent strips even though careful system calibrations have been performed. A strip
adjustment method using planar features acquired by the Minimum Hausdorff Distance (MHD) is
proposed to eliminate these discrepancies. First, semi-suppressed fuzzy C-means and restricted
region growing algorithms are used to extract buildings. Second, a binary image is generated from the
minimum bounding rectangle that covers overlapping regions. Then, connected components labeling
algorithm is applied to process the binary image to extract individual buildings. After that, building
matching is performed based on MHD. Third, a coarse-to-fine approach is used to segment building
roof planes. Then, plane matching is conducted under the constraints of MHD and normal vectors
similarity. The last step is the calculation of the parameters based on Euclidean distance minimization
between matched planes. Two different types of datasets, one of which was acquired by a dual-channel
LiDAR system Trimble AX80, were selected to verify the proposed method. Experimental results
show that the corresponding planar features that meet adjustment requirements can be successfully
detected without any manual operations or auxiliary data or transformation of raw data, while
the discrepancies between strips can be effectively eliminated. Although adjustment results of the
proposed method slightly outperform the comparison alternative, the proposed method also has the
advantage of processing the adjustment in a more automatic manner than the comparison method.

Keywords: strip adjustment; building and roof plane segmentation; building and roof plane matching;
Minimum Hausdorff Distance (MHD)

1. Introduction

Airborne LiDAR technology has been becoming an indispensable tool regarding three-dimensional
(3D) geospatial data acquisition for urban applications [1], such as road detection [2], building
extraction [3] and 3D reconstruction [4], population estimation [5], 3D change detection [6], assessment
of post-disaster building damage [7], and many others [8].

In practice, LIDAR data are collected by parallel flight strips where the region of a single strip
is generally much less than the entire region being surveyed. Thus, multiple strips are required
and should be stitched together so that the whole region can be covered. This operating fashion is
very similar to the conventional aero-survey by photogrammetric technique, and partial overlapping
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between adjacent strips is required to mosaic data from multiple strips into an integrated dataset.
The lateral overlap can vary from 10% to 30%, depending on the geomorphological characteristics
of the region being surveyed [9,10]. A LiDAR system needs to be calibrated by both the system
provider before the equipment is shipped, and again by the end-user before data collection, in order to
remove most of the systematic errors caused by individual components and their integration [11,12].
No discrepancies between adjacent strips should occur if there are neither systematic errors nor random
errors existing. However, this is impractical due to missing or improper calibration and operational
procedures. In some cases, small discrepancies may persist even though the system has been carefully
calibrated. Figure 1 shows the discrepancies between adjacent strips, though system calibration has
been performed. Therefore, strip adjustment, a process that can eliminate discrepancies between
adjacent strips, is necessary if high accuracy final products, such as Digital Elevation Model (DEM),
are required from the airborne LiDAR point cloud.

(a) (b)

Figure 1. Discrepancies before and after strip adjustment observed from profiles: (a) Before strip
adjustment; (b) After strip adjustment.

Many research works have been conducted in the past two decades regarding strip adjustment.
Some methods combine other data sources such as optical images [13,14], but methods based solely
on point cloud were the mainstream focus [15-25]. Such methods could broadly be categorized
into two classes: with and without ground control points. In the adjustment with ground control
points, corresponding points distributed in adjacent strips must first be extracted, then parameters
for a given adjustment model are calculated based on the corresponding points; this is similar to the
photogrammetric block adjustment of independent models [15,16]. However, to extract corresponding
points is difficult because laser scanning points are discrete and irregular in space. Many point detection
algorithms developed for optical images cannot be employed without modification. Thus, artificial
landmarks are setup in some applications. Though these are feasible for system calibration, which is
usually performed in a pre-setup test site, artificial landmarks can hardly be setup over the whole area
of a real project.

Strip adjustment without control points, on the other hand, adopts corresponding geometrical
features, including points, line segments, planes, etc., to calculate the transformation parameters
between adjacent strips. Considering that there are large numbers of buildings in urban scenes and
the roofs of these buildings can be viewed as planes, algorithms based on corresponding planes
were developed instead of corresponding points, thus overcoming the difficulties of detecting point
features in an irregular point cloud. Wu and Fan [17] used the OpenStreetMap-aided method to select
simple-structured roof planes as the corresponding features and then normal vectors of them were
calculated and input into an over-determined mathematical model. The transformation parameters
were then estimated through the given model. Habib et al. [18] used LiDAR intensity images of
overlapping strips for patch selection, from which linear features were generated. Although tie planes
can be detected by using above-mentioned methods, it is time-consuming and sometimes impractical
because some auxiliary tools or data, such as OpenStreetMap, were required in the process. Moreover,
merely specific structures can be detected accurately, such as gables or flat roofs, resulting in missing
or failure detection of many other planar patches. In Sande et al. [19], points in overlapping strip areas
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were interpolated into raster format by using Inverse Distance Interpolation, then corresponding gable
planes were detected based on the gridded data. But it requires extra computation to transform point
data into raster format because the selection criteria for corresponding planes could not be applied to
the discrete points directly. In Pfeifer et al. [20], both ground and building points were segmented in
one strip, then points in the adjacent strip corresponding to the segments were automatically selected
under two criteria: points from one strip have to be surrounded by points from segments in the
adjacent and the vertical distances between points and corresponding surface should be within limited
range. In other words, in the method, the number of points of adjustment planes in one strip must be
less than or equal to the other, which limits its capability in detecting tie surfaces. Their experiments
showed that the algorithm efficiency would be improved if tie surfaces were extracted merely from
building points. Filin [21] studied the influence of surface characteristics on strip adjustment and
experimental results revealed that using sloped surfaces with different orientations helped improve
the adjustment result.

