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Abstract: As the Internet of Things (IoT) is evolving at a fast pace, the need for contextual intelligence
has become more crucial for delivering IoT intelligence, efficiency, effectiveness, performance,
and sustainability. Contextual intelligence enables interactions between IoT devices such as
sensors/actuators, smartphones and connected vehicles, to name but a few. Context management
platforms (CMP) are emerging as a promising solution to deliver contextual intelligence for IoT.
However, the development of a generic solution that allows IoT devices and services to publish,
consume, monitor, and share context is still in its infancy. In this paper, we propose, validate and
explain the details of a novel mechanism called Context Query Engine (CQE), which is an integral part
of a pioneering CMP called Context-as-a-Service (CoaaS). CQE is responsible for efficient execution
of context queries in near real-time. We present the architecture of CQE and illuminate its workflows.
We also conduct extensive experimental performance and scalability evaluation of the proposed CQE.
Results of experimental evaluation convincingly demonstrate that CoaaS outperforms its competitors
in executing complex context queries. Moreover, the advanced functionality of the embedded query
language makes CoaaS a decent candidate for real-life deployments.
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1. Introduction

Nowadays, advancements in hardware and software technologies have made it possible to embed
sensing, computation, and communication capabilities in everyday objects, from a coffee mug to an
autonomous car, and turn them into smart connected objects. These devices can sense enormous
amounts of data about their environment and share it via the Internet. This network of inter-connected
devices, known as the Internet of Things (IoT), is a fast-evolving trend. It is expected the overall
spending on IoT will reach US $1.3 trillion by 2020 from US $696 billion in 2015 [1] and the number of
devices connected to the internet will reach 20 to 30 billion in 2020.

The proliferation of such IoT devices offers the enormous potential to share rich, useful and relevant
information about the environment that can help in the development of smart services. These services,
which we refer to as IoT services, enable that development of many smart applications in domains,
such as smart cities, smart environment, smart agriculture, and eHealth. A key requirement to deliver
the smartness required by the application lie in the ability to extract context from the data produced
by IoT devices. Context, as defined by Dey, is “any information that can be used to characterise the
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situation of an entity, where an entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications themselves” [2].
Such IoT applications that utilise context data and adapt their behaviours accordingly are known as
context-aware IoT applications [3]. Context-awareness enables intelligent adaptation of IoT applications
such that they can perform their tasks in an efficient, proactive and autonomous manner.

For example, consider a smart home scenario where a smart washing machine is tasked to wash a
piece of clothing tagged with information (e.g., using RFID) regarding fabric care instructions. Using
this information, the smart washing machine can automatically choose the right setting for washing the
clothes. Moreover, this information can be used by a smart tumble dryer to decide what temperature
and revolutions per minute (RPM) should be used for drying the clothes. Assuming the delicate
clothing material is not suitable for tumble drying, without context, the smart dryer will dry the clothes
unaware of this fact. Augmenting IoT application with context that stem from IoT devices will enable
the application (e.g., an application running on the smart dryer) to reason about the data and arrive at
the right decision, in this case, not to tumble dry the delicate clothes.

Context can have different levels of abstraction such as low-level information—a temperature
value of 35 ◦C, or high-level context, which is inferred from low-level context such as ‘a fire threat’.
High-level context is also known as ‘situation’. While context-driven intelligence is a fundamental
factor for IoT sustainability, growth, interoperability and acceptance, IoT’s characteristics, such as the
unprecedented scale, volume of data, heterogeneity and dynamism, will make the development of
context-aware IoT applications and services a very challenging task.

In general, three typical approaches exist for the development of context-aware applications [4].
In the first approach, context-aware applications acquire, process and use their context of interest
themselves. In the second approach, context-aware applications are developed by using some libraries
or toolkits that facilitate obtaining and processing context. In the third approach, the context-aware
applications are developed on the basis of context-aware middleware that enables context management
(i.e., acquire, process, store, and publish). The third approach is communication through a centralised
middleware that offers all the required functionality for context management. This approach has several
advantages compared to the first and second approaches. First of all, it can reduce the complexity
of developing context-aware IoT applications as all the context-related functions are handled by the
middleware [4]. Secondly, using a central middleware for developing context-aware IoT applications
enables context exchange across IoT silos [5]. Further, the greater benefit is in being able to share the
context extracted/reasoned from data produced by the IoT devices with other IoT applications that
can use this context to support decision making, actuation, analysis etc [6]. Therefore, we believe
using such type of middleware, which is referred to as Context Management Platform (CMP), for the
development of context-aware IoT applications are superior to the first two approaches.

A fundamental requirement of a CMP is to be able to provide support for publishing, querying,
monitoring, and sharing contextual information. Such a platform will manage the interaction
between the sources of context and offer contextual information to context-aware IoT applications.
A notable number of CMPs have been proposed [7–10]. However, the existing CMPs suffer from
one common shortcoming, which is the lack of a generic and expressive interface that allows IoT
devices, applications, and services to publish, consume, monitor, and share context data seamlessly.
To address this shortcoming, in our earlier research, we have proposed a high-level language for
querying context [6,11,12], which called Context Definition and Query Language (CDQL).

CDQL allows IoT devices and applications to query, monitor, and consume the context data
produced by IoT devices and services. One of the main advantages of CDQL compared to existing
context query languages, is its ability to express complex context queries. Existing CQLs have very
limited support for querying high-level context and providing situation-awareness. More importantly,
most of the existing CQLs can only support a single entity per query. More precisely, it is not
possible in existing CQLs to query about context of multiple joined entities in a single query.
In contrast, CDQL supports querying high-level context as well as querying multiple entities in
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a single query, which makes CDQL queries complex. Offering such functions will reduce the
development complexity of context-aware applications. Moreover, supporting complex context queries
can lead to higher performance by reducing communication overhead and creating the opportunity for
query optimisation [13]. However, in order to support complex queries, it is required to develop a
more complicated query execution mechanism for CMP to handle such queries.

In continuation of our efforts towards operationalising and externalising context for smart IoT
applications, in this paper, we propose, develop, implement, and evaluate a comprehensive and
efficient mechanism for enabling execution of context queries in IoT ecosystem in near real-time.
We call this mechanism Context Query Engine (CQE). CQE is capable of processing and executing
context queries in a resource and time-efficient manner. This work is part of EU Horizon-2020 project
called bIoTope (www.biotope-h2020.eu)—Building IoT OPen Innovation Ecosystem for connected
smart objects where Context-as-a-Service (CoaaS) [14] forms an important part of its service offerings.

The main contributions of this paper are summarised below:

• We have designed and developed a mechanism (i.e., Context Query Engine) that allows execution
of complex context queries in dynamic IoT ecosystems.

• We have implemented a prototype of the proposed solution.
• We have conducted a comprehensive set of experiments to measure the performance of CQE in

the execution of various context queries and compare its performance with a well-known existing
CMP (i.e., Fiware Orion).

This paper is organised as follows: Section 2 summarises the main research directions and
the related work in the area. Section 3 describes the high-level architecture of the CoaaS platform
as well as the foundations of CDQL. It also sets the main terminology and definitions. Section 4
presents the architecture and underlying components and algorithms of CQE. Section 5 describes the
implementation details of the proposed solution. Section 6 is devoted to performance evaluation of
CQE. Section 7 concludes the paper and sets directions for future work.

2. Related Works

The management and provisioning of context information are essential elements for realising
context-aware services and applications in the realm of IoT. In this section, we first review the main
aspects and functionalities of a CMP. Then, a brief overview of some of the most recognised CMPs
is presented.

The major functionalities of context management platforms can be subdivided into six classes [10],
which are below:

• Sensor Data Acquisition. This function is responsible for fetching raw context data from multiple
sources. In the context-aware system, it is essential that the system can support a variety
of heterogeneous context sources. Based on the computational capability of context sources,
pre-processing and data cleaning might be executed locally (on the context source) or externally
as a part of the CMP’s functionality.

• Context Storage. This function refers to the mechanism of persisting contextual information in
the platform. Two crucial aspects of context storage are: (i) the storage of current context (context
caching) and (ii) the storage of historical context. Caching improves the performance of CMPs
in answering incoming queries by omitting the process of fetching repeated context. Moreover,
a CMP should be capable of storing and indexing historical context. Historical context can be
utilised by CMPs to produce valuable insights about IoT entities. For example, the historical data
can be used to learn the habits of IoT entities and predict their future states. This can be used both
for query serving and platform’s self-adaptation.

• Context Service registration and Discovery. A CMP should provide a mechanism that allows
sources of context (i.e., IoT devices and services) to describe and register their offered contextual
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information. Moreover, it is vital for a CMP to be able to search and find the matching sources of
context for an incoming query.

• Privacy, Security & Access Control. This feature is considered as a vital function in CMPs as
they might expose sensitive information about IoT devices and their owners to unauthorised
third parties. As a result, it is essential for a CMP to have a sophisticated authentication and
authorisation mechanism to guarantee the privacy and security of users’ contextual information.

• Context Processing & Reasoning. Sources of context (e.g., sensors) mostly offer raw sensory
data to CMPs. Hence, a CMP is required to perform some pre-processing to infer context
information from raw sensory data. Moreover, in many use-cases, it is essential to infer high-level
context/situation from multiple existing low-level context. Therefore, a CMP should be capable
of performing different context inference and situation reasoning techniques such as feature
extraction, rule-based reasoning or probabilistic inference.

• Context Querying (Context Diffusion & Distribution). The ultimate objective of a CMP is
to facilitate the development of context-aware applications. Each context-aware application
has unique contextual requirements. As a result, a CMP should provide a generic approach
that allows context-aware applications to request for contextual data based on their unique
requirements. This approach should define a comprehensive and flexible query language that
allows context-aware applications to query the context of their entities of interest. Moreover,
it should support different communication modes, namely push-based queries and pull-based
queries. Push-based queries refer to event-driven asynchronous queries (i.e., publish/subscribe)
that allows context-aware applications to subscribe for changes in the context of their entities
of interest and get notified about context changes. Pull-based queries refer to synchronous
on-demand queries.

