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Abstract: Reliable fault detection and diagnostics are crucial in order to ensure efficient operations
in industrial assets. Data-driven solutions have shown great potential in various fields but pose
many challenges in Prognostics and Health Management (PHM) applications: Changing external
in-service factors and operating conditions cause variations in the condition monitoring (CM) data
resulting in false alarms. Furthermore, novel types of faults can also cause variations in CM data.
Since faults occur rarely in complex safety critical systems, a training dataset typically does not
cover all possible fault types. To enable the detection of novel fault types, the models need to be
sensitive to novel variations. Simultaneously, to decrease the false alarm rate, invariance to variations
in CM data caused by changing operating conditions is required. We propose contrastive learning
for the task of fault detection and diagnostics in the context of changing operating conditions and
novel fault types. In particular, we evaluate how a feature representation trained by the triplet loss
is suited to fault detection and diagnostics under the aforementioned conditions. We showcase
that classification and clustering based on the learned feature representations are (1) invariant to
changing operating conditions while also being (2) suited to the detection of novel fault types. Our
evaluation is conducted on the bearing benchmark dataset provided by the Case Western Reserve
University (CWRU).

Keywords: contrastive learning; triplet loss; fault diagnostics; fault detection

1. Introduction

Modern industrial processes are increasingly subject to oversight by condition monitor-
ing (CM) devices. The recorded data opens up the possibility of data-driven maintenance
models [1]. Purely data-driven solutions are especially interesting with regard to complex
assets for which model-based approaches are limited or do not exist. Recent successes in
deep learning have demonstrated the potential of data-driven solutions [2,3]. However,
for the task of fault detection and diagnostics, particular challenges arise when applying
deep learning to CM data from an industrial asset.

Complex industrial assets are often subject to a variety of operating conditions as
well as external (e.g., environmental) factors that strongly influence the acquired data.
Changing ambient temperature, for example, might affect the roughness of the asset, which
could then be sensed by accelerometer measurements resulting in changes of the signals.
The ambient temperature is therefore a factor that causes variations in the data but cannot
be controlled. This means that a complete training dataset that is recorded in summer
will deviate from the data experienced in the winter season. Predicting or foreseeing all
of these influential factors is not always possible as some factors of variations are simply
not known or cannot be controlled. Even if all future operating conditions are completely
controllable and known (e.g., defined in the specifications of a working environment),
the multitude of possible combinations makes it often infeasible to collect a dataset with
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a sufficient representation of all possible combinations of operating conditions within
the specifications. Hence, a training dataset might only represent a subset of all possible
conditions. Ultimately, often in real applications, it is not realistic to assume that a training
dataset contains all possible future conditions that the asset will experience [4]. In this paper,
we distinguish between conditions or factors that are represented in the training dataset and
those that are not. The later ones are referred to as novel operating conditions. However,
the performance of data-driven models often relies on the fact that the data collected during
inference time is similar to the training dataset (independent and identically distributed
(IID)) [5]. For example, the training dataset needs to be representative of all ambient factors
and operating conditions that the asset will encounter in the future. If a model is subjected
to new variations in the data caused by, e.g., unexpected ranges of ambient temperature, it
might perform poorly in identifying the exact system condition of the asset [6]. This can
result in false alarms. To prevent this, a fault diagnostic model needs to be invariant to
all variations in the data that correspond solely to varying operational or environmental
factors rather than to a change in the asset’s condition.

On the other hand, while faults arise very rarely in operating industrial assets, there
is a multitude of different fault types with various severities that can possibly occur [4].
It is not realistic to assume that the training dataset contains all possible fault types at all
possible intensities. However, robust fault diagnostics entail the task of identifying fault
types in general. This includes that those faults that are unknown at training time and,
therefore, are not represented in the training dataset. Similarly to the terminology used for
operating conditions that are not reflected in a training dataset, we refer to these faults as
novel fault types. A safety issue can arise if a model is not capable of detecting novel fault
types or is underestimating a fault’s severity. Therefore, to ensure safe operation, a robust
fault diagnostic model needs to be sensitive to novel variations in the data that correspond
to novel fault types.