Lines are the other geometric features that have been widely adopted for strip adjustment.
Lee et al. [22] and Habib et al. [23] used the linear features generated from building roofs with ridge
lines in overlapping region for adjustment computation. Since planar, linear and point features were all
suitable for adjustment, several methods combining these features for the estimation of transformation
parameters were proposed. In Rentsch and Krzystek [24], roof ridge lines generated from roof plane
intersection and roof planes were both used in the adjustment. In Kilian et al. [15], roof planes
and corner coordinates of buildings were considered. In Zhang et al. [13], planar, linear and point
features were all adopted in the adjustment computation. Their experimental results demonstrated
the advantages of their models, but to extract all these features, especially the point features, poses a
challenging task.

TerraMatch is a commercial software that is widely adopted for system calibration and strip
adjustment. It computes parameters for calibration and adjustment from overlapping flights with
trajectory files as one of the inputs [25], which limits its applicability because trajectory files are not
always available to end-users, for instance, when data collection and data application are performed in
separate companies.

Note that the discrepancies between strips are normally not that much after system calibration and,
considering that there are lots of buildings in urban scenes, a strip adjustment using planar features
detected merely from building points is proposed in this paper. It composes four principle steps: First,
progressive Triangle Irregular Network (TIN) densification (PTD) is performed on the raw point cloud
so that the raw dataset is classified into ground and non-ground subsets [26,27]. Semi-suppressed
fuzzy C-means and restricted region growing algorithms are then applied to extract laser footprints
reflected from buildings from the non-ground subset [28]. Second, building footprints are converted to
a binary image at first, then connected components labeling algorithm is applied to segment the binary
image [29], resulting in footprint clusters corresponding to individual buildings. Building matching is
then performed by MHD to extract corresponding pairs of buildings. Third, a coarse-to-fine approach
is proposed to segment roof planes from the matched buildings, and plane matching is performed by
the combination of MHD and normal vectors similarity, resulting in matched roof planes. The fourth
step is the calculation of the parameters of the adjustment model based on the matched roof planes,
constrained by the Euclidean distance minimization between pairs of corresponding planes located in
adjacent strips. Point cloud is transformed in a strip-by-strip manner, resulting in a mosaic dataset of
the whole surveying area.

The main contributions of this work can be summarized as follows: (1) Minimum Hausdorff
Distance (MHD) is introduced to detect corresponding planes from building points in an automatic
manner without limiting building structures or transforming point data into gridded data or using
auxiliary data. (2) A coarse-to-fine segmentation of building points is proposed specifically for
the purpose of planar features extraction, which can detect enough planar patches for adjustment
computation. (3) Airborne LiDAR data acquired by a dual-channel LiDAR system are used to verify
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the proposed method, as well as the single channel LiDAR data. Compared with the methods that
select corresponding planes in a manual manner, our method can automatically detect enough and
correct corresponding planes for adjustment.

The rest of the paper is organized as follows: Section 2 introduces the algorithm flow, mainly
including building segmentation and matching, roof plane segmentation and matching, and adjustment
model. The procedures of building and roof planes segmentation and matching are described in
specific detail. Section 3 presents and analyzes the experimental results. Section 4 summarizes the
proposed method and discusses the limitations of the proposed method.

2. Methodology

The proposed method mainly includes four steps: building extraction from non-ground points,
building segmentation and matching, roof plane segmentation and matching, and transformation
parameters calculation. The algorithm workflow is shown in Figure 2.

Step1 |

Original cloud data |

v

| Building extraction |

I

Step 2 | Y
All building points |

| Building segmentation |

v

| Building matching |
I
Step 3 | \

Points of corresponding buildings |

| Roof planes segmentation |

| Roof plane matching |
I

Step 4 ) J

Points of corresponding roof planes |

Calculating parameters of the adjustment
model

v

| Transformation parameters |

Figure 2. The workflow of the proposed method.
2.1. Building Segmentation

Building segmentation is used to categorize the laser footprints reflected from buildings into
multiple clusters, each of which represents an individual building. To achieve this purpose, raw point
cloud is firstly filtered by progressive TIN densification (PTD). PTD is a widely employed filtering
method by both the academic community and engineering applications because of its accuracy and
efficiency, and it has been successfully integrated with commercial software, such as Terrasolid and
LiDAR_Suite [26,27]. Then buildings are extracted from the non-ground points by semi-suppressed
fuzzy C-means and restricted region growing algorithms proposed by the authors [28]. It consists of
two main steps: (a) seed points identification of building roofs by the semi-suppressed fuzzy C-means;
(b) restricted region growing to search for more building points.

