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Abstract: A trusted routing scheme is very important to ensure the routing security and efficiency
of wireless sensor networks (WSNs). There are a lot of studies on improving the trustworthiness
between routing nodes, using cryptographic systems, trust management, or centralized routing
decisions, etc. However, most of the routing schemes are difficult to achieve in actual situations as
it is difficult to dynamically identify the untrusted behaviors of routing nodes. Meanwhile, there
is still no effective way to prevent malicious node attacks. In view of these problems, this paper
proposes a trusted routing scheme using blockchain and reinforcement learning to improve the
routing security and efficiency for WSNs. The feasible routing scheme is given for obtaining routing
information of routing nodes on the blockchain, which makes the routing information traceable
and impossible to tamper with. The reinforcement learning model is used to help routing nodes
dynamically select more trusted and efficient routing links. From the experimental results, we can
find that even in the routing environment with 50% malicious nodes, our routing scheme still has a
good delay performance compared with other routing algorithms. The performance indicators such
as energy consumption and throughput also show that our scheme is feasible and effective.

Keywords: wireless sensor networks; trust; routing scheme; blockchain; reinforcement learning;
delay performance; efficiency

1. Introduction

Wireless sensor network (WSN) is a promising technology to collect and send information to the
clients through the self-organization network in the way of a single-hop or multi-hop relay, which has
a wide application prospect in military national defense, environmental science, industry, agricultural
automation and other fields [1–5]. WSN is composed of a large number of micro-integrated sensor
nodes, which work together to complete environmental monitoring, environmental perception and
collection of various information. The multi-hop routing technology is one of the key technologies
of WSN and is mainly responsible for transmitting the data information collected by sensor nodes
from source node to destination node according to the agreed routing protocol [6]. However, the open,
distributed and dynamic characteristics of WSN make the multi-hop routing vulnerable to various
types of attacks, thus seriously affecting the security and effectiveness [7–9]. Traditional secure routing
schemes are targeted at the specific malicious or selfish attacks and are not suitable for multi-hop
distributed WSN as they mainly rely on the encryption algorithm and authentication mechanism.

In time-varying and dynamical WSN environments, existing routing schemes cannot accurately
distinguish the malicious nodes. In some specific routing algorithms, the routing nodes cannot
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distinguish the truth of routing information released by other routing nodes. As shown in Figure 1,
a malicious node can release a false queue length information to increase the probability of receiving
packets, thus affecting the routing scheduling of other routing nodes [10]. The existing routing schemes
find it difficult to identify such malicious nodes, because the real-time change of the routing information
between two routing nodes are difficult to be accurately distinguished. When a malicious node receives
the packets of data from a neighbor node, it directly discard the packets and does not forward the
packets of data to its next-hop neighbor node. This creates a data “black hole” in the network, hence
it is named as a black hole attack which is hard to be perceived for routing nodes in WSNs [11,12].
These malicious nodes may be attackers of the external intrusion or internal legitimate nodes captured
by external attackers. Recently, trust management is a pervasive means to ensure the security of the
routing network [13–19]. Its core approach is for each node to maintain and exploit a trust model that
records the trust values of the neighbor routing nodes and make routing decisions. This method can
effectively make the routing node choose the relatively reliable routing links according to the trust
values. However, its application is limited since a single routing node can only get the trust values of
the neighbor routing nodes, which is not completely compatible with the multi-hop distributed WSN.

Normal Node

Malicious Node

Terminal

Real queue length

Fake queue length

Figure 1. The malicious node in a backpressure (BP) routing algorithm.

In view of the above security issues, a third-party intermediary is proposed to solve the trust
problem between the routing nodes, but the intermediary is obviously not suitable for multi-hop
distributed wireless sensor networks. Meanwhile, a third-party trust management center is likely to
be attacked and controlled by malicious nodes, and therefore the security and fairness of the system
cannot be guaranteed. As a trusted, decentralized, self-organizing ledger system, the blockchain is
very suitable for multi-hop distributed wireless sensor networks [20–23]. A lot researches on applying
the blockchain to the routing algorithms are carried out in the past few years [24–26]. The blockchain
is essentially a decentralized database maintained by multiple nodes, and it mainly deals with trust
and security problems. We’ve summarized four core technical elements that enable the blockchain to
provide trusted and secure services:

(i) The first is the distributed ledger which contains all the transactions on the blockchain.
The contents of these transactions include the address of the receiver of the transaction, the
amount of the transfer, the timestamp, the smart contract code, the execution result of the smart
contract, etc. The transaction ledger is completed jointly by multiple nodes in different places.
Each node in the blockchain keeps a complete ledger, so that no ledger information can be
tampered. While all of the nodes can participate in monitoring the legality of transactions.
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(ii) The second is the asymmetric encryption and authorization technology. The transaction
information stored on the blockchain is public, but the account identity information is highly
encrypted and can only be accessed under the authorization of the data owner, thus ensuring the
security of data and personal privacy.