Existing context management platforms can be classified into three main generations. The earliest
generation, such as the Active Badge System [15], only focused on utilising location data. The second
generation includes systems such as Context Toolkit [2], SOCAM [16], and CoBrA [17]. These platforms
tried to achieve a higher level of generality, supporting more varieties of context. However,
these platforms suffer from several common constraints that make them inefficient to be used
in real-world context-aware systems. For example, Context Toolkit does not support context sharing
among heterogeneous context providers and consumers as it is not built on a foundation of common
ontologies with explicit semantic representation [18]. Another example of these constraints can be seen
in the SOCAM platform. SOCAM adopted First Order Logic (FOL) for supporting context/situation
reasoning. While FOL is useful to infer basic context, it does not support reasoning under uncertainty.
To conclude, the main constraints of the second-generation platforms are the lack of fault tolerance and
scalability, poor interoperability support and naïve context/situation reasoning and processing.

The effort of the research community to address these limitations lead to the development
of third-generation context management platforms, such as Context-Aware Services Framework
(CA4IoT) [19], CAMPUS [20], and Fiware Orion Context Broker [21].

CA4IOT is a multi-layered IoT platform that provides a mechanism that helps users to select the
most suitable sensors for a specific task. CA4IOT has four primary layers, which are SDAL, CSDL,
CPRL, and DSCDL. SDAL is in charge of context acquisition. CSDL is responsible for automatic
discovery of context services. CPRL provides a set of methods that allows the processing of context
data. Lastly, DSCDL is in charge of user management. While the authors CA4IoT did a great job in
explaining the high-level architecture of their platform, they did not provide any details about technical
challenges and implementation details of this middleware. Therefore, the validity and feasibility of
their proposed platform are not assessable.

Context-Aware Middleware for Pervasive and Ubiquitous Service (CAMPUS) [20] is another
CMP that proposed to facilitate the development of context-aware applications. CAMPUS is
designed on the basis of three main techniques, which are a compositional adaptation, ontology,
and description logic/first-order logic reasoning. The main feature of CAMPUS platform is its
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decision-making mechanism that enables automatic adjustment to the real-time changes of context in
context-aware applications.

Among the existing CMPs, we found Orion Context Broker [21] the most advanced platform
in terms of consistent development and market penetration. Orion is one of the core components
of Fiware platform. Fiware Orion allows management of the entire lifecycle of context information
including updates, queries, registrations and subscriptions. Orion Context Broker is developed on
top of a CQL called NGSI v2 [22]. NGSI v2 defines a REST API based on the standard usage of
HTTP verbs and enables context consumers to access context data simply through making HTTP
requests. NGSI was recently used as a base for the development of an ETSI NGSI-LD standard
for context information management [23,24]. However, the NGSI language suffers from a number
of drawbacks. NGSI supports only one entity per query, which limits the expressivity, flexibility,
and query performance, and it also adds network overhead. Moreover, NGSI has limited support
for situation reasoning and monitoring. To address this, FIWARE has integrated the Esper Complex
Event Processing (CEP) engine [25], which uses Esper EPL [26] to represent monitored situations.
However, NGSI and Esper EPL are two disjoint technologies, and this increases the development and
maintenance efforts. Such an approach also adds conceptual complexities as Esper EPL is a more
generic technology and is not designed to support IoT context-aware environments.

As discussed above, the third generation CMPs successfully addressed some of the main limitations
of the earlier generation of context management platforms. However, we believe the development of a
comprehensive CMP that can evolve to an industry-standard level is still in its infancy. We believe one
of the main shortcomings of these middleware systems is the lack of a comprehensive and flexible
context query language (CQL) that allows context-aware applications to search and retrieve contextual
data based on their specific requirements [12]. The CQLs supported by existing CMPs are not expressive
enough to represent complex context queries. For example, to the best of our knowledge, none of the
existing CQLs supports querying multiple entities in one query. Eventually, none of these languages
has become a widely adopted standard, while such a standard is very important nowadays [23].

Another important shortcoming of existing CMPs is their limited support for context processing,
including context reasoning and situation inferences. We believe to deliver the promised smartness,
just storing and sharing the context data is not sufficient. It is essential to process the context data,
which is retrieved from multiple sources, to produce high-level context, infer the real-time situation of
an entity of interest and its surroundings, and react to it accordingly.

The last but not least, the performance and scalability of the existing CMPs are still far from the
industry standards level, where CMPs should store, process, and monitor context of millions of IoT
entities in near real-time. In the rest of this paper, as a step towards maturing the context management
platforms, we will propose a novel mechanism that enables efficient execution of complex context
queries in near real-time.

3. Context-as-a-Service Background

This section describes the overview of CoaaS platform and its role in the IoT ecosystem.
Furthermore, the formal definitions for the underlying concepts of CoaaS will be presented in
this section. Lastly, we present the blueprint architecture of CoaaS platform and briefly explain its
main components.

3.1. Definitions

In this section, we introduce the fundamentals and definitions of the Context-as-a-Service (CoaaS)
platform. CoaaS is a context management platform, which has been designed to facilitate the
development of context-aware IoT applications by providing a generic yet flexible mechanism to query
and publish context. In other words, CoaaS enables applications to provide and consume context
about their entities of interest seamlessly, without requiring manual integration of IoT silos.
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As mentioned earlier, context is the information that can be used to characterise the situation
of an entity [2]. Entities can be persons, locations, or objects which are considered to be relevant for
the behaviour of an application. An entity can be characterised by a set of parameters, known as
context attributes:

Definition 1 (Entity and Context Attribute). In context-aware systems, an entity (denoted by E) accounts
for a physical or virtual object (such as a person, a car, an electronic device, or an event) that can be associated
with one or more context attributes (denoted by ca, which can be any type of data that characterises this entity.

For example, a ‘car’ entity can have a location, speed, fuel level, the number of available seats,
model, and manufacturer as its context attributes.

The big-picture view of Context-as-a-Service platform in the IoT ecosystem is represented in
Figure 1, which consists of three layers of Context Consumers, Context Providers, and the Context
Management Platform (CMP).

Sensors 2019, 19, x FOR PEER REVIEW 6 of 34 

behaviour of an application. An entity can be characterised by a set of parameters, known as context 

attributes: 

Definition 1 (Entity and Context Attribute). In context-aware systems, an entity (denoted by �) 

accounts for a physical or virtual object (such as a person, a car, an electronic device, or an event) that can be 

associated with one or more context attributes (denoted by ��, which can be any type of data that characterises 

this entity.  

For example, a ‘car’ entity can have a location, speed, fuel level, the number of available seats, 

model, and manufacturer as its context attributes.  

The big-picture view of Context-as-a-Service platform in the IoT ecosystem is represented in 

Figure 1, which consists of three layers of Context Consumers, Context Providers, and the Context 

Management Platform (CMP).  

 

Figure 1. Overview of the Context-as-a-Service platform in the IoT ecosystem. 

The top layer is a collection of context-aware IoT applications in various domains that require 

contextual information in order to perform their task. These applications are interested in collecting 

contextual information about a particular entity with specific characteristics. They are defined as 

context consumers. 

Definition 2 (Context Consumer). Context Consumer (CC) refers to any device or system that queries 

and receives context about one or several entities. 

The bottom layer, in Figure 1 shows the sources of context, which consists of sensors, smart 

connected devices, and systems that can produce context about entities. They are the context 

providers. 

Definition 3 (Context Provider). Context Provider (CP) refers to any device, application or system 

that provides context or data that can be used to infer context about one or several entities. 

We distinguish between different classes of CPs based on the type of context they produce. At 

the most basic level, a context provider can be a standalone sensor that is connected to the Internet 

Figure 1. Overview of the Context-as-a-Service platform in the IoT ecosystem.

The top layer is a collection of context-aware IoT applications in various domains that require
contextual information in order to perform their task. These applications are interested in collecting
contextual information about a particular entity with specific characteristics. They are defined as
context consumers.

Definition 2 (Context Consumer). Context Consumer (CC) refers to any device or system that queries and
receives context about one or several entities.
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The bottom layer, in Figure 1 shows the sources of context, which consists of sensors, smart
connected devices, and systems that can produce context about entities. They are the context providers.

Definition 3 (Context Provider). Context Provider (CP) refers to any device, application or system that
provides context or data that can be used to infer context about one or several entities.

We distinguish between different classes of CPs based on the type of context they produce. At the
most basic level, a context provider can be a standalone sensor that is connected to the Internet and
is capable of transmitting raw sensory data about a particular attribute of an entity. For example,
a temperature sensor connected to a Wi-Fi microchip such as ESP8266 [27] can act as a CP. However,
CPs can be more sophisticated and provide either low-level or high-level context about characteristics
of several IoT entities. For example, IoT gateways and middleware, sensor networks, or even a mobile
application can play the role of a CP and supply context. Lastly, some web-based services such as
Google Maps APIs, or weather forecast APIs can also act as context providers as they can produce
useful information. As a result, based on the CPs’ class, each context provider can have one or more
services, which produce context about an entity. We refer to these services as Context Services.

Definition 4 (Context Service). A Context Service (denoted by cs j, j ∈ N) provides contextual information
about a particular entity. Context service can be represented as a triple: 〈E, CA, P〉 where E denotes the related
entity, CA is a set of provided context attributes, and Predicates (denoted by P form a composite logical expression
defined over CA.