Ultimately, the goal is to train a fault diagnostics model that is both invariant to the
variability in the CM data caused by novel operating conditions or external factors and,
simultaneously, sensitive to the changes corresponding to novel fault types that were not
considered or known when the model was developed. In this work, we show that features
trained with contrastive learning are able to achieve both of the aforementioned objectives.
This is the first work that applies contrastive learning to PHM applications in order to tackle
both of the above objectives: (1) invariance of the models to novel operating conditions
and (2) sensitivity of the models with respect to variations caused by novel fault types.

2. Related Work

Contrastive learning is a discriminative approach that aims to group semantically
similar samples close to each other in the feature space while pushing semantically dissimi-
lar samples far apart from each other [7,8]. To achieve this, a contrastive loss is formulated
based on a similarity metric quantifying how close different features are [9]. In contrast
to other frequently used losses—such as cross-entropy loss or mean squared error loss,
whose objective is to directly predict a label or values—contrastive learning aims to train a
semantically meaningful feature representation of the data. This has recently shown great
promise, mainly in the context of computer vision, and achieving or exceeding state-of-the-
art results in both a supervised [8–10] and unsupervised setting [11–13]. Franceschi et al.
applied contrastive learning also successfully to timeseries data [14].

If the contrastive loss function is based on triplets of training data samples, it is referred
to as triplet loss. The idea of using data triplets (instead of data pairs) for contrastive
learning was first introduced in 2009 for nearest-neighbor classification [15]. For each
sample (the “anchor” xa), the distance to both a positive sample (xp) and a negative one
(xn) is calculated in order to formulate the loss function. Different techniques have been
proposed to select these positive and negative samples. For supervised tasks, for example,
the hard triplet loss [8] chooses the sample with the same label that is farthest away from
the anchor (xa) as the positive sample, whereas the nearest sample with a different label is
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selected as the negative sample. By contrast, the soft margin loss function [16] randomly
selects a negative sample and regards all samples with the same labels within the batch as
the positives. Regardless of the exact implementation, the objective is to group data with
the same label and increase the distance to other classes of data in the feature space, i.e., to
give the feature clusters a semantic meaning.

Feature extraction or learning has been identified as one of the most important el-
ements in PHM applications [17]. Manually engineered features (feature extraction) as
well as learned features (feature learning) have been proposed for the purpose of fault
detection and diagnostics [18,19]. The resulting feature space is then classified [18,20] or
clustered [19,21] in order to detect and classify faults and their severity, but also to detect
novel fault types [19]. Robust feature learning is the objective of many publications of
fault diagnosis [22,23]. These works typically focus on robustness with respect to noisy
environments. This means that they assume to have representative (but noisy) samples
of all classes. On the contrary, this paper focuses on robustness with respect to a shift
of the underlying data distribution e.g., caused by changing operating conditions. Con-
trastive learning has been applied in domain adaptation settings for PHM applications
(see below) [24] but not yet for robust feature learning in the context of unknown changing
conditions and novel fault detection. However, the idea of learning low-dimensional
representations of high-dimensional data that correspond solely to their semantic meaning
is very promising. It offers the potential to filter out variations of the data that are caused
by changing conditions and do not contain information regarding the asset’s condition.

Transfer learning in general relaxes the hypothesis that the training data must be
IID with the test data [5]. By transferring knowledge that is learned in source tasks to a
related target task, it aims to alleviate the issue of insufficient training data [5,25]. This
has attracted a lot attention in machinery fault diagnostics, where, for example, changing
operating conditions or external factors cause a shift in the CM data that is not reflected in
the training dataset [26]. Means of domain adaption—a branch of transfer learning—have
been widely used to address the challenge of adapting a model to new conditions [27–30].
The approach of Wang and Liu where contrastive learning is used for domain adaptation is
noteworthy. However, these approaches require both (a) a clear identification of the target
domain and (b) representative data for all classes from this target domain. Pioneering
work by Wang et al. [27] has enabled the application of domain adaptation even if certain
class data (e.g., certain faults) is missing in the target domain. Nevertheless, it still requires
to identify and foresee the target domain, which is not always possible (e.g., if these
new conditions are caused by external factors that are neither known nor controllable).
Furthermore, representative data of all classes are required in the source domain. This is
not given if the novel emerging fault types are those that have not been anticipated before.