(iii) The third part, called consensus mechanism, is how all accounting nodes reach consensus to
determine the effectiveness of a blockchain transaction, which is a means of preventing tampering.
Some common consensus algorithms including proof of work (PoW), proof of stake (PoS), proof
of authority (PoA), delegated proof of stake (DPoS) and proof of capacity (PoC) are discussed
in [27,28]. We introduce three mainstream blockchain consensus mechanisms relevant to our work:

• PoW: Bitcoin, Dogecoin and Litecoin are among the digital currencies based on the PoW
consensus mechanism. PoW algorithm relies on the node to carry out mathematical
operations to find a random number and obtain the accounting right. A malicious node needs
more than 51 percent of the network’s computing power to take control of the blockchain
network. Compared with other consensus mechanisms, the resource consumption of the
PoW blockchain is high and the supervision is weak. At the same time, every time a PoW
consensus is reached, the whole network needs to participate in the operation, which has
low performance and efficiency.

• PoS: The main idea of the PoS consensus mechanism is that the difficulty of obtaining
the accounting right of a node is inversely proportional to the stake held by the node.
According to the proportion and time of coins taken by each node, the difficulty of mining
coins can be reduced in the same proportion so as to speed up the speed of finding random
numbers. The greater the stake, the greater the privilege, the greater the responsibility to
generate the block and the power to generate more revenue.

• PoA: PoA is an improved algorithm of PoS that uses the verified identity of the nodes
to replace the role of the stake rather than the monetary value. In a PoA blockchain, the
transaction and the block are validated by an approved node (called a validator) without
a huge computational overhead of a mining process. The validator must authenticate on
the blockchain and the qualification is hard to acquire which means the validator will not
have a motive for acting on their own interests. Even if there is a malicious validator, it
will be kicked out by other validators’ votes. In this way, the PoA blockchain becomes safer
and cheaper.

(iv) The last technical element is the smart contract, which is based on the trusted and non-tampering
data and can automatically execute the predefined codes by a blockchain miner [29]. The execution
result of the smart contract updates the ledger status on the blockchain network. These changes
cannot be falsified or tampered with once they are confirmed by a specific consensus mechanism
because the content has been agreed upon in the blockchain network.

In an open, reliable and distributed blockchain network, a routing node can acquire routing
information including but not limited to its neighbor routing nodes. The efficiency of the routing can
be improved if this routing information is properly used. Some routing schemes have introduced the
reinforcement learning into the dynamically networks [30–34]. Reinforcement learning is a kind of
machine learning algorithms represented by Q-learning, which gives the feedbacks into the selection
of each step through the reward and punishment mechanism. A standard reinforcement learning
algorithm consists of five parts: environment, agent, state, action and reward [35]. An agent interacts
with the environment by performing actions. A state is an indicator of the situation of the agent, and
each state has a corresponding set of actions for the agent to choose. The agent can only perform one
action per state and get the reward which is the feedback on the success or failure of the action.

In this work, we introduce a novel trusted routing scheme based on blockchain and reinforcement
learning for WSNs. In particular, we use the blockchain technology to provide a distributed
routing information management platform that all the routing information is recorded on the
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blockchain through the blockchain token transactions. The scheme takes advantage of the
decentralized, tamper-proof and traceable characteristics of the blockchain transactions to improve the
trustworthiness of the routing information between the routing nodes. We exploit the reinforcement
learning to learn the dynamic, reliable and extensive routing information from the blockchain network.
A dynamically updated reinforcement learning model is generated in each routing node through the
dynamically updated reward value brought by the action (scheduling) of each state (packet location),
so as to help the routing nodes make better routing decisions and select the more reliable and efficient
routing links.

2. Related Work

In this part, we firstly review the traditional trusted routing schemes for improving the routing
security and reliability. Then, we introduce the relevant research approaches of routing schemes
using the blockchain technology. Finally, we investigate the state-of-the-art of the application of the
reinforcement learning in routing networks.

2.1. Traditional Trusted Routing Schemes

Providing a trusted routing environment is an important and difficult issue for WSNs. There are
many related researches to implement a trusted routing scheme. Li et al. designed a novel trust-based
routing protocol by extending the widely used AODV (ad hoc on-demand distance vector) routing
protocol [15]. The protocol applies a trust model to recommend the trusted routing nodes and
improve the security of the routing environment. Later, there are more researches on a trust-based
routing scheme. In [16], Lu et al. proposed a secure routing scheme by quantifying and recording
the algorithm-compliance behaviors of the routing nodes. Sirisala et al. proposed a QoS (quality of
service) routing algorithm to evaluate the trustworthiness of the routing nodes [17]. The algorithm
calculates the direct QoS trust of the 1-hop neighbor routing node, the indirect trust of the 2-hop
neighbor routing node is calculated by the transitive rule (e.g., A trusts B and B trusts C then A trusts
C). Some researchers embed the trust mechanism into the routing paths [18,19], so that the trusted
routing paths were scheduled. Most of these researches are based on a “reputation system”, which
evaluates the reputation of other nodes to make routing selection. However, building a reputation table
requires the historical behaviors of the routing nodes which cannot guarantee the real-time security of
WSNs. Meanwhile, the reputation table maintained by each routing node may be tampered with, so
that the absolute credibility cannot be guaranteed.