For example, a smart garage (which is a context provider) can provide a context service to deliver
values of context attributes such as cost, available facilities, and time limit (contextual information)
about available car parks (entity) in a specific location. Further, the working hours of this garage are
from 8 am to 8 pm during weekdays, and 10 am to 10 pm on weekends (complex context attribute).
This context service description can be represented as:

cs1 : 〈E1, CA1, P1〉

where:

E1 : carpark
CA1 :

{
cos t, location, available facilities, number of available parking spots, working hours

}
P1 :

location = LocA ∧
((workingHours between 8 : 00 and 20 : 00 ∧weekdays)∨
(workingHours between 10 : 00 and 22 : 00 ∧weekends))

On the basis of the presented definition for context services, we have designed a high-level
language called CSDL for describing context services, which is presented in [6].

In Figure 1, the middle layer shows the CoaaS platform, which enables global standardisation
and interworking among context providers and consumers. CoaaS can interact with CPs in two ways,
either by fetching the contextual data on-demand or through processing the incoming data streams.
In the first case, the CPs must have registered the description of their services first by sending a context
service registration (CSR) request. Then, CoaaS can retrieve data about IoT entities by sending requests
to corresponding providers on-demand. As mentioned above, CoaaS can also process streams of
context updates, which CPs are sending to the platform. Context updates contain updates of the
entities’ states and are processed by CoaaS to monitor situations. The blueprint architecture of CoaaS
platform is presented in Section 3.2.

On the other hand, context consumers can retrieve context information from the middleware by
issuing context queries (CQ).
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Definition 5 (Context Query). Context query is a request for contextual information (either context attributes
or high-level context inferred from context attributes) from one or many entities.

For example, a smart vehicle can issue a context query to retrieve the cost, location, and the
number of available spaces (contextual information) of the best parking facilities (the entity of interest)
near the driver’s meeting location based on his/her preferences. This query contains three main entities,
namely parking facility, smart vehicle, and driver.

Each context query can be split into several sub-requests, where the final result of the query will
be computed based on the contextual information retrieved from the results of these sub-requests by
aggregating the results or using the results to infer a higher-level context.

Definition 6 (Context Request). A context request (denoted by cri, i∈ N) represents a request for contextual
information about a particular entity. Context request can be represented as a triple: 〈E, CA, P〉 where E denotes
the entity of interest, CA is a set of requested context attributes, and P. is a set of predicates, which are defined
over CA using logical expressions.

Based on Definitions 5 and 6, we have designed a novel context query language that supports
complex context queries concerning various entities. This language is exhaustively presented in [11].

The aforementioned context query for finding car parks can be broken down into three context
requests, one for each entity. The first request is issued to retrieve context about the driver, the second
request is issued to identify the smart vehicle, and the last context request is issued to retrieve
information about available parking. The formal descriptions of context requests are represented as
below, and the actual CDQL representation of the query is shown in Code block 1:

cr1 :
〈
person,

{
meeting, parking pre f erences

}
, {driver id = 101}

〉
cr2 :

〈
car,

{
location, width, height, length

}
, {VIN = 202}

〉
cr3 : 〈

parking f acility,
{
location, cost, #available spots

}
,{

distance (meeting.location, parking.location) < 500
} 〉

After defining the underlying concepts in this section, we present in the next section the blueprint
architecture of CoaaS platform and introduce its main components and data flows.

3.2. CoaaS Platform Blueprint Architecture

This section presents the blueprint architecture of the CoaaS platform and discusses its main
components. As mentioned in Section 2, CMPs have six major functionalities, namely (i) sensor data
acquisition, (ii) context storage, (iii) context lookup and discovery, (iv) privacy, security and access
control, (v) context processing and reasoning, and (vi) context diffusion and distribution. Aligned with
these functionalities, we designed the blueprint architecture of CoaaS platform accordingly, which can
be seen in Figure 2.

As this figure shows, the CoaaS platform has five main components: Communication and
Security Manager, Context Query Engine (CQE), Situation Monitoring Engine (SME), Context Storage
Management System (CSMS), and Context Reasoning Engine (CRE).
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Table 1 provides a mapping between the CoaaS components and the aforementioned CMP
functionalities. In the rest of this section, a brief description of each of these main enabling components
is presented.

Table 1. CoaaS major components.

Component Responsibilities

Communication and Security Manager (iv) Privacy, security and access control

Context Query Engine
(i) Sensor data acquisition
(iii) Context service registration and discovery
(vi) Context querying (Context diffusion and distribution)

Situation Monitoring Engine (i) Sensor data acquisition
(v) Context processing and reasoning

Context Storage Management System
(i) Sensor data acquisition
(ii) Current and historical context storage
(iii) Context service registration and discovery

Context Reasoning Engine (v) Context processing and reasoning

The Communication Manager is responsible for the initial handling of all incoming and outgoing
messages, namely context services registration (CSR), context queries (CQ), context updates (CU),
and context responses. This module acts as a proxy and distributes all the incoming messages from
CPs and CCs to the corresponding components. To guarantee the privacy and security of CoaaS,
this component is linked to the Security Manager. The Security Manager module firstly checks the
validity of incoming messages and authenticates requests. Moreover, the Security Manager checks
whether the context consumer has access to the requested context service or not (authorization). Lastly,
it is also responsible for monitoring all the incoming messages to identify any suspicious patterns,
such as distributed denial-of-service (DDoS) attacks.

The Context Query Engine (CQE) is mainly responsible for parsing the incoming queries,
generating and orchestrating the query execution plan, and producing the final query result.
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Furthermore, this component also takes care of fetching required data from context providers on
demand. This component will be discussed in more detail in Section 4.

The Situation Monitoring Engine (SME) is designed to support the continuous monitoring of
incoming context, infer situations from available context, detect changes in situations and provide
notification of detected changes. This component monitors the real-time context of the IoT entities and
reason about their situations. It also initiates the actuation procedure by notifying context consumers
when their situation of interest is detected.

The Context Storage Management System (CSMS), which is described in detail in [28], has three
main objectives. First of all, it stores descriptions of context services and facilitates service discovery.
Secondly, it caches contextual information to ensure reasonable query response time and deals with
problems like network latencies and potential unavailability of context sources. The third objective is
storing and analysing the historical context to facilitate self-adaptation and efficiency optimization.

The main task of the Context Reasoning Engine (CRE) is to infer situations from raw sensory data
or existing primitive low-level context. It is a common need in many context-aware IoT applications to
query about the situation of a context entity or trigger a query when a specific situation is detected.
A situation can be seen as a high-level context that is inferred from multiple low-level context [29].

In the next subsection, we will briefly describe the structure and syntax of CDQL query language.

3.3. Context Definition and Query Language (CDQL)

Context Definition and Query Language (CDQL) [7–9] is a flexible and generic context query
language that allows IoT applications to publish and query context. Figure 3 illustrates the production
rule of the CDQL language, which consists of three mandatory and two optional clauses.Sensors 2019, 19, x FOR PEER REVIEW 10 of 34 
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Figure 3. CQL Production Rule.

The mandatory clauses are PREFIX, SELECT, and DEFINE. The PREFIX clause is responsible
for identifying the semantic vocabularies that are used in the query to facilitate interoperability.
The SELECT clause is responsible for identifying the output of the query which can be either low-level
context (a set of context attributes), or high-level context. The DEFINE clause is considered as the core
of CDQL and makes it possible to write complex queries that include various entities and constraints.
This clause defines the entities that are involved in a context query. Code block 1 provides an example
of a basic CDQL query. This query expresses a request to find available car parks and can be issued by
a smart-car or the navigation system’s backend server.
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prefix schema:http://schema.org, mv:http://schema.mobivoc.org 
select (parking.*) 
define  
entity parking is from mv:ParkingFacility where distance(parking.location, 
event.location , "walking") < {"value":500, "type": "distance", "unit":"m"} 
and  
parking.cost < {"value":5,"unit":"aud"}, 
entity event is from schema:event where  
events.attendee.email = "person1@test.com" 

As mentioned earlier, a CDQL query also has two optional clauses, namely WHEN and CALLBACK.
The WHEN clause provides support for event-based and periodic queries. Using this clause, a context
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consumer can subscribe to a specific situation, and the result of the query will be sent back to the
consumer asynchronously when the defined situation is detected. We refer to such type of queries as
PUSH-based queries. On the contrary, a PULL-based query does not contain a WHEN clauses, as it is
executed only once immediately after the query has been received.