The dataset of building footprints is at this stage a single undifferentiated set of points. It should
be segmented into different clusters corresponding to individual buildings, so that building matching
can be conducted on the individual building segments. Considering the complex roof structures of
buildings and the high computational efficiency required in practice, the dataset is converted to a
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binary image at first, then a digital image processing method is introduced to segment individual
buildings. Converting the three-dimensional (3D) point cloud into a two-dimensional (2D) image
and then using matured image processing algorithms for feature extraction, classification etc., is a
commonly employed strategy in point cloud processing [29-32]. In the paper, the dataset of building
footprints is converted into an image by the following steps: First, the minimal and maximal values
of x and y coordinates of the building footprint dataset in the overlapping region are determined
and denoted by X, Xmax, Ymin and Ymay. Then the minimum bounding rectangle that covers the
overlapping region is partitioned into uniform cells with size [, where | is a parameter related to point
cloud density of the dataset. Therefore, a total number of [Xpax — Xpin] /1 and [Ymax — Ymin] /1 cells are
generated. Set the value binary 1 if there are building points within a cell and binary 0 otherwise.
A binary image can be obtained in this way. Connected components analysis of the generated binary
image is performed to segment the individual buildings, which is one of the classical digital image
processing methods specifically developed for binary image segmentation. Despite its long history, it is
still one of the research hotspots in image processing and many improvements have been achieved [33].
It consists of the connected components labeling and decision making. The connected components
labeling changes connected pixels to regions. All pixels that have the value binary 1 and are connected
to each other by a path of pixels all with value binary 1 are given the same identifying label. A path is
defined by 4- or 8-neighbors of pixel. Different definition results in slightly different regions. The label
is a unique name or index of the region to which the pixels belong [34]. The algorithm proposed by
Di and Bulgarelli [35] is adopted in the paper for its efficiency. It consists of two subsequent scans of
the input image. After the first scan, no temporary label is assigned to pixels belonging to different
components, but different labels may be associated with the same component, which were registered
as equivalent classes and were further processed in the second scan. Many improvement algorithms
were developed regarding the second scan in order to improve the efficiency of the algorithm. In [35],
equivalences are processed directly in the first scan so that equivalence classes are always maintained
to be updated during the scan. This is obtained by associating a new equivalence class with each new
label and by merging the corresponding classes as soon as a new equivalence is found.

2.2. Building Matching

Building segmentation is followed by building matching in our flowchart, in which points of
individual corresponding buildings in the adjacent strips are to be matched. Given a model represented
by 3D point cloud and searching for the matched one from a model library is quite challenging, and
the similarity that indicates the degree of resemblance of 3D point sets is expected to be a hot topic.
Hausdorff Distance (HD) is a frequently used similarity measurement. It can quantify the similarity
between two arbitrary point sets without the necessity of establishing the correspondence between
points and has been proved to be an efficient measure for image and point cloud matching [36-38].
Thus, it was employed for the matching process in the paper.

HD is a MAXMIN distance measure between two point sets. Given two finite point sets
A ={aq,..,ay} and B = {by, .., by}, the HD is defined as

H(A,B) = max(h(A,B),h(B,A)) 1)

where h(A, B) = maxmin|la — b|| and h(B, A) = maxmin|la — b||. The ||-|| is any norm distance metric, and
acA beB beB acA

Euclidean norm was adopted in the paper. The function /(A, B) is called the directed HD from A to
B. Intuitively, if h(A, B) = d, then each point of A must be within a distance d of some point of B [39],
or equivalently, it means that every point in A is at most (A, B) away from B.

In practice, taking the maximum of all the distances is dangerous because possible noise (outliers)
in one set can then greatly impact the Hausdorff Distance. Fractional Hausdorff Distance, in which
some percentage (say 90%) of the points in A have the distance or less to some point in B, is an
alternative to overcome outliers. Because outlier removing is one of the preprocessing steps in airborne
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LiDAR processing, conventional Hausdorff Distance can be employed without danger in the present
research. Computational efficiency is another issue that must be considered in practice. For fixed sets
A and B, Hausdorff Distance can be computed in time using O((n + m)log(n + m)) [40]. More efficient
computational strategies have been explored in recent years [41,42] when the number of the points in
A or Bis very large, say more than 10 million in each. But in the present application, the number of
laser points from an individual building is limited. For instance, suppose a dataset has average point
density of 10 points/m?, then a building with an area of 500 m? has 5000 points. Thus, computational
efficiency is a less challenging problem in the current scenario.

Armed with the Hausdorff Distance, building matching was performed as follows: a minimum
bounding rectangle was determined by overlay analysis in the overlapping area of adjacent strip.
Buildings within the rectangle were retained for the matching. For an individual building P in one
strip, calculate HD between P and all individual buildings in the adjacent strip. The building pair with
MHD was identified as matched one.