2.2. Blockchain-Based Routing Schemes

Recently, some people combined the tamper-proof and traceable characteristics of the blockchain
technology with routing algorithms to improve the trustworthiness between the routing nodes.
Gómez-Arevalillo et al. presented a trusted public key management framework named secure
blockchain trust management (SBTM) [24]. The approach replaces the traditional public key
infrastructure (PKI) with a blockchain protocol, thereby removing the central authentication and
providing a decentralized inter-domain routing system. In [25], Li et al. established a multi-link
concurrent communication scheme based on the blockchain technology. According to the specific
integrated factor communication tree (IFT) algorithm and the behavioral characteristics of the
routing nodes in the blockchain-based communication, the nodes can be classified as malicious
or non-malicious. Ramezan et al. proposed a blockchain-based contractual routing (BCR) protocol
for routing networks with untrusted nodes [26]. It utilizes smart contracts to help routing nodes
find a trusted route to the destination nodes. The main principle is that the source node confirms
the routing arrival of each hop on the smart contract and records the malicious routing nodes with
malicious behaviors. The subsequent packets will then no longer pass through a known malicious
node. However, the scheme has security risks that a malicious node with the BCR tokens can falsely
claim to have received the packets.
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2.3. Reinforcement Learning Algorithms in Routing Schemes

It is difficult to effectively utilize the dynamic routing information in WSN routing networks.
A self-adaptive routing algorithm is needed for such dynamic routing networks. To enhance
the self-adaptability of routing scheme, Boyan et al. were the first time to combine Q-learning
algorithm with packet routing to dynamically learn the routing situation to find the shortest path [30].
Reinforcement learning is a useful tool for mining complex, dynamically updated routing network
information to optimize the routing scheduling algorithms. In the traditional backpressure routing
algorithm, due to the limited routing information of neighbor routing nodes, the loop routing problem
is caused as shown in Figure 2 that results in a huge delay in the whole routing process. Recently,
Gao et al. proposed multi-agent Q-learning (QL) aided backpressure routing algorithm named
QL-backpressure (BP), where each routing node only needs the local information of the neighbor
routing nodes to solve this problem [34]. Their algorithm not only outperforms the BPmin algorithm
in delay performance but also contains the excellent characteristics: distributed implementation, low
computational complexity, and high-throughput [36]. However, when the malicious nodes appear, the
throughput-optimality characteristic will no longer exist. The routing scheme based on reinforcement
learning should ensure both efficiency and security. Mayadunna et al. proposed a malicious routing
node detection scheme based on the reinforcement learning [37]. The core of the algorithm is to judge
whether a node is malicious by dynamically learning the number of packets received by the node’s
neighbor nodes. But this solution can only be used to identify black hole attack nodes, which is very
limited in the complicated and variable WSN routing environment.

Routing node

Queue length

Routing link

Figure 2. Loop routing problem in routing algorithms.

3. Approach

In this section, we introduce a novel trusted routing scheme based on the blockchain and
reinforcement learning. First, we put forward the threat model of our scheme and briefly describe
the attack and cheating methods of malicious nodes in the routing environment. Then, we propose a
blockchain-based network architecture to strengthen the credibility of routing information. We also
design a specific routing scheduling algorithm based on reinforcement learning for the designed
blockchain-based network architecture, labeled as RLBC (reinforcement learning and blockchain
based) routing algorithm, in which the reinforcement learning is used to help the routing node select
the next optimal routing node. Finally, we analyze the security of the proposed trusted routing scheme.

3.1. Threat Model

In this paper, we assume that the blockchain network is trusted, that is, no attacker can control
the blockchain network by controlling more than half of the server nodes. We further assume that
the routing nodes are untrusted and the vulnerable routing nodes may be controlled by malicious
attackers. In a routing scheduling process, a malicious routing node can falsely claim to have sent a
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certain number of packets to a routing node or deny receiving packets sent by other routing nodes.
The malicious routing nodes can release false routing information on the routing network, such as
queue length information, thus affecting the routing scheduling process. They can also act as black
hole attack nodes and refuse to forward packets. However, we do not consider the collusion attack
by two routing nodes to complete invalid blockchain transactions. We further assume that a routing
node can only act as a normal or malicious node, which means attacks are by no means intermittent.
Meanwhile, we do not consider the occasional abnormal behavior caused by the performance of the
node (e.g., a node does not send a message in time or loses the wireless spectrum).

3.2. Blockchain-Based Network Architecture

To enhance the trustworthiness and robustness of the routing information, we introduce
the blockchain which is essentially a distributed ledger with tamper-proof, decentralization, and
information traceability characteristics into the wireless sensor network and use the blockchain token
transactions to record related information of each node, as shown in Figure 3. The main framework is
divided into two parts: the actual routing network and the blockchain network. In the framework,
there are three kinds of entities: server node S, routing node R, and terminal device.

Source Terminal

PoA Blockchain

Destination Terminal

...

Routing Node

Rt

Routing link

Wireless link Routing flow

Blockchain communication

Server Nodes

Learning

Model
Ri

R

Routing Network

Figure 3. The framework of the blockchain-based routing scheme.