In CDQL, in order to represent situations, we designed a specific syntax that supports
rule-based reasoning, uncertainty handling, temporal relations, and windowing functionality.
In Code block 2, an example of Situation representation is provided. This example defines a
probabilistic ‘goodForWalking’ situation-function, which computes the probability of the comfortable
walking condition for a particular location. The representation of the situation contains definitions
of ranges of values for every attribute. Each attribute is assigned with a weight and, each range is
assigned with a belief. The representation is based on the Context Spaces Theory (CST), and more
details can be found in [30,31].Sensors 2019, 19, x FOR PEER REVIEW 11 of 34 
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create function weatherSituation is on  
schema:weather as r1 {  
   "goodForWalking" : {  
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} 

The last clause of CDQL is the SET clause, which consists of three elements, namely CALLBACK,
META, and OUTPUT. The CALLBACK clause identifies how the result of queries should be sent back to
the context consumers. This clause describes the callback method (e.g., HTTP Post) and other required
fields (e.g., Callback URL and headers). The CALLBACK clause can be used for both push-based
and pull-based queries. In the case of pull-based queries, it will allow context consumers to issue
non-blocking queries and receive the result as soon as the execution of a query is finished. Regarding
push-based queries, when the callback clause is presented, the result of the query will be pushed back
into the subscribed entity as soon as the related situation is detected. The code snippet in Code block 3
shows an example of a PUSH-based CDQL query. This query will instruct the CoaaS platform to
monitor specific parking that a car is driving to. If CoaaS detects that the carpark will be full by the
time a car will arrive there, the platform suggests alternative carparks. It is worth mentioning, in order
to select a list of alternative car parks, CoaaS takes the distance and walking conditions between the
destination and parking into consideration by using the goodForWalking function.
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prefix schema:http://schema.org, mv:http://schema.mobivoc.org 
select (altParking.*) 
when isFull(selectedParking, car, event) > 0.80 
define  
entity selectedParking is from mv:ParkingFacility where  
selectedParking.id = "parking 1" , 
entity event is from schema:event where  
events.attendee.email = "person1@test.com", 
entity car is from mv:car where  
car.vin = "sample vin", 
entity altParking is from mv:ParkingFacility where 
( 

distance(altParking.location, event.location , "walking") < 
{"value":500, "type": "distance", "unit":"m"}  
or ( 

distance(altParking.location, event.location , "walking") < 
{"value":2, "type": "distance", "unit":"km"}  
and  
goodForWalking(altParking.location.weather) >= 0.80 

    ) 
) and  
altParking.cost < {"value":5,"unit":"aud"} and isFull(altParking, car, event) 
< 0.80  
set callback: {"method":"HTTP/Post", "URL":"www.test.com"} 
 

The META clause enables another essential requirement for a context query language, which is
expressing different aspects of context, such as imperfectness, uncertainty, QoC, and CoC. In other
words, this clause allows users to set the minimum acceptable (or default) value for each metadata.
Lastly, CQL allows developers of context query to define their preferred structure of output through
the OUTPUT clause. The OUTPUT clause consists of two main elements, a STRUCTURE that identifies
the output data structure (e.g., XML, JSON, or ODF), and a vocabulary that specifies which semantic
vocabulary should be used for each context-entity.

In this section, we have provided an overview of CoaaS platform and presented its blueprint
architecture. Moreover, we have identified the main components of CoaaS and explained their roles.
As discussed in Section 2, existing IoT Context Management Platforms (CMPs) have limited support
for the queries of a comparable complexity for which there is a growing demand from the industry.
To address this need, we propose an efficient engine that enables execution of complex context queries
in the IoT ecosystem. This engine, which is referred to as Context Query Engine (CQE), will be
discussed in the rest of this paper.

4. Context Query Engine

The architecture of Context Query Engine (CQE) is illustrated in Figure 4. As mentioned earlier,
this module is mainly responsible for parsing the incoming queries, generating query execution plans,
orchestrating the execution of queries, and producing the final query result. Furthermore, CQE also
takes care of fetching the required data from context providers on demand.

As shown in Figure 4, there are five main components within CQE, namely (i) Context Query
parser (CQP), (ii) Context Query Coordinator (CQC), (iii) Context Service Discovery (CSD), (iv) Context
Service Invoker (CSI), and (v) Context Query Aggregator (CQA). A detailed description of each of
these components will be presented in the remainder of this section.
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Figure 4. Context Query Engine Architecture.

When a query is issued to CoaaS, after passing the security checks, it will be sent to the
Context Query Parser (CQP) by Communication and Security Manager. The CQP has three main
responsibilities, namely, parse the incoming queries, break them into several sub-queries (i.e., context
requests), and determine the query’s execution plan. The details of generating the execution plan for
CDQL queries are discussed in Section 4.1.

Then, the parsed query plus the execution plan will be sent to the Context Query Coordinator
(CQC). The CQC plays an orchestration role in the engine. This module is responsible for managing
and monitoring the whole execution procedure of a context query. We will describe the details and
workflow of these components in Section 4.2.

In the next step, context requests will be pushed into the Context Service Discovery (CSD) module.
This module is in charge of finding the most appropriate context service for an incoming request.
The workflow of this component consists of two parts. First, it finds context services that match
the requirements of a context request by utilising CSMS. Then, based on the discovered services,
it returns a sorted set of the best available context services that can satisfy the requirements of a request,
considering different metrics such as Cost of Service, and Quality of Service. The underlying concepts
of CSD are presented in [6].

After selecting the best eligible context providers (i.e., context service) for each context request,
the request will be passed to the Context Service Invoker (CSI). This component is responsible
for fetching context from the corresponding context providers to retrieve the required contextual
information and pass the retrieved information to the Context Query Aggregator (CQA). Finally,
the CQA combines the results of all the context requests and generates the final result of the query.
The retrieved context may also be processed by the Context Reasoning Engine (CRE) to produce
high-level context.

4.1. Context Query Parser and Execution Plan Generation

As stated before, CDQL supports complex context queries concerning various entities where the
information about each entity might be provided by a different context service. In other words, CDQL
queries are capable of expressing requests for contextual information related to one or several entities.
Furthermore, entities used in a query can be dependent, which means the information retrieved from
one entity might be used in the query definition of another entity.
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For example, consider the CDQL query shown in Code block 4. This query consists of three
context entities, namely vehicleA, trafficElements, and targetCarparks, and presents a request to find all
the traffic incidents that might affect vehicleA and also available parking options near its destination.
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prefix datex:http://vocab.datext.org, mv:http://schema.mobivoc.org 
select (trafficElements.*, targetCarpark.*) 
define  
entity vehicleA is from datex:vehicle where 
vehicleA.vehicleRegistrationPlateIdentifier = “1hm3ea”, 
entity trafficElements is from datex:TrafficElement where 
spatioTemporalIntersect(trafficElements.geo, vehicleA.itinerary, 200) = true, 
entity targetCarparks is from mv:ParkingGarage where distance(targetCarparks, 
vehicleA.destination.geo , "walking")< {"@type":"shema:QuantitativeValue", 
"value": 500, "unitCode":"m"} 
 

As this query shows, the definition of both trafficElements and targetCarparks are dependent on
vehicleA, as their WHERE clauses have a reference to one of vehicleA’s attributes, i.e., vehicleA.itinerary
and vehicleA.destination respectively. Consequently, before querying the registered context providers
about traffic incidents and parking facilities, it is necessary to send a request to vehicleA for fetching its
planned route (i.e., itinerary) and destination.

On the other hand, each CDQL query might have some entities that can be queried simultaneously,
which leads to reducing the overall query execution time. For example, in the query above,
after retrieving the required context about vehicleA, both traffic incidents and parking facilities
can be queried at the same time.

Based on the concepts discussed above, we have designed and developed an algorithm to generate
execution plans for CDQL queries. The execution plan generation can be modelled as a graph traversal
problem, by converting CDQL queries to a directed graph, where each node represents one entity,
and each edge between two nodes represents the relationship (dependency) among those entities. As a
result, the execution plan can be generated by finding a path that visits all the nodes in the graph,
starting from a node with no dependencies (zero inbound degrees).

The algorithm for the proposed execution plan generator is presented in Figure 5. This algorithm
accepts a CDQL query and generates an execution plan that specifies the order of retrieving contextual
information about the entities defined in the query.

As the first step towards producing the execution plan, the incoming CDQL query will be parsed
into an object model containing several attributes, namely queryType, nameSpaces, select, and define.
The queryType identifies the type of the incoming query, which can be either pull-based or push-based.
The nameSpaces element contains all the semantic vocabularies defined in the PREFIX clause. The select
denotes the structure of the query’s output and includes the entities, attributes, and functions that are
defined by the SELECT clause of the incoming query. Lastly, the define element is an array of context
entities described in the DEFINE clause of the incoming query.
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Each context entity itself is represented by five elements:

• entityID denotes the unique name (e.g., vehicleA)assigned to the entity.
• type represents the semantic category class the entity belongs to.
• dependency captures the dependency with the other context entities that are referenced in the

definition of this entity
• RPNCondition is the Reverse Polish Notation (RPN) representation of the WHERE clause. RPN is a

well-known method for the expression notification in a postfix manner, instead of using the usual
infix notation.

• contextAttributes consists of an array of context attributes that are used in the CDQL query in the
SELECT, WHEN, or WHERE clauses.

Code block 5 shows the JSON representation of the parsed CDQL object for the query presented
in Code block 4.
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          "vocabURI": "http://vocab.datext.org/TrafficElements " 
        }, 
        "dependency": { "vehicleA": ["itinerary"]}, 
        "RPNCondition": […], 
        "contextAttributes": ["*","geo"] 
      } 
    ] } 
} 
 

After generation of the parsed CDQL object, the initialization step of Algorithm 4.1 (Figure 5)
creates an empty hashmap for storing the execution plan (executionPlan), and an empty set to keep
track of visited context entities (i.e., visitedNodes). Then, the algorithm iterates over all the context
entities in the define element to find those context entities that have no dependency (0 inbound degree).
The retrieved entities in this step will be marked as visited, removed from the define element and will
be added to the executionPlan, where the execution order is 1.

As the next step, the algorithm iterates through the remaining entities in the define element and
tries to find the entities that their dependency is a subset of the visitedNodes. Then, similar to the previous
step, the found entities will be removed from the define element, labelled as visited, and will be added
in the next execution order of the executionPlan. This step will be repeated several times until either all
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the nodes in the define elements are visited (until the define element becomes empty) or cannot visit
a new entity in an iteration. Finally, the algorithm checks if all the entities in the define element are
visited. If not, it means the execution plan for the incoming query cannot be generated due to a cycle
in the dependency graph. Otherwise, the algorithm returns the generated execution plan.