2.3. Roof Plane Segmentation

The mathematical model in our strip adjustment was based on the minimization of the distance
between corresponding planar patches. Therefore, roof planes need to be segmented at first, then
planar patch matching is performed. A coarse-to-fine strategy was proposed for the segmentation,
which consisted of preprocessing and segmentation and were described below. Notice that all the
following steps were performed only on the point datasets of corresponding buildings.

2.3.1. Preprocessing the Point Cloud of Buildings

Preprocessing step is specific for subsequent roof plane segmentation, which contains the
calculation of normal vector, curvature, and planar equation for a given building point based on its k
neighborhood. Eigenvectors and eigenvalues were calculated based on k neighborhood, which were
denoted by 17;, 17;, 17;, and the eigenvector corresponding to the smallest eigenvalue A; is the normal of
the plane associated with the given point. Hence a point-normal form equation of the associated plane
is defined. The curvature at a given point can be calculated based on above eigenvalues [43]. Normal
vectors of all building points were normalized to unit vectors. To speed up the process of searching
k nearest points of a given building point, KD-tree was constructed for the whole dataset before the
preprocessing step.

2.3.2. Coarse-to-Fine Segmentation Algorithm

The idea behind the plane segmentation is based on the fact that buildings are generally composed
of several planar patches. Points on the same roof planes in adjacent strips satisfy the same planar
equation and hence have similar normal vectors. Therefore, under the constraints of normal vector
similarity and point-to-plane distance, roof planes were segmented from building points.

This step consists of the following sub-steps:

Step 1: Select the point corresponding to the smallest curvature as the seed point of a roof planar
patch from the dataset Q of a building, denoted by Pg,,;. Construct a stack and add Pg,y to the end of
the stack. For each Pyer € Q, Pother # Pseed, calculate the cosine similarity between P,y and Py, and
the distance from Py, to the plane associated with the seed point, denoted by Cs and Ds respectively.
If Cs > Cy9 and Ds < Dy, where Cyp and Dy are two predefined thresholds, then add the point Py, to
the stack; otherwise, Py is labeled as remaining. All remaining points construct dataset Qemaining-

Step 2: If Qremaining is non-empty, then repeat sub-step 1 for Qyenining S0 that another Qremaining is
formed. The process is continued until all the points in the original set Q are clustered to different
Qremaining sets.

Step 3: Choose the Qyemaining with largest number of elements and fit a plane equation by least
square method. For each point P in Q, calculate the distance from P to the fitted plane. If the distance is
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less than a predefined threshold D, then P is considered to lie on the plane. Otherwise, it is categorized
into the unsegmented point set Quusegmented-
Step 4: If Qunsegmented 1S non-empty, then go to sub-step 1 with Q = Quusegmented- Otherwise, stop.

Four thresholds were predefined in the above algorithm, including the preprocessing step: k
for the size of nearest neighborhood, Csy for cosine vector similarity and Dso, Dyo respectively for
distance thresholds. Though these parameters influence the final segmentation results, they are far
more sensitive to small roof patches than to large ones. Therefore, large roof plane is used in the strip
adjustment. Because the planar patches are used for the establishment of adjustment model, rather than
for 3D building reconstruction, we argue that the above procedure is effective for our present purpose.

2.4. Roof Plane Matching

Bearing in mind that planar patches are merely used for adjustment model establishment,
in practice, only patches with enough footprints remained for the calculation of the parameters of the
adjustment model, because plane fitting with an insufficient number of points is unreliable. Moreover,
computational efficiency shall be improved by ignoring some planar patches with a small number of
footprints. The optimal number of footprints for adjustment computation is point-density oriented
and will be discussed in the next section. Therefore, only large planar patches were retained for roof
plane matching.

The matching of two roof planes in adjacent strips was performed based on two similarity
measures: Minimum Hausdorff Distance (MHD) and cosine similarity between the normal vectors
of the two planes in order to improve the robustness of matching where complex structures occur in
matched buildings. The specific matching process can be described as follows: (a) For a roof plane p of
a given building Q, calculate HD between p and all roof planes of the corresponding building in the
adjacent strip, denoted by Qugjacent- (b) The roof plane with the minimum HD, denoted by pagjacent, is
taken as the matched plane of p if its cosine similarity is larger than the predefined threshold. (c) Repeat
the above steps for the rest planes of Q until all corresponding planes are detected. (d) Repeat (a), (b)
and (c) for all other corresponding buildings to detect their respective corresponding planes.

2.5. Mathematical Model for Adjustment Computation

Several adjustment models exist in literature which can be categorized as: one-dimensional
adjustment model [16,44], three-dimensional adjustment model [45], rigid body transformation
adjustment model [23,46], and rigorous system-driven adjustment model that considers the systematic
errors [47]. However, the application of a system-driven model requires an input of system observations
and these are not usually available to the end user [48]. An optimum solution for adjustment should
be practical and assume the existence of data normally available to a user as well as compensating for
actual errors in the system [49]. By assuming that the system calibration has been performed to a LIDAR
before data acquisition, the rigid transformation model was adopted to describe the misalignment in
the overlapping region between adjacent strips, which has been widely used in photogrammetry and
extensive literature has demonstrated its validity [17,18,23,46,48].