In Figure 3, the actual routing network consists of routing nodes and terminals. Each routing node
R has its own LAN to connect several terminals and is responsible for receiving packets from other
routing nodes or terminals, as well as forwarding the received packets to the target nodes. We briefly
describe the routing flow; packets from the source terminal to the destination terminal are transmitted
to a routing node Ri. Ri then selects the next-hop routing node Rπ via the routing policy π obtained by
the local learning model. The local learning model constantly queries and collects the relevant routing
network state information from the blockchain network. After continuous transmission, the packets
will be delivered to the target routing node Rt then to the destination terminal.

Each blockchain system has a specific consensus algorithm to ensure the fairness of the blockchain
transaction. In our blockchain network, we choose the PoA consensus algorithm which can process
transactions more efficiently. In Figure 3, the red lines represent the PoA blockchain network, which is
constituted by server nodes and routing nodes. They respectively represent two kinds of entities of the
PoA blockchain network with different identities:



Sensors 2019, 19, 970 7 of 19

• Validator: The validators are the pre-authenticated nodes of the blockchain, which have advanced
authorization and are responsible for the verification work in the PoA blockchain. In our system,
each server node is a validator with higher rights in the PoA blockchain and has a unique
blockchain address. Their specific tasks include executing smart contracts, verifying blockchain
transactions, and releasing blocks on the blockchain. A new validator can be added by the
authenticated validators election with more than 50% of the votes. Even if there is a malicious
validator, it can only attack one of the contiguous blocks at most, during which time the malicious
validator can be kicked out by other validator votes.

• Minion: The minions are less-privileged nodes and cannot perform the verification work as
validators in the PoA blockchain. In our system, each routing node is also a minion and has
fewer rights in the PoA blockchain and it has a unique blockchain address, too. They can
initiate token contracts, trigger some contract functions, and query the transaction information on
the blockchain.

In our scheme, these nodes in WSN can be static or dynamic. For example, the server nodes in
our solution are often static, while the routing nodes can be dynamic. However, the entry and exit of
nodes does not affect our scheme, because the status information of our blockchain-based system is
also updated dynamically.

On the blockchain network, we use different blockchain tokens to represent the different packets to
be delivered to the target nodes that n unit tokens represent n unit corresponding packets. The essence
of a token is the representation of the digitized information of the corresponding packets stored in
the smart contract. The routing nodes can initiate token contracts to generate tokens and map the
state information of related packets. They will make token transactions with each other via the token
contract to transmit the tokens based on the sent and received packets. According to the consensus
mechanism between server nodes, the token transactions cannot be revised arbitrarily by malicious
nodes, to some extent, the token accurately represents the packet passed between the routing nodes.

Compared with traditional routing architectures, our system differs in that each routing node is
registered on the registration contract after entering the blockchain-based routing network. The routing
node will forward the packets to its next-hop routing node off the blockchain. Then they must confirm
the routing information on the blockchain including the address of the next-hop routing node, the
number of packets sent to the next node, and the timestamp. Then the routing information will be
confirmed by the server nodes through the blockchain consensus mechanism and updated on the
blockchain. The learning model of each routing node will pull this information from the blockchain
and feed back the subsequent routing policy to the routing node. In the following subsections, we will
introduce the specific blockchain network implementation and the routing policy generation method
in detail.

3.3. Blockchain Network Procedure

To effectively operate the blockchain-based routing network architecture, information related to
the routing network needs to be transferred to the blockchain network. The related routing information
is recorded in the smart contracts including the registration contract, the token contract, and blockchain
transactions, i.e., the token transaction as shown in Figure 4. All of these contents are verified by the
server nodes then released to the blockchain.

All the smart contracts are manipulated by the authenticated servers nodes and the results of
the execution are returned to the blockchain network. The registration contract records the identity
information (e.g., the physical address of a node) of all the routing nodes and server nodes to facilitate
the query of the entire network node. The specific procedure for generating the registration contract is
described as Algorithm 1. The mapping map is an inherent variable of the registration contract and
contains the mapping of the blockchain addresses to the physical addresses. The mapping state is also
an inherent variable that stores the state of whether a node is registered or not. When a new node wants
to register on a registration contract, it should trigger the contract as a contract caller. It then inputs its
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physical address pa as the identity information, and the registration contract automatically records
its blockchain address ba. The registration contract checks whether ba exists in the state mapping or
not. If state = 0, the registration contract stores the map ba→ pa into the map mapping and the map
ba→ 1 into the state array, the result of this operation is a success. If state = 1 indicates that the node
has been registered, the result of this operation is a failure. The logic of the code makes the blockchain
address of the node corresponding to the identity, and the registration information cannot be changed
once it is registered.

(a) (b) (c)

Figure 4. Specific formats of smart contracts and blockchain transactions. (a) Registration contract.
(b) Token contract. (c) Token transaction.

Algorithm 1 Procedure of registering a node.