To illustrate the procedure of generating an execution plan, consider the context query shown in
Code block 6, which is an extended version of the query discussed earlier in this section in Code block 4.
This query consists of four entities: vehicleA, weatherCondition, trafficElements, and targetCarparks.
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prefix datex:http://vocab.datext.org, mv:http://schema.mobivoc.org, 
schema:http://schema.org  
select (trafficElements.*, targetCarpark.*, weatherCondition.*) 
define  
entity vehicleA is from datex:Vehicle where 
vehicleA.vehicleRegistrationPlateIdentifier = “1hm3ea”, 
entity weatherCondition is from schema:Weather where weatherCondition.location 
= vehicleA.destination,  
entity trafficElements is from datex:TrafficElement where  
spatioTemporalIntersect(trafficElements.geo, vehicleA.itinerary, 200) = true, 
entity targetCarparks is from mv:ParkingFacility where  
(goodForWalking(weatherCondition) > 0.7 and distance(targetCarparks, 
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Figure 6 shows the directed graph for this query. As depicted in this graph, the inbound degree
of entity vehicleA is 0. Therefore, this entity should be retrieved in the first step. In the next step,
when the required information (i.e., destination and itinerary) regarding vehicleA is fetched, the context
request related to weatherCondition can be issued. In the same manner, in parallel with the previous
step, the request for trafficElements can be executed. Lastly, when the required contextual information
related to weatherCondition is fetched, a context request will be generated to find the best available car
parks. Therefore, the order of context requests execution (execution plan) for this query can be written
as shown in Table 2.
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Table 2. Example of execution plan

Execution Order Entities

Execution Order 1 vehicleA

Execution Order 2 weatherCondition
trafficElements

Execution Order 3 (i) Sensor data acquisition
(v) Context processing and reasoning

4.2. Context Query Execution

In the previous section, we presented our proposed algorithm for the CDQL query execution
plan generation. Furthermore, we showed the structure of the parsed query object and described its
main elements. As the next step towards executing CDQL queries, in this section, we will describe
the workflow of Context Query Coordinator (CQC) module. As discussed in Section 3.2, CQC is
responsible for managing the whole execution lifecycle of CDQL queries.

As mentioned in Section 3.3, CDQL supports querying contextual information using two
approaches: the pull-based approach and the push-based approach. In the remainder of this section,
we will discuss how CQC handles pull-based queries. The execution of push-based queries falls out of
the scope of this paper.

By default, Pull-based CDQL queries are executed synchronously. A synchronous query is a
query that maintains control over the process of the application that issues the query for the query’s
lifetime. In other words, when a context consumer issues a pull-based query, it has to wait for the
entire round trip, from when the query is first sent to the CoaaS until the results are retrieved and
returned to the context consumer. However, if the CALLBACK method is presented in a Pull-based
query, the query will be executed in a non-blocking fashion, and the outcome of the query execution
will be pushed to the corresponding context consumer.

The complete workflow of executing pull-based queries is illustrated as a flow of events in a
sequence diagram in Figure 7. When CQE receives a CDQL query, the query will be sent to CQP,
which parses the raw query and generates the execution plan. Then, the CQP passes the parsed query
object plus the execution plan to CQC. As described in Section 4.1, each execution plan consists of
several execution orders that specify the correct sequence of retrieving the context entities defined in a
CDQL query. Moreover, each execution order itself has one or several independent entities, which
means they can be queried simultaneously.

Therefore, to execute an incoming context query, CQC iterates over the generated execution plan
in ascending order, from the execution order 1 to the last execution order. Following this, for each
entity in the current execution order, CQC starts a new thread that forms and issues a context request
to fetch the required context of the entity. As defined in Definition 6, context requests are represented
as a triple: 〈E, CA, P〉 where E denotes the type of entity of interest (i.e., entityType in the parsed query
object), CA is a set of requested context attributes (i.e., contextAttributes in the parsed query object),
and P. is a set of predicates, which are defined over CA using logical expressions (i.e., RPNCondition in
the parsed query object). Execution of context requests has four main steps, as outlined below:

Step 1: The generated context requests will be initially sent to the Context Storage Management
System (CSMS). CSMS searches the repository of registered entities by converting the incoming context
requests to the underlying data storage language. Subsequently, a list of matching context entities (i.e.,
context responses) will be sent back to the CQC, which can have zero or more entities, depending on
the ability of CSMS to find compliant entities.

Step 2: If the returned list is non-empty, the CQC checks the validity of the context responses
by inspecting the expiry timestamps of their context attributes. If any of the attributes were expired,
CQC issues a request to Context Service Invoker (CSI) to re-fetch the value of the expired context
attribute from the corresponding context provider.
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Step 3: On the other hand, if CSMS cannot find any context entity that matches the characteristics
of the requested entity, CQC issues a context discovery request to CSD. Then, CSD tries to find and select
the most eligible context services that match the requirements of the incoming context request. Details
of how CSD discovers and selects matching context services is provided in [6]. Then, CQC fetches the
context of the entities of interest through the CSI module.

Step 4: In the final step of handling context requests, CQC re-evaluates the RPNCondition of
those retrieved entities that their context attributes have been updated in Step 2. Moreover, if the
RPNCondition contains any situation or aggregation function that cannot be evaluated in the previous
steps, CQC re-evaluates them.
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After successfully obtaining the needed context for each request in the first execution order,
CQC stores the result and starts the next iteration, by incrementing the execution order by one. However,
before starting the next iteration, it is required to update the WHERE clause of those entities that are
dependent on at least one of the entities that are retrieved in the current execution order. Consequently,
CQC traverses the context entities in the next execution orders and updates their condition by replacing
the dependant context attributes according to their actual values that are fetched in the current iteration.
During the process of updating the RPNConditions, there might be a case that more than one instance
of context entity is retrieved for a given context request, which is referred to in the WHERE clause of
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another entity. In this situation, if it is required, CQC reformulates the WHERE clause of the dependent
entity. Based on how the dependent attribute is used in the WHERE clause, five different reformulation
strategies might be considered by CQC. Table 3 shows the reformulation strategies.

Table 3. RPN condition reformulation strategies.

Usage Type Strategy
Example *

Original Condition Reformulated Condition

In a condition using set operators
(e.g., containsAny, containsAll) No changes required. e1.a1 containsAll e2.a1

e1.a1 containsAny e2.a1

e1.a1 containsAll [1–4]
e1.a1 containsAny [1–4]

In an equality condition The equality operator will be
replaced by containsAny. e1.a1 = e2.a1 e1.a1 containsAny [1–4]

In an inequality condition

The inequality will be broken
down into several inequality

conditions (one for each instance
of dependent entity) that are
connected with OR operator.

e1.a1 < e2.a1
(e1.a1 < 1 or e1.a1 < 2 or e1.a1

< 3 or e1.a1 < 4)

Inside a function call

The function call will be broken
down into several function calls

(one for each instance of
dependent entity) that are

connected with OR operator.

F1 (e1.a1, e2.a1) < 12
(F1 (e1.a1, 1) = true or F1 (e1.a1,
2) = true or F1 (e1.a1, 3) = true

or F1 (e1.a1, 4) = true)

Inside an entityMatch operator

For each instance of dependent
entity, one entityMatch

statement will be generated.
The OR operator will be used to

connect these statements.

entityMatch(e1.a1 = e2.a1
and e1.a2 < e2.a2)

((e1.a1 = 1 and e1.a2 < 10) or
((e1.a1 = 2 and e1.a2 < 8) or
((e1.a1 = 3 and e1.a2 < 4) or
((e1.a1 = 4 and e1.a2 < 6))

* assume the context response for entity e2 contains the following entity instances: e21: {a1:1, a2:10}, e22: {a1:2, a2:8},
e23: {a1:3, a2:4}, e24: {a1:4, a2:6}, where a1 and a2 are context attributes of entity e2.

Finally, when all the context entities presented in the execution plan are retrieved, the fetched
context will be passed to the Context Query Aggregator (CQA). CQA generates the final output of the
incoming CDQL query based on its SELECT clause.

To further clarify the execution procedure of pull-based queries, consider the example query
presented in Code block 7. This query is designed to find the vehicles that are driving faster than
60 km/h at a distance less than 500 m from any school in one of Melbourne’s suburbs.Sensors 2019, 19, x FOR PEER REVIEW 21 of 34 
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The code block shows that this query has two entities, schools and vehicles, where the vehicles entity
has a dependency on entity schools. Therefore, the execution plan of the query has two execution orders
that is shown in Table 4. Based on the execution plan, CQC issues a context request to CSMS to find all
the schools within the specified area:

crschools :
〈
schema : School,

{
address, geo

}
, {schools.address = {. . .}}

〉
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Table 4. Example of execution plan

Execution Order Entities

Execution Order 1 schools

Execution Order 2 vehicles

Then, CSMS queries the repository of the registered entities to find the matching schools. For this
query, assume three schools are registered inside the identified region. Therefore, CSMS sends a context
response back to CQC, which contains the address and geocoordinates of three schools that match the
aforementioned condition. Then, for each of these entities, CQC validates the expiry timestamp of the
corresponding context attributes. However, as both addresses and geocoordinates for an entity like a
school are considered as static values, we assume all the retrieved context attributes are valid.

Since the entity schools is the only entity in the first execution order, CQC starts the next execution
order. However, as mentioned earlier, it is required to update the RPNCondition of the entity vehicles
by replacing the schools.geo by its actual value. For the given example, as more than one entity has
been found for schools entity, CQC reformulates the WHERE clause of entity vehicles. The reformulated
query can be seen in Code block 8.
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In the next step, CQC forms a context request based on the updated RPNCondition in order to
find the vehicles that are over-speeding near one of the three schools found in the previous iteration:

crvehicles :
〈
schema : Vehicle,

{
VIN, geo, speed

}
, {vehicles.distance < . . .}

〉
This time we assume CSMS returns 10 vehicles that each of them meets the above conditions

(i.e., near the school and over-speeding). Then, for each vehicle, CQC checks the expiry date of their
required attributes, namely Vehicle Identification Number (VIN), geocoordinate, and speed. As both
speed and geo coordinate for a mobile entity like a vehicle have high update frequency, there is a
considerable chance of having outdated values. If the values are expired, CSI sends a request to
corresponding vehicles to fetch the real-time values of the expired context attributes. Then, finally,
CQC re-evaluates the RPNCondition based on the updated context attributes and returns the VIN of
over-speeding cars back to the corresponding context consumer.