Two point sets from adjacent strips corresponding to a same roof plane can been detected after
the roof plane matching. If there were no misalignments in three dimensions between the adjacent
strips, then the two planes fitted from the point sets should be identical. Because a rigid transformation
model is characterized by a rotational matrix and a translation vector, the parameters should satisfy
the constraints that the Euclidean distance between the two fitted planes should be minimal. Denoting
the rotational matrix and translation vector between adjacent strips by R(¢, w, k) and T respectively,
where ¢, w, « are three rotational angles which satisfies det (R(¢, w,x)) = 1 [17]. Then, a point set
P ={(x;,y zi)T, i=1,2,--- the total number of points in the set} can be expressed by R(¢, w, k)P + T
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after being transformed. For a given transformed point in one of the roof point set, it should lie on the
plane fitted by the other roof point set in the adjacent strip, therefore, Equation (2) can be written as:

JH=0 o)

where | = (nx, 1y, Nz, —d) are coefficients of the plane equation with normal n = (nx, ny, nz) and distance

R(p,w,x)P+T . . .
d to the origin, H = [ (@ lK P+ ] For the convenience of subsequent calculations and coding
n
T
R(p, w, k) is rewritten by three row vectors rlT, rg and r3T :R(p,w,x) = r2T .LetT = [ te ty t ] ,
T
r
3

where ty, t, and t, denote the translation parameters along x, y and z axis. Then Equation (2) can be
rewritten as:

nx(rlTP + tx) + ny(r2TP + ty) + nz<r£P + tz) =d 3)

A system of linear equations can be formed for m points and corresponding planes:

]
7
n,lCP1 anl 1f1%Pl n}c n; n; é dl
c = 4)
ngP™  nyP" o nZ'P™ o ony ony onl tx an
y
| 2 ]

For all the corresponding planar patches, forming the Equation (4) and least mean squares
estimator was applied to estimate the rotation matrix and the translation vectors. The above adjustment
process is performed for each pair of adjacent strips respectively when dealing with multiple strips.
Mean square error o was adopted to indicate the precision of the estimated parameters, which can be
calculated by using the following formula:

, Vv
where V is residual vector that actually contains the remaining point-to-plane distances after the
adjustment. f is the number of unknown parameters in the adjustment. Note that the weight matrix
used in adjustment is a unit matrix by assuming that all the points used to estimate transformation
parameters have the same accuracy. A smaller ¢ indicates increased precision of the parameters.

3. Results

Two different types of datasets, one which was acquired by a conventional single-channel
LiDAR and the other which was acquired by a dual-channel system, were selected to validate the
proposed method, which was implemented by C++ and the results derived from it were displayed
by LiDAR_Suite, an airborne LiDAR data processing software developed by the Research and
Development (R&D) group of the authors. Besides, method in Wu and Fan [17] was cited for the
purpose of comparison in two experiments, and commercial software TerraMatch was used for
comparison in experiment of single channel LiDAR data.

3.1. Experiment of Single Channel LiDAR Data

3.1.1. Data Description

Seven parallel strips were acquired by airborne LiDAR in the city of Niagara, where six groups
of adjacent strips can be formed. Though manual calibration has been performed, discrepancy
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between adjacent strips remained. The average flying height is about 1200 m, average flying speed is
60 m/s, average strip width is 700 m and average lateral overlap between adjacent strips is about 20%.
The average point density of these two strips is about 3.3 points/m?, which means a building with a
floor area of 100 m? contains approximately 350 laser points. Part of two adjacent strips are illustrated
in Figure 3a, which was rendered by the height values. Typical objects in the scene include buildings,
roads, grasses and trees.

3.1.2. Results of Building Matching and Planar Patch Segmentation

Semi-suppressed fuzzy C-means and restricted region growing algorithms were applied to extract
building points from non-ground points, which were acquired by filtering the original laser dataset by
PTD. Figure 3b illustrates the buildings extracted from the region displayed in Figure 3a, where red and
white represent building footprints from the two adjacent strips. Then, connected components labeling
algorithm was used to process the binary image generated from them to segment individual buildings.
Segmentation results of one of the strips were displayed in Figure 3¢, where individual buildings
were rendered with a specific color. In order to save matching time, only buildings containing 100 to
400 footprints were retained for building matching. Minimum Hausdorff Distance was set to 10 meters
empirically, which is the threshold to determine if two individual buildings are matched. Figure 3d
illustrates the matching results, where individual matched buildings are rendered with randomly
chosen colors. There were 70 pairs of buildings matched in the two strips displayed in Figure 3.

(d)

Figure 3. One of the adjacent strips in matching and segmentation experiment: (a) Part of adjacent
strips of point cloud (rendered by height); (b) Buildings extracted by the proposed method in the paper.
Red and white represent buildings in different strips; (c) Building segmentation of one strip of the
adjacent strips. Results were rendered in different colors; (d) Buildings matched. Matched buildings
were rendered in different colors; (e) Distribution of the corresponding patches for adjustment.