1: Mapping map : blockchain.address→physical.address;
2: Mapping state : blockchain.address→0 or 1;
3: while true do /* The contract is waiting for a contract caller to trigger */

Input: Contract Caller’s Blockchain Address ba; Contract Caller’s Physical Address pa;
Output: Registration Result r;

4: r ← null;
5: if state(ba) = 1 then
6: r ← f ailure;
7: else
8: map(ba) = pa;
9: state(ba) = 1;

10: r ←success;
11: end if
12: end while

Each routing node can release a token contract to generate a certain number of tokens by giving
the correlated variables on the blockchain [29]; the releaser’s blockchain address, the token name,
an empty table mapping the routing node R to the token balance BR, the supply of the tokens, the
destination routing node Rt of the tokens, etc. After releasing the token contract, the contract will
automatically generate a corresponding supply of tokens for the releaser. Then the routing nodes
can transact the tokens by triggering the “transfer” and “confirm” functions of the token contract.
The process of transferring tokens is recorded as a token transaction on the blockchain. Figure 5 depicts
the implementation details of one complete token transaction and we divide a token transaction into
three processes:

(i) We initialize the number of packets in Ri as p and in Rπ as q, i.e., BRi = p and BRπ = q. First, Ri
transmits n unit data packets to Rπ . In the traditional routing network, Rπ will send back an
acknowledgement (ACK) to confirm that the packets have been received and the token balances
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should be BRi = p − n and BRπ = q + n. Meanwhile, each routing node performs routing
scheduling based on the routing information released by neighbor routing nodes in the traditional
routing network. However, if Rπ is a malicious routing node, it can deny the routing process to
its neighbor routing nodes, such that the token balances for its neighbor routing nodes will be
BRi = p and BRπ = q, so such these schemes cannot guarantee the trustworthiness between the
routing nodes.

(ii) In our scheme, we put the process of validating the routing process on the blockchain network and
all the routing nodes get the relevant routing information from the blockchain network instead of
their neighbor routing nodes. After the packets are transmitted, Ri trigger the “transfer” function
on the token contract to indicate the state change including the information of the amount n of
tokens sent to Rπ to the blockchain network. Then the token amount n is released on the token
contract. While Rπ trigger the “confirm” function on the token contract to confirm the amount n′

of the received packets to the blockchain network. The number n′ is based on the amount of the
packets Rπ actually received in the routing network.

(iii) Then the token contract checks whether n equals n′, and if n = n′, the token balances for Ri and
Rπ end with BRi = p− n and BRπ = q + n. If n 6= n′, the token balances for Ri and Rπ remain
BRi = p and BRπ = q. The whole token transaction is confirmed by the PoA consensus of the
server nodes, i.e., only the validation of more than half of the authenticated server nodes can allow
a server node to upload the transaction to the blockchain network. We stipulated that the whole
transaction process should be completed within one time slot. The unconfirmed transactions
are cancelled and a failed transaction is not recorded in the blockchain without affecting the
routing information.

PoA Blockchain

Ri R

Transfer():

To:R

Value: n

1

Confirm():

From:Ri
Value:n

n unit packets

Server Nodes

verify

Token Balance:

Ri =p-n tokens

R = q+n tokens

2 3
4

Initial amount :p Initial amount :q

If n = n

Figure 5. Implementation of the token transaction.

Meanwhile, every token transaction is recorded on the blockchain by an authenticated server
node, that all the routing nodes and server nodes have a back-up of the transaction recorder available
for traceability. Each token transaction records the token name, the timestamp ti, the amount ni
of tokens transmitted and the route addresses At of each hop arrived. Since all the transaction
information is supervised jointly by all network nodes, our blockchain-based platform provides a
distributed routing environment, enabling the acquisition of global routing information. With this
blockchain-based routing scheduling model, it is possible for routing nodes to apply and obtain the
routing information dynamically from the blockchain network. It can also provide a trusted routing
environment for traditional routing algorithms (e.g., the backpressure routing algorithm). However,
its routing information has not been effectively utilized, and the performance needs to be improved.
We introduce the reinforcement learning algorithm to dynamically learn this information, and all of
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the information will be captured by the reinforcement learning model of the routing node to output
subsequent routing policies and help the routing node choose the better routing links.

3.4. RLBC Routing Algorithm

In this part, we elaborate the reinforcement learning-based routing scheduling scheme by using
the global, dynamic, and trusted routing information provided by the proposed blockchain platform.
The information obtained by the learning model from the blockchain network includes the timestamp
ti of the token transaction (all transactions represented by array Tt), the transfer amount ni of tokens
for each hop routing node (all amounts represented by array Nt), the amount of remaining tokens,
and the address array At passed by. The specific reinforcement learning and blockchain based (RLBC)
algorithm is summarized in Algorithm 2. Environment E represents a real routing environment, where
the routing nodes update their states and make decisions about actions. State x represents the current
position of the packets that need to be transferred, i.e., the packets locate currently at the x-th routing
node. It means that the learning model has n states if there are n routing nodes. Policy π(x) is the
action a to be taken from the current state x and the action a represents forwarding the packets to
the next-hop routing node Ra. It means that when a state the routing node has m next hop nodes to
choose from, the current state has m actions. Therefore, the action space A(x) represents the collection
of all actions at routing node i. For example, R1 has two and R2 has three actions to choose from:
A(1) = {a1, a2}, A(2) = {a1, a2, a3} (according to the actual situation, the a1, a2 in the two arrays are
not necessarily the same). Note that qt(x, ak) is the differential queue length between Rx and Rak that
qt(x, ak) = BRx - BRak

. The size of this metric affects the probability that Rx transmits the packets to
Rak . The larger this metric is, the greater the probability will be. Therefore, if a routing node releases a
lower queue length, it can increase the probability that other routing nodes transmit packets to it.