5. CQE Implementation

Based on the reference architecture of Context-as-a-Service platform and the concepts presented
in the previous sections, we have implemented a prototype of the CoaaS platform. Figure 8 presents
the architecture of the implemented context management platform.
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Figure 8. Architecture of the CoaaS platform prototype implementation.

As described in Section 3.2 the CoaaS platform consists of five main components:
(i) Communication and Security Manager (CASM), (ii) Context Query Engine (CQE), (iii) Situation
Monitoring Engine (SME), (iv) Context Storage Management System (CSMS), and (v) Context Reasoning
Engine (CRE). In the current implementation, which has around 1.3 million lines of code, we have
developed CoaaS as a Microservice-based application using Java Enterprise Edition 7 (Java EE 7)
framework. In this regard, each of the abovementioned components is implemented as a separate
microservice. Therefore, the implemented prototype of CoaaS platform is very scalable. The rest of
this section briefly presents the description of the implementation of each of these components.

The Communication and Security Manager (CASM) is implemented as a RESTful web service using
Jersey 2.8 framework (https://jersey.github.io/). CASM provides an interface that supports the proposed
languages presented in [11], namely Context Definition and Query language (CDQL) and Context
Service Description Language (CSDL) and. Using this interface, clients can perform several operations,
such as querying contextual information, registering context services, updating context information,
and subscribing to certain situations about their entities of interest.

Moreover, this component is enhanced with a token-based authentication and authorisation
mechanism, which is implemented through JSON Web Token (JWT) (https://jwt.io/). JWT is an open
standard that defines a compact and self-contained way for securely transmitting information [32].
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The diagram depicted in Figure 9 shows how the implemented authentication and authorisation
mechanism works.
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Figure 9. Authentication and authorisation mechanism.

In the first step, clients acquire an authorisation token by sending an authentication request
that contains the client’s username and password to the CASM via the URL “/rest/cm/token”. Then,
based on the provided credentials, CASM authenticates the user by using Java Authentication and
Authorization Service (JAAS) (https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/
JAASRefGuide.html). If the client is successfully authenticated, a JSON Web Token (JWT) will be
returned. Code block 9 shows how JWT can be acquired:
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o CQL 
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Using the acquired token, clients can securely invoke CoaaS APIs. In this regard, they should
provide the JWT in the ‘Authorisation’ header of the HTTP request using the ‘Bearer’ schema. Then,
CASM checks for a valid JWT in the ‘Authorisation’ header, and if it is present, the client will be allowed
to access protected resources.

The CoaaS platform has four main Restful APIs that are presented in Table 5. To enable secure
communication between clients and CoaaS, all these APIs are only accessible via HTTPS protocol.

Table 5. CoaaS interface endpoints.

Address/Method Short Description Accepts

/rest/cm/token (POST) Authentication API Username and Password

/rest/cm/query (POST) CDQL query API

• CDQL query

◦ CQL
◦ CDL

/rest/cm/register/ (POST) Context Service registration API CSDL Service description

/rest/cm/event (POST) Context update API Context update

The main API for context consumers is the CDQL query interface, which is accessible via the URL
‘/rest/cm/token’. This interface accepts a CDQL query as input; based on the type of the provided query,
it returns either contextual information or status of the executed query (in the case of CDL queries, e.g.,
create function). The code snippet provided in Code block 10 shows how this interface can be invoked:

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html


Sensors 2019, 19, 5457 24 of 34

Sensors 2019, 19, x FOR PEER REVIEW 24 of 34 

The main API for context consumers is the CDQL query interface, which is accessible via the 

URL ‘/rest/cm/token’. This interface accepts a CDQL query as input; based on the type of the provided 

query, it returns either contextual information or status of the executed query (in the case of CDL 

queries, e.g., create function). The code snippet provided in Code block 10 shows how this interface 

can be invoked: 

 

Code block 10. Example of issuing a CDQL query. 

As explained in Section 3.1, CoaaS can interact with context providers (CP) in two ways, either 

by fetching context on-demand or through receiving context/data streams. In the first case, the CPs 

must have registered the description of their services by sending a context service registration 

request. In order to do this, they need to describe their context service using CSDL language and send 

the service description as a body of an HTTP POST request to the CoaaS service registration API (i.e., 

/rest/cm/register/). After successfully registering a context service, CoaaS can retrieve data about the 

registered service’s IoT entities by sending requests to the corresponding provider on-demand.  

As mentioned above, CoaaS can also process streams of context updates, which CPs are sending 

to the platform. Context updates contain updates of the entities’ states and are processed by CoaaS 

to monitor situations. Therefore, CoaaS has an API that allows CPs to send context updates to the 

CoaaS platform. These updates are cached in the CoaaS storage (i.e., CSMS), mainly for the purpose 

of using these data to serve pull-based queries. The code snippet provided in Code block 11 shows 

how the context update API can be invoked. 

 

Code block 11. Example of sending a context update. 

The Context Query Engine (CQE) has been implemented as a gRPC server (https://grpc.io/), based 

on the provided architecture in Section 4 and the concepts and the algorithms presented in preceding 

sections. To parse the incoming queries, a query parser is developed by using Antlr 4.6 

(https://www.antlr.org/). ANother Tool for Language Recognition (ANTLR) is a parser generator for 

reading and processing structured text. This framework accepts a formal grammar (written in an 

EBNF like format) as input and generates a parser for that language. The generated parser can 

automatically build parse trees, which are data structures representing how a grammar matches the 

curl -X POST \ 
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  -H 'authorization: Bearer [auth_token]' \ 
  -d ‘[CDQL_QUERY]' 

curl -X POST \ 
http://localhost:8080/CommunicationManager/rest/api/cm/event \ 
  -H 'authorization: Bearer {token}' \ 
  -H 'content-type: application/json' \ 
  -d '{"@id":"parking.mpnash.edu/entities/p1", 
    "timestamp":1520575780, 
    "exitRate":"high", 
    "capacity" : { 
        "@Type" : "RealTimeCapacity", 
        "Monash:Blue" : { 
            "date" : 1520575780, 
            "maximumValue" : 400, 
            "currentValue" : 229 
        }, 
        "Monash:Red" : { 
            "date" : 1520575780, 
            "maximumValue" : 3400, 
            "currentValue" : 342 
        }}}' 

As explained in Section 3.1, CoaaS can interact with context providers (CP) in two ways, either
by fetching context on-demand or through receiving context/data streams. In the first case, the CPs
must have registered the description of their services by sending a context service registration request.
In order to do this, they need to describe their context service using CSDL language and send the
service description as a body of an HTTP POST request to the CoaaS service registration API (i.e.,
/rest/cm/register/). After successfully registering a context service, CoaaS can retrieve data about the
registered service’s IoT entities by sending requests to the corresponding provider on-demand.

As mentioned above, CoaaS can also process streams of context updates, which CPs are sending
to the platform. Context updates contain updates of the entities’ states and are processed by CoaaS to
monitor situations. Therefore, CoaaS has an API that allows CPs to send context updates to the CoaaS
platform. These updates are cached in the CoaaS storage (i.e., CSMS), mainly for the purpose of using
these data to serve pull-based queries. The code snippet provided in Code block 11 shows how the
context update API can be invoked.
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The Context Query Engine (CQE) has been implemented as a gRPC server (https://grpc.io/),
based on the provided architecture in Section 4 and the concepts and the algorithms presented in
preceding sections. To parse the incoming queries, a query parser is developed by using Antlr 4.6
(https://www.antlr.org/). ANother Tool for Language Recognition (ANTLR) is a parser generator for
reading and processing structured text. This framework accepts a formal grammar (written in an EBNF
like format) as input and generates a parser for that language. The generated parser can automatically
build parse trees, which are data structures representing how a grammar matches the input. ANTLR
also automatically generates tree walkers that can be used to visit the nodes of those trees to execute
application-specific code.

To implement the Context Reasoning Engine (CRE), we have adopted an existing context-awareness
and situation-awareness framework called ECSTRA [33]. ECSTRA builds on the basis of context spaces
theory [30]. This framework provides a comprehensive solution to reason about the context from

https://grpc.io/
https://www.antlr.org/
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the level of sensor data to the high-level situation. In order to integrate ECSTRA in CoaaS, we have
implemented another microservice that uses a Java implementation of ECSTRA framework. Using this
microservice, other components can use the ECSTRA framework to reason about context data.

The Context Storage and Management System (CSMS) has been implemented based on the architecture
presented by [28]. In the current implementation, CSMS has five main modules, namely context
repository, context service discovery repository, context history repository, subscription repository,
and user management database. The first four repositories, which are used to store context data,
have been implemented using MongoDB (https://www.mongodb.com/). On the other hand, the user
repository that contains clients’ profile, including their credentials, is implemented as a relational
database using PostgreSQL (https://www.postgresql.org/). Moreover, CSMS has an interface, which
is also implemented as a gRPC server that allows other components to access and store data in the
aforementioned repositories.

Furthermore, to ease the development of context queries and service definitions, a specialised
web-based IDE has been developed. The main features of the IDE are: (i) CDQL syntax highlighting,
(ii) auto-completion of CDQL keywords and terms coming from integrated semantic vocabularies
and standards, (iii) visualising the execution plan of parsed query, (iv) showing errors, warnings,
and recommendations to CDQL developers, and (v) managing authorization tokens. A screen dump
of the CoaaS IDE is presented in Figure 10.
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The current implementation of CoaaS platform is available as several Docker (https://www.docker.
com/) images and can be downloaded from the following link: https://hub.docker.com/r/coaas.