In roof plane segmentation, optimal values for parameters k, Cso , Do, and Dy were determined
by referring to [43] and trial and error: k =15, C5o = 0.95, Dsp = 0.4 m, and Do = 0.1 m. These values
were confirmed to be optimal in experiment 2 where the point density is 2.5 points/m?, as stated in
the next subsection. Six types of buildings with specific roof structures, such as gable, T-joint, flat,
etc. [50], were selected to illustrate the segmentation results, as shown in Figure 4, where different
colors represent different planar patches.

It is obvious that building roofs can be successfully segmented into different patches by using the
proposed coarse-to-fine method, regardless of whether the roof structure is simple or complex. Roof
planes with more than 60 points and cosine similarity larger than 0.96 were retained for adjustment
computation, therefore, as for the adjacent strips illustrated in Figure 3, 114 pairs of corresponding
planes were matched, as shown in Figure 3e.
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(b)

(d) (e) (f)

Figure 4. Segmentation results of planes from six types of specific roof structure by the coarse-to-fine
method: (a) Gable; (b) Pyramid; (c) T-Joint; (d) Flat; (e) Hip; (f) Complex structure.

3.1.3. Parameters Estimation and Evaluation

Adjacent strips displayed in Figure 3 were chosen to illustrate the comparison of the rotation matrix
and translation vector estimated from the proposed method and the one in Wu and Fan [17]. Because
corresponding roof planes were manually selected in Wu and Fan [17], eight pairs of such patches were
selected for the estimation of the rotation matrix R(¢, w, k) and translation vector T. The approximate
locations of these patches were indicated by the small rectangles in Figure 3a. A comparison between
the two methods with respect to estimated transformation parameters, o, the number of corresponding
planes and the manner of selecting corresponding planes was listed in Table 1.

Table 1. Comparison of the proposed method and the one from literature [17].

Aspects The Proposed Method The Comparison Method
1.000629  0.000034  0.012337 0.999984  0.000697 —0.044519
R(p,w,x) [ 0.000366  1.001069  —0.029612 ] [ —0.002924 0.999815 —0.074462 }
—0.000542 —0.000011  0.997252 —0.000441 0.000125  0.993573
-0.211 -0.014
T l -0.358 l l 0.198 }
-0.248 -0.155
o (m) 0.023 0.025
Number of corresponding planes 114 8
Manner of selecting corresponding Automatic Manual
planes

Table 1 shows that both R(¢, @, k) estimated from two methods are close to each other due to the
fact that they are approximate to the unit matrix. The magnitude of the difference between the two
translation vectors is small too. Such results are rational because most deviations were eliminated after
system calibration, leaving merely slight discrepancies existing between adjacent strips. Although
there are slight differences between two methods in transformation parameters estimation, there were
114 pairs of corresponding planes for adjustment computation automatically detected by our method,
which was far more than the comparison method where 8 matched planar patches were selected
manually. Moreover, the mean square errors of the proposed method were slightly less than the
comparison one, indicating the overall accuracy of the parameters estimated by our method is better
than the comparison method.
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In order to visually evaluate the accuracy of strip adjustment, eight profiles before and after
adjustment were selected (small rectangles in Figure 3a), as shown in Table 2. Average distance D eqn,
which was defined as the average distances from the points in one strip to the fitted plane in the adjacent,
was introduced to quantitatively evaluate the adjustment results. Root Mean Square Error (RMSE)
of Dyean was calculated by assuming that the distances between matched planes were zeros after
adjustment. Moreover, the reduced RMSE (Nrpsk ), denoted by (RMSEbe fore — RMSE, fter) /RMSEpe fore,
where RMSEj, for and RMSE,, ., represented RMSE before and after adjustment respectively, were
listed in the Table 2. Larger Nrysg indicates the increased precision of the parameter estimation. Points
within the red rectangles in the first column of Table 2 were adopted to calculate Dyeq;. It is obvious
that discrepancies between adjacent strips exist, even though system calibration was performed to the
original dataset, indicating the necessity of strip adjustment. Accuracy of the adjustment results of the
proposed method, measured by Djyeqn, RMSE and Nrpssg are slightly better than the comparison one.
The Nrumsg is improved 0.8% and 0.8% by the proposed method compared with the comparison and
TerraMatch. Considering that our method segments and matches buildings and planar patches in an
automatic fashion, it outperforms the method in Wu and Fan [17]. Moreover, though some predefined
thresholds are required in the roof plane segmentation and matching stages, and these threshold values
affect the final adjustment more or less, the proposed method dose achieve satisfying results. The final
adjustment results of the seven strips were listed in Table 3.

Table 2. Visual and quantitative comparison of adjustment of two adjacent strips.

Before Adjustment Proposed Method Comparison Method TerraMatch
Profiles Dyyean Profiles D, ean Profile D,;00n Profile D,,0an

0.353 0.011 0.023 0.013

0.358 0.011 0.013 0.023

0.423 0.007 0.010 0.006

0.457 0.008 0.007 0.011

0.375 0.007 0.010 0.005

0.346 0.006 0.006 0.005

. 0.510 0.012 0.013 0.015

§ 0.012 0.011 0.014

RMSE 0.417 -- 0.010 -- 0.013 -- 0.013

NRrMSE -- -- 97.6% -- 96.8% -- 96.8%




Sensors 2019, 19, 5131 12 of 20

Table 3. Results of the strip adjustment to the six pairs of strips.