3. Methodology

Contrastive learning is evaluated in the context of the PHM application of detecting,
classifying, and determining the type and severity of bearing faults. Specifically, we evalu-
ate whether fault detection and diagnostics based on the learned feature representation is,
on the one hand, invariant to variations in the CM data caused by novel operating condi-
tions and, on the other hand, sensitive to variations caused by novel fault types. To achieve
that, the retrieved features are both classified and clustered. The feature representations
are learned via the semi-hard implementation of the triplet loss LTriplet [16], where the
negative loss is calculated based on one negative sample that is randomly sampled within
a batch. The positive loss is computed based on the average distance of all positive samples
within the batch to the anchor sample. The distance metric used for all case studies is the
L2 Norm. The feature learning models are then applied to test datasets that contain novel
operating conditions in Case Study 1 and in Case Study 2 the models are exposed to novel
fault types.

To evaluate the suitability of the learned feature representation for detecting and
classifying known fault types (but also for detecting novel fault types), the learned features
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are classified and clustered. A support vector machine (SVM) is trained for classification.
The classification performance showcases whether the models are affected by a change in
the operating conditions. For the identification of novel fault types, the feature space is
clustered with two different clustering algorithms: Ordering points to identify the clustering
structure (OPTICS) [31] as well as k-means [32], for which the silhouette score [33] is used
to determine the number of clusters.

A scheme of the methodology can be seen in Figure 1.

(A) (B)

Figure 1. Methodology schemes of (A) training a feature representation with the triplet loss and
(B) evaluating the learned feature representation (classification and clustering) with respect to the
objectives of achieving invariance to novel operating conditions and sensitivity to novel faults.

4. Case Studies
4.1. Dataset

All case studies are conducted on a bearing dataset provided by the Case Western
Reserve University Bearing Data Center (CWRU dataset) [34]. The publicly available
dataset is often used as a benchmark dataset in the field of PHM in general. It has been used
for different tasks within the field of fault detection and diagnostics. Recently published
methods include stacked denoising autoencoder [35] or recurrent neural networks [36] (a
comprehensive overview is given by Neupane and Seok [37]). The dataset is especially
suited to demonstrate solutions related to diagnosing faults under different operating
conditions (different loads in this case) and transferring models between these different
conditions (domain adaptation) [27–30].

However, we would like to emphasize that the setup that we are dealing with in this
research has not yet been tackled by other researchers: the algorithms we are seeking to de-
velop are on the one hand supposed to be sensitive to novel types of faults; however, on the
other hand, they are supposed to be robust to novel operating conditions. Unfortunately,
there are no other case studies that could be used to compare our proposed approach to
directly. In fact, we reformulate the problem setup to make it applicable to the problem of
novel fault type detection. Therefore, previous results obtained on this dataset are also not
directly comparable.

The accelerometer measurements are recorded under four different loads 0, 1, 2, 3,
which correspond to different operating conditions in our case studies. Ten different health
conditions of the bearing are represented in the dataset (see Table 1): Healthy condition
(N), three different fault types (inner race faults [IR], outer race faults [OR], and ball faults
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[B]), and three different fault severities for each of the fault types (7, 14, 21). The sample
dataset was collected from the CWRU dataset with sampling frequency of 48 kHz.

Table 1. Classes in the CWRU dataset.

Class 0 1 2 3 4 5 6 7 8 9

Severity [mils] - 7 7 7 14 14 14 21 21 21
Type N B IR OR B IR OR B IR OR

Preprocessing: The original signals are divided into sequences of 512 points with no
overlap between the sequences. Each sequence is scaled by the mean and standard devia-
tion of the healthy data. This results in a dataset containing one-dimensional timeseries of
length 512, each labeled by the label of the original signal.