6. Evaluation of CQE

This section describes the performance evaluation of the proposed Context Query Engine (CQE)
that provides support for the execution of complex context queries represented in CDQL. In order to
show the merits of the proposed engine, we compared the performance of our approach with Fiware

https://www.mongodb.com/
https://www.postgresql.org/
https://www.docker.com/
https://www.docker.com/
https://hub.docker.com/r/coaas
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Orion CMP [34] in the execution of different context queries. In the rest of this section, we will first
describe the experimental environment and metrics of our evaluation. Then, based on the provided
metrics, we will present several experiments to evaluate the performance of the proposed CQE during
the execution of basic and complex context queries.

6.1. CQE Experiment Environment

In order to evaluate the proposed solution, we used the current implementation of the CoaaS
platform, which was described in detail in Section 5. During all the conducted experiments, the CoaaS
platform was running as a docker container. The docker container is hosted on a virtual machine
located in the Deakin University Cloud and running Debian GNU/Linux 8 (Jessie). The VM is
running on a four-core Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60 GHz instance with 16 GB RAM.
Moreover, for the deployment of CoaaS platform, we have created a docker-compose file that sets up
all the required development environment and automates the installation and configuration process.
The docker-compose file is available online at https://github.com/ahas36/Execution-of-Complex-
Context-Queries-in-Dynamic-IoT-Environments/tree/master/CoaaS.

In a similar manner, the Fiware Orion context broker was also deployed as a docker container on
another virtual machine (with exact same specification) hosted on Deakin University Cloud. To deploy
the Fiware Orion context broker, we used the docker-compose file provided in Fiware GitHub (https://
github.com/telefonicaid/fiware-orion/blob/master/docker/docker-compose.yml. Moreover, to establish
a fair comparison, we carefully tuned the Orion context broker by modifying the docker-compose file
based on the official performance tuning guide (https://fiware-orion.readthedocs.io/en/master/admin/

perf_tuning/index.html presented in the Fiware documentation. The modified docker-compose file is
available online at https://github.com/ahas36/Execution-of-Complex-Context-Queries-in-Dynamic-
IoT-Environments/tree/master/Orion.

For our experiments, we have developed a Java application for simulating context entities.
This application offers a method that accepts the structure of an entity (a string that represents the
entity type and a key-value map that represents a collection of context attributes name and their
value’s type) and the number of instances of the entity that needs to be generated. Then, the entity
simulator application randomly generates context entities based on the provided structure and
registers them in both CoaaS and Orion platforms. Moreover, this method can generate multiple
dependent context entities, where the value of an attribute of one entity is equal to the context
attribute’s value of another entity. The source code of the entity simulator application is available
at https://github.com/ahas36/Execution-of-Complex-Context-Queries-in-Dynamic-IoT-Environments/
tree/master/EntitySimulator.

For all the experiments in this section, we used JMeter 4 to generate and issue CDQL and NGSI
queries. We deployed the JMeter 4 in the same network where the CoaaS and Orion instances were
running in order to minimise the network delay. The JMeter test plans for all the conducted experiments
are available online at https://github.com/ahas36/Execution-of-Complex-Context-Queries-in-Dynamic-
IoT-Environments/blob/master/Experiments/testplan.jmx.

6.2. CQE Experiments Metrics

To measure the performance of the proposed solution, an evaluation framework is required.
In this paper, based on the benchmarking approach presented in [13], we considered two main metrics
that can affect query execution performance. These metrics are: (i) the number of parallel queries,
and (ii) the richness of incoming queries. The following list provides a brief overview of each of these
metrics and explains how they can impact the query execution’s performance:

• The number of parallel queries: The increase in the number of parallel queries can lead to performance
degradation due to the resource limitation.

• The richness of a query: The structure of each context query might also influence the execution
performance. The main features that can impact the query execution performance are the number

https://github.com/ahas36/Execution-of-Complex-Context-Queries-in-Dynamic-IoT-Environments/tree/master/CoaaS
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of defined entities, the number of constraints, the ratio of ‘ANDs’ to ‘ORs’, the number of functions,
and the type of functions.

In the rest of this section, we will design several experiments based on the metrics discussed in this
section to measure the performance of CoaaS and Orion platform in the execution of context queries.

6.3. CQE Experiments and Results

In this section, we describe a set of experiments which has been designed to evaluate the
performance of CoaaS and Orion platforms in the execution of context queries. At first, we evaluated
the performance of the execution of basic context queries, where each query only contains one entity
type. To this end, we studied the impact of the query load on query execution performance to show
how CoaaS and Orion platforms perform when the number of parallel queries increases. In order to
achieve this goal, we gradually increased the query load (query per second) from 100 QPS to 1000 QPS
and measured the average query response time and achieved throughput. Moreover, to take the impact
of the richness of queries into account, we repeated this experiment three times using different queries
with different levels of richness.

The first query (Q1) represents the most basic form of a context query that only contains one
equality constraint (i.e., attribute = “value”). In the second query (Q2), we extended the previous query
by adding an additional inequality constraint (i.e., attribute < number) connected with ‘AND’ operator.
The third query (Q3) is a location-based query, which searches for all the instances of an entity of a
specific type near a random coordinate. To make sure all the queries are returning a roughly similar
number of entity instances in the response, we have specified the maximum number of returning
instances to 10 for all the queries. These three queries designed in a way that they can be represented
in both CDQL and NGSI v2 languages. Hence, in these experiments, we did not consider some of
the advanced features of CDQL queries, such as using ‘OR’ operator, situation functions, or custom
aggregation functions, as they are not supported in NGSI v2.

In the first set of experiments, we have used our entity simulator application to generate 2000
instances of an entity with type “Entity1”, which has four context attributes. Table 6 shows the details
of these context attributes.

Table 6. Context attributes of the simulated context entities for the first set of experiments.

Name Type Generation Strategy

id String A string value generated by concatenating “entity” and a
unique number between 0 to total number of entities.

Attribute1 String A string value generated by contacting “value” and a
randomly generated number between 0 to 199.

Attribute2 Integer Random Integer between 0 and 99.

Location Geo-coordinates (i.e.,
latitude and longitude)

Randomly generated within a circle where the coordinates of
the centre were [−37.8770, 145.0443] and the radius was 1 km.

The result of this experiment for the first query (i.e., Q1) is presented in Figure 11. The result
shows, the CoaaS platform was able to handle up to 700 QPS, where the average query response time
was less than 28 ms. In the case of Orion, we can observe that the performance was slightly better
in the execution of Q1. Orion was able to serve 800 QPS without a considerable impact on the query
execution time. However, the result of this experiments shows that the performance of both platforms
degraded when the query loads became more than the maximum achievable throughput of each
system, which leads to a dramatic increase in the average query response time. To conclude, we can
say that Orion slightly outperformed CoaaS in the execution of Q1, where the maximum achieved
throughput of CoaaS and Orion were 799 and 897 response per second, respectively.



Sensors 2019, 19, 5457 28 of 34

Sensors 2019, 19, x FOR PEER REVIEW 28 of 34 

say that Orion slightly outperformed CoaaS in the execution of Q1, where the maximum achieved 
throughput of CoaaS and Orion were 799 and 897 response per second, respectively. 

  

Figure 11. Impact of increasing number of parallel queries for Q1. 

Figure 12 compares the performance of CoaaS with Orion platform in the execution of the second 
query (i.e., Q2). The result shows that the performance of CoaaS platform remained almost 
unchanged in comparison with the execution of the first query. We can observe that CoaaS was able 
to handle up to 700 queries per second, where the average query response time was less than 24 ms.  

  

Figure 12. Impact of increasing number of parallel queries for Q2. 

In the case of Orion, we can witness a slight performance drop compared to Q1, where the 
maximum achieved throughput reduced from 897 response per second to 702 response per second. 
Similar to the previous experiment, we can observe a sharp increase in the average response time for 
both platforms when the query loads exceed 700 QPS. To sum up, based on the outcome of this 
experiment, we can see the performance of CoaaS in executing the second query is better than Orion. 
Hence, it can be inferred that CoaaS’ performance is more resistant to the increase in the complexity 
of queries, compared to Orion. 

Figure 13 illustrates the outcome of the third iteration of the first experiment, where we 
measured the performance of CoaaS and Orion in the execution of the third query (i.e., Q3), which is 
a geolocation-based query. As can be seen in this figure, unlike the first two experiments, there is a 
big gap between the performance of CoaaS and Orion in terms of both achieved throughput and 
average response time. The results show CoaaS has a better overall performance in the execution of 

0

200

400

600

800

1000

100 300 500 700 900

Th
ro

ug
hp

ut
 (r

es
po

ns
e/

se
c)

Query Load (Q/S)

Throughput

CoaaS
Orion

0

50

100

150

200

250

100 300 500 700 900

Av
g.

 R
es

po
ns

e 
Ti

m
e 

(m
s)

Query Load (Q/S)

Response Time

CoaaS
Orion

0

200

400

600

800

1000

100 300 500 700 900

Th
ro

ug
hp

ut
  (

re
sp

on
se

/s
ec

)

Query Load (Q/S)

Throughput

CoaaS

Orion

0

50

100

150

200

250

100 300 500 700 900

Av
er

ag
e 

Re
sp

on
se

 T
im

e 
(m

s)

Query Load (Q/S)

Response Time

CoaaS
Orion

Figure 11. Impact of increasing number of parallel queries for Q1.

Figure 12 compares the performance of CoaaS with Orion platform in the execution of the second
query (i.e., Q2). The result shows that the performance of CoaaS platform remained almost unchanged
in comparison with the execution of the first query. We can observe that CoaaS was able to handle up
to 700 queries per second, where the average query response time was less than 24 ms.
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Figure 12. Impact of increasing number of parallel queries for Q2.