Algorithm 2 Reinforcement learning and blockchain based (RLBC) routing algorithm.

Input: Environment E; Action Space A ; Initial State x0; Reward Discount γ; Learning Rate α;
Output: Policy π;

1: Qt(x,a) = 0, P(x,a) = 1
|A(x)| ;

2: x = x0;
3: for T = 1, 2, ... do
4: a = πp(x);
5: r = reward by routing action a;
6: x′ = next state by routing action a;
7: a′ = π(x′);
8: Qt(x,a) = Qt(x,a) + α(r+γQt(x′,a′) - Qt(x,a));
9: π(x) = arg maxak qt(x,ak)·Qt(x,ak);

10: x = x′;
11: end for

In the core Equation (1) at line 8 of Algorithm 2, Qt represents the Q-table of the packets sent to
the routing node Rt. When the packets reach the next routing node Rπ from current routing node Ri, it
enters the next state. The action is moving the packets to the next-hop routing node Rπ .

Qt(x, a) = Qt(x, a) + α(r + γQt(x′, a′)−Qt(x, a)); (1)

Parameter 0 ≤ α ≤ 1 is the learning rate of the Q-learning. Where α equals to one, means that
the learning algorithm ignores the initial Qt. The reward discount γ represents the specific gravity
of the next state. The larger its value is, the greater the influence of the next state on the current
Qt will be. The reward value r is an important parameter to motivate the routing nodes to make
better routing decisions. Its value is determined by the routing information obtained by the learning
model from the blockchain. The information includes the timestamp ti, the amount ni of transferred
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tokens, and the address array At. When the routing node Ri makes action a, the number of nodes and
packets it finally reaches is used to measure the reward. In a time slot, the value of r is Vmax when the
tokens are successfully delivered to the target node Rt. When the tokens are delivered to the history
node, it means that the address is in Ai and the loop routing problem happens, and we set r to Vmin.
In other cases, the value of r is related to the amount of successfully delivered tokens, for example, if
the amount of tokens actually transmitted is ni, the value of r is ni. Since the reinforcement learning
reward value r is determined by the amount of tokens delivered, it also restricts the non-forwarding
behavior of malicious nodes in the threat model. If a malicious node doesn’t transmit any packet
(token) in the routing process, the value of r will be small and it can greatly reduce the possibility that
packets will pass through this malicious node. Thus, the problem of blocking routing link caused by
malicious black hole nodes is greatly reduced.

By dynamically extracting and learning relevant routing information from the blockchain, the
learning model will eventually output a policy π for the routing node. The value π represents the
routing policy which determines the next-hop of the packages targeted at Rt, and it depends on the
value of qt(x, a) ·Qt(x,a). Assuming that, when the state is x and the number of a in the action space is
K, the probability distribution of ak is selected based on Boltzmann distribution. The specific equation
of Boltzmann distribution is shown in Equation (2). The parameter τ > 0 is called “temperature”, and
the lower τ > 0 is, the higher the probability that the high reward action will be selected, and the
packet is passed to the corresponding Rπ . In general, the higher the value of qt(x, ak) · Qt(x,ak), the
more likely it is to execute a policy π(x) = ak.

P(x, ak) =
e

qt(x,ak)·Qt(x,ak)
τ

K
∑

k=1
e

qt(x,ak)·Qt(x,ak)
τ

. (2)

The reinforcement learning based routing algorithm helps the choice of routing by the nodes’
dynamic learning. Each hop of the routing information is recorded on the blockchain, and if the
hop is looped, or the link is untrusted, or the transmit rate is low, the algorithm greatly reduces
the probability that the packets pass through the link. At the same time, the routing algorithm can
dynamically discover the more reliable and efficient routing links, so as to help the routing nodes make
better routing decisions.

3.5. Security Analysis

We established a trusted routing information management system based on the PoA blockchain,
where all the routing nodes and server nodes jointly maintained the routing transaction. In this
subsection, we analyze it from six perspectives to show how our proposed scheme ensures the security
of the system. The related security performance is shown as follows:

• PoA consensus mechanism: The blockchain network is based on a consensus mechanism called
PoA (proof of authority), and only the validation of more than half of the authenticated server
nodes can allow a server node to upload the transaction and update the routing information.
Therefore, any information on the blockchain cannot be tampered with by individuals.

• Transaction traceability: The server nodes record the transactions on the blockchain, including
the transaction of releasing token contract, the transaction of routing node running functions on
the contract, the transaction of transferring tokens. All the information about these transactions is
recorded on the blocks and can be traceable across the blockchain network.

• Routing information source: Different from the traditional routing network, in our scheme, all
the routing nodes get the relevant routing information from the blockchain network instead of
its neighbor routing nodes. In this way, the routing information obtained by the whole network
routing nodes is consistent and not determined by individuals.
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• Avoid the single point attacks: Our blockchain-based routing scheduling scheme does not require
a trusted third-party central authority to manage routing information. The single point attack is
prevented by the authentication of the transaction by multiple server nodes.