The proposed algorithm and most of the baseline methods (see Section 4.3) uses raw
signals as input data. However, we also compared the performance to that of algorithms
based on feature engineering and used the frequently applied Fast Fourier Transform (FFT)
for extracting features in the frequency domain [38].

The FFT features are calculated based on the previously extracted timeseries dataset
whereby the absolute value of the FFT coefficients is considered as the FFT features. Due
to the symmetry of the resulting features, only the first half is considered, resulting in a
256-dimensional feature space.

4.2. Case Study Setup

Two case studies are conducted to evaluate the suitability of contrastive learning
with respect to the objectives of achieving (1) invariance of the models similar but novel
operating conditions (interpolation—see Experiment (1)) as well as (2) sensitivity to novel
fault types (extrapolation—Experiment (2)). In the following, these objectives and their
corresponding setups are elaborated.

4.2.1. Case Study 1: Invariance to Novel Operating Conditions

This case study tests the invariance of the trained models to novel changes in the
operating conditions. As defined in the Section 1, novel operating conditions are those
that are not represented in the training dataset. In the CWRU dataset, the different loads
are considered as different operating conditions (see Section 4.1). The models are trained
under a subset of operating conditions and evaluated on two test datasets: Data recorded
under the same operating conditions as the training dataset (T) and a second test dataset
containing data recorded under the operating condition that was not part of the training
dataset (Tp). For example, if no data under the load 1 is available at training, the training
dataset is defined as Dtrain = Dtrain/Dload=1 (19,129 samples) and the two test datasets are
defined as 1) T = Dtest/Dload=1 and 2) Tp = Dload=1. This case study setup corresponds to
the scenario where a model experiences novel operating conditions or factors influencing
the measurements during inference time that were not known at training time. The
goal here is not to extrapolate to novel operating conditions but rather to train a feature
representation that is not impacted by a shift in operating conditions. Therefore, the case
study includes two data selections, whereby the two intermediate loads are being withheld
for training. (This setup deviates from the typical experimental setup in the field of domain
adaptation since we do not assume any knowledge about the missing conditions or target
domain during training time.)

4.2.2. Case Study 2: Sensitivity to Novel Fault Types

To test the ability of the model to distinguish known fault types and severities from
novel ones, a model is trained on a subset of fault types and evaluated on two test datasets:
One containing the same subset of fault types as the training dataset (T) and the second test
dataset including the novel fault types that were not in the training dataset (Tp). The CWRU
dataset used in this research (see Section 4.1) allows for multiple data selection choices
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to evaluate the objectives at hand. Two different exemplary data selections are chosen
to evaluate the objective at hand—first, fault B is withheld from the training dataset and,
second, the IR fault with all fault severities. For example, the first data selection results
in a the training dataset Dtrain = Dtrain/D f ault=1,4,7 (18,195 samples) and the test datasets
T = Dtest/D f ault=1,4,7 (4549 samples) and Tp = D f ault=1,4,7 (4998 samples).

Evaluation: To evaluate the learned features with respect to the objective of achieving
invariance to changing operating conditions, a classification model is trained based on the
known classes at training time (see Section 4.4.2). To evaluate the objective of achieving
sensitivity to novel fault types, the feature space of the test dataset containing the novel
fault types is clustered. To evaluate the clustering performance, we closely follow the work
of Arias Chao et al. [19] by reporting the following metrics: R: the number of detected
clusters; AMI: the adjusted mutual information, measuring how closely the clustering
algorithm replicates the true classes [39]; h: the homogeneity, which indicates whether
clusters contain only data points which are members of a single class; c: the completeness,
which measures whether members of a given class are elements of the same cluster [40].
Furthermore, a two-dimensional t-Distributed Stochastic Neighbor Embedding (t-SNE) [41]
is used for visualization of the feature representation with a fixed perplexity value of 100.