Serial No. of Number of Number of Corresponding o(m)
Adjacent Strips  Corresponding Buildings Roof Planes
1&2 70 114 0.023
2&3 37 54 0.028
3&4 102 118 0.035
4&5 128 171 0.030
5&6 121 152 0.032
6&7 36 45 0.033

3.2. Experiment of Dual Channel LiDAR Data

3.2.1. System and Data Description

Dual channel airborne LiDAR system AX80, developed by Trimble, is a new generation airborne
LiDAR designed to provide rapid and efficient point cloud acquisition. One laser emitter is directed in
a slightly forward-facing position, with the other facing slightly backward when collecting data. Thus,
two strips of the same region are collected at the same time in different views [51]. As with a single
channel LiDAR system, small discrepancies still exist between adjacent strips even if careful manual
calibration is performed. The present experiment was to validate the effectiveness of the proposed
method for strip adjustment of the data acquired by AX80. Experimental data collected in the city of
Shi Jiazhuang, Hebei Province, China in 2014 was used in the experiment. The average flying height is
about 2300 m, average flying speed is 72 m/s, and average strip width is 1900 m. The average point
density is approximately 2.5 points/m? and the average point distance is approximately 0.6 m. Due to
the special structure of laser scanner, lateral overlap between strips obtained by two lasers are almost
100%. Main objects in the scene include buildings, trees and roads, as shown in Figure 5a for two
adjacent strips. System calibration has been carried out on the original data.

3.2.2. Results of Building Matching and Planar Patch Segmentation

The same processes as the first experiment were applied to extract building footprints from the
experimental dataset, as shown in Figure 5b with red and white representing laser points from adjacent
strips. Figure 5b shows that the regions covered by the two strips are almost the same due to the dual
channel configuration of AX80. Individual buildings segmented were displayed in Figure 5c, where points
belonging to the same building were rendered with the same color. More buildings were segmented when
compared to the results of experiment one. To reduce redundant calculations and improve algorithmic
efficiency, buildings with 100 to 500 points were used in the process of building matching, in which the
MHD was set to 10 m. The extracted building pairs were displayed in Figure 5d. The same parameters as
experiment one were used for roof plane segmentation and matching, except that only roof planes with
50-200 points were adopted for plane matching. For the two strips displayed in Figure 5a, 79 pairs of
corresponding planes were detected from the matched buildings, as shown in Figure 5e.

]

A T

§

Figure 5. Cont.
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Figure 5. One of the adjacent strips in matching and segmentation experiment: (a) Part of adjacent
strips of point cloud (rendered by height); (b) Buildings extracted by the proposed method. Red and
white represent buildings in different strips; (c) Building segmentation of one strip. Rendered in
different colors; (d) Buildings matched. Individual buildings were rendered in randomly chosen colors;
(e) Distribution of the corresponding patches for adjustment. Patches were rendered in randomly
chosen colors.

3.2.3. Final Results

Parameters for the adjustment model were estimated in a similar manner as in experiment one.
Profile results, RMSE and Ngysg before and after adjustment were listed in Table 4 for the adjacent
strips shown in Figure 5a. It is obvious from Table 4 that discrepancies between adjacent strips were
mostly removed after the strip adjustment by the proposed method. The average D¢ decreases from
0.258 m to 0.009 m by the adjustment, which slightly outperforms the comparison method. Moreover,
the Ngpsg is increased by 0.4% in the proposed method, indicating the effectiveness of our method for
strip adjustment for the dual channel LiDAR system.

Table 4. Visual and quantitative comparison of adjustment of two adjacent strips.

Before Adjustment Adjustment by the Proposed Adjustment by the Comparison
Profiles D ean Method Profiles D00, Method Profiles D00,

0.212 0.011 0.012
0.322 0.007 0.007
0.206 0.011 0.013
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Table 4. Cont.

Before Adjustment Adjustment by the Proposed Adjustment by the Comparison
Profiles D,ean Method Profiles Dy;0qn Method Profiles Dy;00,

0.253 0.009 0.011
0.197 0.013 0.013
0.222 0.008 0.009
0.230 0.012 0.014
0.422 0.004 0.007
RMSE 0.268 -- 0.010 -- 0.011
NRrMSE -- -- 96.3% -- 95.9%