• No double-spending: The codes of our token contract specifies that each routing node address
maps to only one address at each time slot, and that the routing node will not initiate token
transactions to two other routing nodes at the same time slot.

• Self-adaptability: In the proposed routing scheduling scheme, the routing link with malicious
nodes will not generate routing transactions. The reward value r of the routing link is very low
based on our RLBC routing algorithm and the learning model will adaptively select the routing
link of normal nodes.

4. Experimental Analysis and Evaluation

To evaluate the effectiveness and performance of our proposed approach, we implemented
a prototype and compared its performance of the RLBC algorithm with other routing algorithms.
In terms of effectiveness evaluation, it is mainly compared with the state-of-the-art reinforcement
learning-based routing algorithm, the trust-based algorithm, and our original blockchain-based
algorithm. For performance evaluation, we compared our system with the traditional PoW-based
blockchain system to reflect the performance of our system in terms of delay, consumption
and throughput.

4.1. Testing Setting

We built a PoA consortium blockchain and simulated 32 virtual servers to update blockchain
transactions on the chain. All the routing information required by the reinforcement learning model
can be obtained from the public blockchain transactions. The consortium blockchain was built based
on Geth 1.8.19 which can provide reliable Ethereum transaction services. We chose the BP routing
algorithm as the benchmark of performance comparisons [10]. To simulate real packet arrival rates,
we simulated 32 terminals in the 16 × 16 matrix, randomly transmitting packets to the target point
according to the Poisson distribution with λ packets/slot. We also simulated 16 × 16 routing nodes to
receive and deliver real packets in one packet/slot at most based on the routing policy generated by
the local reinforcement learning model. The data was finally recorded in the experiment, including
average packet delay, transaction delay, energy consumption, etc. The detail configurations of the
devices are shown below in Table 1.

Table 1. Specifications of devices.

Parameter Name Server Node Terminal Node Routing Node

CPU 2.6 GHz 1.2 GHz 580 MHz
RAM 16 GB 1 GB 32 MB

Storage 1 TB 16 GB 256 MB
Network 1000 Mb 100 Mb 100 Mb

OS Ubuntu Server 16.04 Raspbian 4.14 OpenWRT 15.05

To test the effectiveness, we set delay performance experiments in the routing environment
with malicious nodes. In order to establish the comparative experiments, we compared our RLBC
algorithm with the traditional BP algorithm, the trust-based backpressure (TB-BP) algorithm [18],
the state-of-the-art reinforcement learning-based algorithm named QL-BP [34], and our original
blockchain-based algorithm. There were 25% and 50% malicious nodes in the 16 × 16 routing nodes to
interfere with the normal routing scheduling, that the malicious nodes will try to forge false queue
length information and use the vulnerability of BP algorithm to cheat more packets (see in Figure 1) or
act as a black hole node and not transmit any packet. Specifically, we assigned three kinds of malicious
nodes and they appear with the same probability:
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(i) A malicious node releases a fake low (10% of the true amount) queue length information, but it
transmits packets to other routing nodes.

(ii) A malicious node releases the true queue length information, but it doesn’t transmit any packet to
other routing nodes.

(iii) A malicious node releases a fake low queue length information and it doesn’t transmit any packet
to other routing nodes.

To evaluate the effectiveness of our system, we tested the average latency, average energy
consumption and throughput of the blockchain token transactions in comparative experiments.
We implemented and compared the traditional blockchain system based on PoW consensus mechanism
to show the advantages of our system based on PoA consensus mechanism [38].

4.2. Effectiveness

We compared the traditional BP algorithm, QL-BP algorithm, and TB-BP algorithm with
our system to see whether the routing scheduling schemes can be affected by malicious nodes.
We introduced the BP algorithm combined with the blockchain-based (BC) architecture for comparison.
The comparative experiments showed the differences between BP, QL-BP, TB-BP, proposed BC and
proposed RLBC algorithm in the malicious routing environment. Compared to our system, the other
three routing scheduling schemes do not have the addition of a blockchain structure, but the number
of malicious nodes and the cheating methods are the same in all of these schemes.

Simulation Results

From Figure 6, we can see that in the routing environment with 25% malicious nodes, the delay
performance of our BC algorithm reduces the average packet delay by around 48% when compared to
traditional BP algorithm. The performance is similar to that of QL-BP algorithm while the average
packet delay reduces about 54%. The packet delay of TB-BP algorithm reduces around 32%. Our RLBC
algorithm performs best and it reduces around 78% delay when compared to BP algorithm, 52%
compared to the QL-BP algorithm, and 67% compared to the TB-BP algorithm.
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Figure 6. Average delay of packets with 25% malicious nodes.

We also implemented the comparative experiments in the routing environment with 50%
malicious routing nodes, and the average packet delay of each algorithm was shown in Figure 7.
As we can see, under the influence of a large number of malicious nodes, both algorithms of our
system still maintained good performance. Our RLBC algorithm reduced average packet delay by
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around 81% while the BC algorithm reduced it by around 55% and its performance exceeded the
QL-BP algorithm, which it only reduced by around 32%, while the TB-BP algorithm only reduced by
around 37%. This was because in QL-BP algorithm, the queue length information released between the
routing nodes is not trusted. The malicious nodes can increase the parameter qt(x, ak) in Algorithm 2
by issuing a false lower queue length, thereby greatly increasing the probability that the data packet is
sent to the malicious node and affecting the normal routing scheduling work. The experimental results
show that our RLBC algorithm is not susceptible to the influence of malicious nodes in terms of average
packet delay, and the effectiveness proved that it is feasible to use it to improve the performance of
routing algorithm.
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Figure 7. Average delay of packets with 50% malicious nodes.