4.3. Baseline Methods

Contrastive learning results in models that provide an informative feature representa-
tion of the data. To evaluate the performance of the contrastive learning framework, we
defined several baseline models with the focus on encoding features in the latent space
with different types of learning setups, ranging from supervised learning to autoencoding
architectures. Different loss functions are used to optimize the encoder network. First,
an autoencoder is trained with the objective to reconstruct the input signal with the mean
squared error loss. The bottleneck layer activations provide the feature representation.
Second, a classification model is directly trained to predict the labels with cross-entropy
loss. The latent space activations provide the feature representation. To provide a clear
comparison for the evaluation of the different loss functions with respect to the different
objectives, the same encoder model architecture is used for all the encoding models (the
concrete choice is explained in Section 4.4.1). Third, experiments are also conducted on
features extracted from the raw input signals: Fast Fourier Transform (FFT) coefficients.
The fourth evaluation model is an autoencoder architecture that is optimized with respect
to the goal to ideally reconstruct the FFT coefficient and not the raw data.

4.4. Models
4.4.1. Encoder

A small latent feature space dimensionality is chosen arbitrarily with the purpose of
creating a bottleneck that needs to select the most informative content and, thus, may help
to remove some factors of variability. Therefore, the dimensionality of the latent feature
space was set to 16. The feature encoders share the same architecture—with one exception
(see below). The architecture was chosen such that good performance could be achieved on
all training objectives given a feature space of 16 dimensions. The encoder network consists
of four 1D-convolution layers (64, 32, 16, 8 kernels) with a kernel size of 12, activated with
Leaky ReLu (alpha = 0.5), followed by a MaxPooling (with strides of 2), and a Dropout
layer (with a dropout rate of 0.1). The output of the convolution layers is flattened before
passing it to a fully connected layer with 16 dimensions, again, activated by Leaky ReLu
(alpha = 0.5). The triplet encoder has an additional L2 normalization layer. The classifier
is followed by a fully connected layer with number of classes in the training dataset and
softmax activation. The autoencoder (AE) model is followed by a decoder model (reverse
architecture of the encoder). To enable convergence, all models are trained with the Adam
optimizer for 100 epochs and a batch size of 64.

The process to encode the FFT features is elaborated in Section 4.1. While the fixed,
small feature space size allows for comparison of the different feature spaces, training an
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autoencoder successfully (minimizing the reconstruction error of the input signal) required
an adaption of the model architecture. Additionally, it is beneficial to train it on the FFT
features and not on the raw signals (as often done in literature [37]). Therefore, a second
autoencoder model to reconstruct the FFT features is trained to enable a fair comparison
(see Section 4.3) with the following encoder architecture. It consists of four 1D-convolution
layers (64, 32, 16, 8 kernels) with a kernel size of 12 and a stride of 2, activated with Leaky
ReLu (alpha = 0.5). The output of the convolution layers is flattened before passing it to a
fully connected layer with 64 dimensions, again, activated with Leaky ReLu (alpha = 0.5).

4.4.2. Classification

To evaluate the performance of the learned or extracted features, a supervised archi-
tecture was chosen that uses the learned or extracted features as input. It is important to
highlight that supervised evaluations are not feasible for all the case studies. For the super-
vised evaluation case studies, an SVM with a Radial Basis Function kernel is trained based
on the learned or extracted feature representations. For the supervised classifier, the out-
puts of the classifier are used directly without training an additional SVM on the learned
features as in the case of the other two models. In Section 4.5, the specific hyperparameters
are shown.

4.4.3. Clustering

Since particularly the discovery of novel fault types requires unsupervised evaluation
of the feature space, clustering approaches were applied to the learned or extracted fea-
tures. Two different clustering methods are used for comparison purposes: a partitioning
clustering approach and a density-based clustering approach.

The features of the classifier encoder and the AE are scaled by the mean value before
applying the clustering.