In the case of Orion, we can witness a slight performance drop compared to Q1, where the
maximum achieved throughput reduced from 897 response per second to 702 response per second.
Similar to the previous experiment, we can observe a sharp increase in the average response time
for both platforms when the query loads exceed 700 QPS. To sum up, based on the outcome of this
experiment, we can see the performance of CoaaS in executing the second query is better than Orion.
Hence, it can be inferred that CoaaS’ performance is more resistant to the increase in the complexity of
queries, compared to Orion.

Figure 13 illustrates the outcome of the third iteration of the first experiment, where we measured
the performance of CoaaS and Orion in the execution of the third query (i.e., Q3), which is a
geolocation-based query. As can be seen in this figure, unlike the first two experiments, there is a
big gap between the performance of CoaaS and Orion in terms of both achieved throughput and
average response time. The results show CoaaS has a better overall performance in the execution of
Q3 compared to its own performance in the execution of the first two queries. The reason behind
this observation is CoaaS automatically indexes the context attributes with geo coordinates values.
Therefore, we can see the achieved throughput of CoaaS reached 876 response per second where the
query load was 900 Q/S. On top of that, the response time graph shows the maximum average response
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time for Q3 was 169 ms, where the query load was 1000 Q/S. In contrast, the results reveal a big drop
in performance of Orion during the execution of Q3. As can be seen in the graph, increasing the
number of parallel queries to more than 100 Q/S leads to a dramatic growth in average response time
of queries, where the value went from 35 ms to 742 ms. Moreover, the throughput graph shows the
maximum achieved thought of Orion is 189 response per second, which is 4.6 times less than CoaaS
achieved throughput.
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Prefix coaas:http://schema.coaas.org  
select (e2.*) 
define entity e1 is from coaas:Type1 where  
e1.attribute1= "value{N}" and e1.attribute2 < {M} ,   
entity e2 is from coaas:Type2 where  
e1. joinAttr0 = e1.id  
set OUTPUT : { limit : 10 } 
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So far, we have discussed the performance evaluation of CoaaS and Orion platforms in terms
of executing context queries concerning a single entity type and showed that CoaaS provides better
overall performance when the richness of queries increases. As mentioned in Section 6.2, another
important factor that can increase the query richness is the number of entities involved in the query.
Therefore, in the rest of this section, we will focus on the impact of the number of entities on query
execution performance. To this end, we have designed two experiments.

In the first experiment, we conducted a test similar to the last three experiments, but this time we
used a new query that contains two entity types. Code block 12 presents the CDQL query template for
this test, where {N} and {M} will be replaced with two randomly generated numbers.
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As mentioned earlier, NGSI v2 does not support having more than one entity types per query. As
a result, in order to implement a similar query showed in Code block 12 using NGSI v2, it is required to
issue two sequential NGSI queries. The first query fetches the ID of up to 10 instances of entity Type1
that match the search criteria. The second query searches for the entities of Type2 where the value of
their joinAttr0 is equal to one of the IDs retrieved in the first query.

For this experiment, we used our entity simulator software to generate and register two types
of entities, Type1 and Type2, where the number of generated instances for each type was set to 1000.
We have used the same structure for context attributes of entity Type1, as what we used in the first set
of experiments. The used structure for context attributes of entity Type2 is shown in Table 7.
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Table 7. Context attributes of the simulated context entities for the second set of experiments.

Name Type Generation Strategy

id String A string value generated by concatenating “entity” and a
unique number between 0 to total number of entities.

joinAttr0 String A string value generated by concatenating “entity” and a
randomly generated number between 0 to 199.

The result of this experiment is represented in Figure 14. As the result shows, the performance of
CoaaS and Orion was almost identical when the query load was less than 200 QPS. However, when the
query load became larger than 200 QPS, a drastic performance degradation in Orion can be observed.
In contrast, CoaaS was able to serve the context queries without any considerable impact on the average
response time while the query load was less than 500 QPS.
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Figure 14. Impact of increasing the number of parallel queries for a query with two entity types.

Moreover, we can observe that the maximum achieved throughput of CoaaS is 446 responses per
second, which is almost two times better than what Orion could achieve. On top of that, based on the
presented results, the average response time of CoaaS was less than half of the Orion average response
time when the query load exceeded 500 QPS. To conclude, on the basis of this experiment, we can say
the overall performance of CoaaS in the execution of a query with two entities is almost two times
better than Orion.

To further study the impact of the number of entities on execution performance, we have conducted
another experiment. In this experiment, we fixed the query load to 200 QPS. The reason that why we
choose this value was both CoaaS and Orion was able to serve the query in the last experiment with
decent performance when the load was 200 QPS. Then, we gradually increased the number of entities
in queries from 1 to 10 and measured the performance of both CoaaS and Orion platforms in terms of
achieved throughput, average response time, and average Bytes sent/received for each query. It worth
mentioning that unlike the previous experiments, we executed this experiment from a computer outside
the Deakin University network, where the CoaaS and Orion platforms where running. The reason
behind this decision was as the number of issued queries for CoaaS and Orion were different in this
experiment, we wanted to take the possible network latency into account. To generate and register
the context entities for this test, we have followed a similar approach to the previous test. However,
for this experiment, we defined 10 entities with different types, and for each entity type, randomly
generate and register 1000 instances.

Figure 15 presents the outcome of this experiment. As the result shows, the achieved throughput
of CoaaS platform was equal to the expected throughput (i.e., 200 response/Second) and the average
response time was less than 233 ms while the number of entities in a query was less than 7. However,
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a slight performance drop occurred when the number of entities became more than 7. As it can be seen
in the result, the achieved throughput and average query response time of CoaaS platform were 153
response/second and 968 ms respectively, when the number of entities per query was 10. In contrast,
the performance of the Orion platform decreased dramatically by increasing the number of entities per
query. As the throughput and response time graphs show, the achieved throughput of Orion decreased
from 200 to only 28 responses per second and the average response time increased from 99 ms to more
than 5 s.
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Figure 15. Impact of increasing the number of entities in a query.

Figure 16 illustrates another advantage of CoaaS compared to Orion in the execution of queries
with more than one entity. This image shows the average amount of Bytes sent/received for each query.
As the result shows, the size of sent/received Bytes for CoaaS platform does not have any correlation
with the number of entities per query, and it remained almost unchanged throughout this experiment.
In contrast, in the case of Orion, we can observe a direct relationship between the number of entities per
query and the amount of communicated Bytes. As the graph shows, this value was increased from 5255
to 21,654 bytes. The difference in the amount of the transferred bytes explains one of the main reasons
why CoaaS outperformed Orion in the execution of complex context queries with multiple entities.
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Figure 16. Network Load.

In all the conducted experiments, we demonstrated how the CoaaS platform is handling a
considerable query load with high performance. Further, we showed the overall performance of the
CoaaS platform is higher than the performance of the Orion platform, especially in the case of executing
complex context queries.
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Moreover, as we demonstrated in our earlier publication [11], CDQL offers more features and
flexibility to the developers of context-aware IoT applications, compared to NGSI. For instance,
several NGSI queries are required to implement a use case, which can be implemented with only one
CDQL query. Therefore, we can state that using CDQL makes the development and maintenance of
context-aware IoT applications more straightforward, as fewer queries are needed to be composed to
achieve the desired functionality.

Additionally, CDQL provides several other features, such as aggregation functions, window
functions, situation inference functions, and temporal relations, that are essential for a CMP but not
supported in NGSI. The understanding of the necessity of this extended functionality was obtained
from our collaboration with one of the biggest German car manufacturing companies [11], where we
demonstrate how CoaaS platform can be utilised to provide real-time context to a smart vehicle.

To conclude, we can claim that the CoaaS platform not only has better overall performance in
the execution of context queries compared to Fiware Orion, but also provides more functions to the
developer of context-aware IoT applications. Based on the discussion above, we believe the proposed
CMP has a high degree of industrial applicability.

7. Conclusions

In this paper, we have proposed, designed, implemented, and evaluated a mechanism for the
execution of complex context queries in near real-time. This mechanism, which is an integral part of
Context-as-a-Service platform, called Context Query Engine (CQE). The Context Query Engine (CQE) is
mainly responsible for parsing the incoming queries, generating and orchestrating the query execution
plan, and producing the final query result. Furthermore, CQE is also in charge of finding the most
appropriate context service for an incoming request. To assess the performance and scalability of CQE
in the execution of context queries under different scenarios, we conducted two sets of experiments and
compared the results with the Orion context broker. The result showed that CQE and Orion context
broker have similar performance in executing of basic context queries. However, the performance of
CQE increased dramatically in comparison to Orion when the complexity of the queries increased
(i.e., the number of entities per query become more than 3) with CQE achieving four times higher
throughput than Orion. To conclude, based on the outcome of this paper, we can state that supporting
complex context queries can increase the overall performance of context management platforms.

Despite the contributions of this work towards operationalising context-awareness in the IoT
ecosystem, there are still several open issues in this domain that require further investigation. Two of
the main interesting challenges that we are planning to tackle in our feature works are:

• Auto-Scaling Strategy: In this paper, we have conducted all the experiments on a single instance
of CoaaS platform. However, in production environments, context management platforms are
needed to be scaled-out to deal with the massive number of requests generated by the billions of
IoT devices. To address this challenge, we are planning to investigate and design an auto-scaling
strategy for CMPs that automatic scale-out or scale-in based on the scale of incoming requests.

• Context Prediction: Another important aspect of context processing is context prediction. Context
prediction is referred to as the process of exploiting expected future context of IoT entities based
on the historical context. A CMP that supports context predication offers distinct advantages
to the context consumers, which enables a range of new use-cases. Hence, we are planning to
investigate, design, and implement a generic mechanism that allows context consumers to predict
the future context of IoT entities.
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