4.3. Efficiency

In the efficiency experiment, for a more intuitive comparison, we compared our blockchain
system based on the PoA consensus mechanism with the traditional PoW-based blockchain system.
We recorded the experimental data such as transaction latency, energy consumption and throughput
during the experiment.

4.3.1. Token Transaction Latency

We took the transaction packaging time as the evaluation element of the average token transaction
latency, which records the elapsed time that miners put the Ethereum token transaction on the
blockchain. We recorded the token transaction latency of PoA and PoW blockchain systems with the
increase of arrival rate λ.

The experiment results are shown in Figure 8, we can see that the latency of the transaction is
relatively stable and does not fluctuate much with the arrival rate λ. The average transaction latency of
our PoA blockchain system was around 0.29 ms while that of the PoW blockchain system was around
0.52 ms. The results show that our blockchain system based on PoA consensus mechanism can save
about 44% of the transaction latency, and obviously, such a token transaction delay is acceptable and
has little impact on routing scheduling. It is practical and efficient to use our PoA blockchain system to
collect and manage routing scheduling information.
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Figure 8. Average transaction latency of proof of authority (PoA) and proof of work (PoW)
blockchain systems.

4.3.2. Token Transaction Energy Consumption

In Ethereum networks, “gas” is a special unit used to measure how much “work” an action or a
series of actions of a miner has. It is determined by the number of computer instructions operated by
the Ethereum transaction (e.g., the length of the code in the smart contract), and the gas fluctuation
does not change much. For example, to calculate a Keccak256 encryption hash value, every time
computing the hash will need 30 gas. Ethereum platform trading or contract execution of every
operation needs a certain amount of gas, and the more computational resources operation we need, the
more gas costs. Then the gas will be converted into corresponding ether currency to pay the blockchain
miner. We take the gas consumption as the main evaluation index of the system energy consumption
and the experimental results are shown below.

As can be seen from the experimental results in Figure 9, the gas consumption of the average
transaction is very stable as the arrival rate λ increases, and since the computing resources required
are the same that the consumption of the two systems is approximately equal. With the increase of the
arrival rate, the average token transaction gas consumption of the two blockchain systems was finally
stable around 35,660 gas which cost only 0.0007132 ether (≈0.0613 USD) at the gas price of 0.02 ether
per million gas. In private Ethereum networks, the economic costs will be less and such a consumption
tradeoff is small and acceptable.
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Figure 9. Average transaction consumption of PoA and PoW blockchain systems.
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4.3.3. Token Transaction Throughput

The token transaction throughput shows the blockchain system’s ability to handle concurrent
token transactions. We tested the throughput of transactions processed by our PoA blockchain system
and the PoW blockchain system under the token transaction request rate ranges from 0 to 5000 times/s.
The experimental results are shown in Figure 10.
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Figure 10. Token transaction throughput of PoA and PoW blockchain systems.

As we can see, the token transaction throughput increases steadily as the rate of concurrent
requests increases, and the curve gradually flattens out as the throughput reaches its peak. Finally, the
throughput of our blockchain system based on PoA consensus mechanism is stable at 3300 times per
second, while that of the traditional blockchain system based on PoW consensus mechanism is only
about 1900 times per second. From the experimental results, we can see that a PoA-based scheme has
more efficient transaction processing capacity in the face of high request concurrency. It is appropriate
and correct to take PoA algorithm as the consensus mechanism algorithm of the blockchain system,
and this PoA blockchain-based routing scheduling scheme can effectively cope with the situation of
large concurrent requests in the routing environment.

5. Conclusions and Future Work

In this paper, we proposed a trusted routing scheme based on the blockchain and reinforcement
learning to provide a trusted routing environment and improve the performance of the routing
network. As a decentralized system, the blockchain network provides a feasible scheme for routing
information management and a platform for reinforcement learning of routing scheduling. We use
the blockchain token to represent the routing packets, and each routing transaction is released to
the blockchain network through the confirmation of the validator nodes. By making every routing
transaction recorder traceable and tamper-proof, routing nodes can obtain dynamic and trusted routing
information on the blockchain network. We also describe the detailed reinforcement learning model
to adaptively choose the best routing path and avoid the routing links with malicious nodes. Finally,
we carry out simulation experiments, the experimental results show that our system can effectively
suppress the attacks of malicious nodes, and the system’s latency and throughput performance
are excellent.

In the future, we plan to use our system for experiments in more routing scheduling algorithms
besides BP algorithm to verify the effectiveness and portability of our system. We also plan to
incorporate the blockchain-based data validation technology into our work [39–42]. In addition, we
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intend to put the reinforcement learning model into the blockchain smart contract to simplify the
operation complexity and reduce the running burden and expense of the server side.
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