OPTICS: the density-based algorithm Ordering points to identify the clustering structure
uses a distance metric to group points that are close to each other. Compared to density-
based spatial clustering of applications with noise (DBSCAN) [42], OPTICS allows for
clusters of varying density. The utilized implementation deviates from the original OPTICS
algorithm by first performing k-nearest-neighborhood searches on all points. This is then
used to calculate core distances in order to identify core sizes. For details, please refer to [43].
One benefit of using OPTICS is that it has the ability to detect “noisy samples” as outliers.
These are samples that are not contained in any cluster as they are not density-reachable as
defined in [31]. This property is particularly useful for detecting novel fault types.

K-means + silhouette score: K-means is a clustering algorithm which assigns each
sample to the cluster with the nearest mean [44]. In our research, the number of clusters is
determined by the silhouette score [33]. It measures how similar an object is to its own clus-
ter (cohesion) as compared to other clusters (separation) based on the Euclidean distance.

4.5. Hyperparameter Tuning

The hyperparameters of the supervised classification algorithm SVM are tuned on a
validation dataset split from the training dataset (see first columns in Table 2). Although the
unsupervised clustering algorithms do not rely on the availability of labels, it is beneficial
to tune certain hyperparameters. To do this, we again exploit the availability of the labeled
training dataset: The minimum number of clusters considered for Kmeans + Silhouette was
set to the number of classes in the training dataset (ten for case study 1 and seven for
case study 2). The maximum number of clusters was set to a fixed value of 20. When
applying OPTICS, the explicit clustering method can be chosen, as well as the minimal
number of samples per class and the maximum distance between two samples ε for one to
be considered as being in the neighborhood of the other. These parameters were tuned to
achieve high performance on a fraction of the training dataset corresponding to the size of
the dataset T. Whenever possible, the smallest fixed value of ε was chosen such that an



Sensors 2021, 21, 3550 8 of 14

AMI of 98% was achieved in the fraction of the training dataset. Otherwise, the value was
set to infinity. Each setting is shown in Table 2.

Table 2. Classification and clustering hyperparameters based on the feature spaces of the FFT,
the Autoencoder based on the FFT (AEFFT), the Autoencoder (AE), the Classifier Encoder (CLE),
and Triplet Encoder (TE) Models.

Classification—SVM Clustering—Exp. 1 Clustering—Exp. 2

C γ Method # ε Method # ε

AE/AE FFT/FFT 5.99 0.001 xi 10 ∞ xi 10 ∞
CLE - - xi 10 ∞ xi 10 ∞
TE 1.67 0.046 DBSCAN 10 0.2 DBSCAN 10 0.08

5. Results
5.1. Case Study 1: Invariance to Novel Operating Conditions

For visualization purposes, the 2D t-SNE of the feature spaces of the models that
share the same encoder architecture (AE, the classifier encoder and the triplet encoder) are
shown with the true labels (ytrue) on T∪Tp in Figure 2. Exemplary, the figures of sample
selection 1 (Dtrain = Dtrain/Dload=1) are displayed. Visually, the triplet encoder features
appear to cluster the different classes best (see Figure 2). All clusters are well separated,
cohesive, and contain only one class of data. The silhouette score per class confirms the
visual impression (see Table 3), as the feature space of the triplet encoder shows the highest
silhouette score calculated on the true labels. However, a slight deviation is visible within
the classes from T to Tp.

Table 3. Silhoutte score of the class clusters in the feature representation based on the FFT features
(FFT), the autoencoder with FFT features (AEFFT), the autoencoder (AE), classifier encoder (CLE),
and triplet encoder (TE) on T∪Tp.

FFT AEFFT AE CLE TE

0.04 0.10 −0.18 0.38 0.81

Hence, the classification performance based on the triplet encoder features is not im-
pacted by the change in operating conditions of the different test datasets (accuracy of 100%
on T and Tp on both of the sample selections—see classification results in Table 4). Similarly,
the classification performance based on classifier encoder features is hardly impacted by
the change of operating conditions—only a negligible performance drop of 1% is observed
from T to Tp for both sample selections—see Table 4. On the contrary, all other models
show a more significant accuracy drop from test dataset T to Tp on both sample selections
(more pronounced in sample selection 1). This showcases the issue of changing operating
condition for the fault diagnostic task and disqualifies these methods to be used in these
scenarios of changing operating conditions.