3.3. Discussion on the Pixel Size of the Binary Image

Building segmentation is one of the key steps in the proposed method. It is based on the
segmentation of the binary image where binary 1 indicates the current pixel contains building points.
The most important factor affecting the generated binary image is the size of the grid cell based on
which the point cloud is converted to an image. A too small grid size can break down a building into
several separated parts, and the number of the parts in one strip may differ from that in the adjacent
strip, which can lead to a failed building matching. A too large grid size, on the other hand, can merge
adjacent buildings into one, which also can lead to a failed matching. The optimal size of the grid is
determined by multiple related factors, and the density of the point cloud is the principal one. In [52],
a more specific definition of density for building recognition was proposed and it was pointed out
that an average density of 1 point/m? can detect a building roof sized 2.8 m x 2.8 m. Furthermore,
an experiment was conducted to indicate the relationship between the grid size and the mean square
errors ¢ given the average point density of the two datasets, as shown in Figure 6. It can be seen that too
small or large grid size both lead to the failure of parameters estimation. A number of corresponding
planar patches can be detected, and parameters are correctly calculated if the grid size is set can be
set optimally. However, the mean square errors ¢ do not linearly increase with grid size as expected.
As pointed out in [17,21], if the detected planar patches for adjustment have similar orientation and
slope, then the accuracy of adjustment may be reduced conversely. In other words, the orientation,
slope and distribution of the corresponding, as well as the size of grid jointly influence the errors. From
the results of Figure 6, we concluded that the optimal grid size was one meter for our two datasets in
the experiments.
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—— point density =3.3 points per square meter
03 point density =2.5 points per square meter

Figure 6. Relationship between the grid size and the mean square errors.
3.4. Discussion on the Order of Strip Pairs for Adjustment

In terrestrial laser scanning, the accuracy of multi-station registration is influenced by the order
of individual stations [53,54]. Likewise, it is meaningful to study whether the order of strip pairs for
adjustment affects the final results. Seven strips were chosen from the single channel LiDAR dataset
and three types of order were defined: In type one order, the first strip was selected as a reference
one. Then, conducted adjustment process strip by strip successively. In type two and type three order,
the middle and the last strip were selected as the reference ones, respectively, as shown in Figure 7.
For an area with multiple strips, the first strip is defined as the first flight that an airborne LiDAR
begins to collect data. Mean and standard deviation of point-to-plane distances were adopted as
indicators for evaluation, which were illustrated in Figure 8.
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Figure 7. Three types of order of strip pairs for adjustment.
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Figure 8. The influence of order of strip pairs on adjustment evaluated by mean and standard deviation

of point-to-plane distances: (a) Results of type one order; (b) Results of type two order; (c) Results of
type three order.

Figure 8 shows that the mean and standard deviation of point-to-plane distances between adjacent
strips can effectively be reduced no matter which type of strip-pair order is applied in the adjustment,
indicating that it is unlikely that the order of the strip-pairs will influence the adjustment accuracy. Thus,
in an ideal case, results of different adjustment orders should match each other perfectly. However,
Figure 9 shows that obvious discrepancies exist, which is understandable because reference strips
are different among these three scenarios. This is an interesting phenomenon and probably can be
exploited for further refinement of the adjustment result, for instance, by minimizing the discrepancies.

M e e

L LEE]

Figure 9. Overlaying a profile of a building roof containing points obtained by adjustment with three types
of strip-pair order (red, white and green points were from type one, type two and type three respectively.).
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4. Discussion

Due to the irregular nature of the LiDAR data, one of the most important steps in the process
of strip adjustment is the detection of corresponding features between adjacent strips [17,18,22-24].
However, large numbers of corresponding planar patches can be detected in an automatic manner in
the proposed method, which is of significance for strip adjustment. Building matching and planar
patches matching are two core steps in this process. In former step, corresponding buildings in
adjacent strip are matched based on MHD. In latter step, MHD and normal vectors similarity are
both used to match patches from corresponding buildings. After above steps, corresponding planar
patches are automatically detected. From the experimental results of two different types of dataset,
numbers of planar patches were detected, and discrepancies between adjacent strips were eliminated.
It demonstrates that corresponding planar patches can be detected by introducing MHD in matching
process. However, in comparison method [17], compared with our method, corresponding planar
patches are selected manually, which is time-consuming.

Despite more planar patches can be detected from corresponding buildings by the proposed
method compared with the method in [17], some corresponding planes, especially those with similar
orientations and slopes in a local region, are unnecessary for strip adjustment [17,19,21,47]. As pointed
out in [21,47], if the detected corresponding planar patches for adjustment estimation have similar
orientation and slope, then the accuracy of the adjustment may be reduced, whilst the patches
in different orientations and slopes can reduce the correlation among the estimated parameters.
Thus, planes with different orientations and slopes are preferred in adjustment calculation [17,19].
Moreover, [21] showed even distribution of slopes in different directions reduced the correlation among
the estimated parameters, either. Therefore, we believe that our method will perform better in terms of
accuracy and efficiency if evenly distributed corresponding planar patches with different orientations
and slopes and even distribution are selected for the adjustment calculation. This is a problem which
deserves further studies.

In addition, coarse-to-fine roof segmentation method is completely based on the properties of
a plane, which is widely adopted in roof segmentation [28,43,55]. Though it can detect enough
patches for adjustment, several predefined parameters are required, which limit the automation
level of the proposed method. A more automatic method for planar patch detection to aid in strip
adjustment remains a challenge. Moreover, there are other distance available, such as Euclidean
distance, Manhattan distance, Chebyshev distance, etc. [56,57], but only Euclidean distance was used
in the calculation of Hausdorff Distance (HD). How to introduce other distances to the HD calculation
and its potential influence to building and roof plane matching are worth further research.
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