Clustering methods are used for the second objective of detecting novel fault types (see
Exp. 2). However, the clustering needs to perform well on T ∪ Tp, even if no novel fault
types—but rather only a shift in the operating conditions—are present. If this were not the
case, it would not be possible to distinguish between variations in the data due to changes
in the operating conditions and the presence of novel fault types. In Table 4, the clustering
performance on the respective feature representations is shown. It is apparent that only the
clustering of the triplet encoder feature space is not impacted by the change in operating
conditions. Hardly any performance change is observed between clustering based on T
and clustering based on T ∪ Tp on the sample selection 1 (Dtrain = Dtrain/Dload=1)—see
clustering results in Table 4. For data selection 2 (Dtrain = Dtrain/Dload=2), a slight change
is observed when using OPTICS (AMI changed by 3%). However, this is still the highest
AMI compared to the other methods. Clustering based on the other features perform
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considerably worse. For example, on sample selection 1 (Dtrain = Dtrain/Dload=1), OPTICS
underestimated the number of classes present in the feature spaces of the classifier encoder
(R = 6) and the AE (R = 3). Hence, data from different classes are assigned to the same
cluster, resulting in a lower h score compared to the c score. Clustering with k-means
performs slightly better for all methods. This is due to the fact that the minimum number of
clusters was set to 7 (see Section 4.5). Hence, the number of clusters is closer to the number
of true classes in the data resulting in a better performance compared to the density-based
clustering method OPTICS. We again see a higher c score compared to the h score for all
evaluation models. This means that multiple classes are assigned to one cluster, whereas
other classes are split into multiple clusters.

(a) CLE (b) AE (c) TE

Figure 2. Case Study 1: t-SNE plot of feature space on T∪Tp of the classifier encoder (CLE), the Autoencoder (AE), and the
Triplet Encoder (TE).

Table 4. Case Study 1: Classification and clustering results on various operating conditions based on feature spaces of the
FFT, the Autoencoder based on the FFT (AEFFT), the Autoencoder (AE), the Classifier Encoder (CLE), and Triplet Encoder
(TE) models. (Bold indicates the best results).

Classification Clustering—OPTICS Clustering—k-Means

T Tp T T∪Tp T T∪Tp

acc acc R AMI h c R AMI h c R AMI h c R AMI h c

Sample Selection 1: Dtrain = Dtrain/Dload=1; T = Dtest/Dload=1 and Tp = Dload=1

FFT 97% 91% 5 27% 16% 84% 5 26% 15% 89% 11 47% 41% 56% 10 53% 47% 60%
AEFFT 97% 91% 3 26% 17% 88% 6 26% 16% 87% 11 46% 40% 56% 10 46% 38% 58%

AE 67% 60% 3 1% 1% 36% 4 1% 1% 32% 11 29% 22% 46% 14 29% 22% 46%
CLE 100% 99% 6 23% 14% 67% 6 23% 13% 80% 11 70% 62% 81% 11 70% 61% 82%
TE 100% 100% 11 96% 98% 95% 11 97% 98% 95% 10 100% 100% 100% 10 99% 99% 99%

Sample Selection 2: Dtrain = Dtrain/Dload=2; T = Dtest/Dload=2 and Tp = Dload=2

FFT 97% 95% 6 26% 15% 87% 5 25% 15% 94% 11 47% 41% 56% 11 47% 39% 58%
AEFFT 97% 94% 7 6% 4% 42% 6 25% 15% 93% 10 46% 40% 56% 10 45% 38% 57%

AE 65% 59% 2 4% 2% 5% 3 2% 1% 4% 20 29% 23% 43% 20 30% 23% 45%
CLE 99% 98% 8 28% 17% 72% 7 26% 16% 80% 13 70% 63% 80% 11 70% 60% 85%
TE 100% 100% 11 96% 97% 94% 10 93% 92% 95% 10 99% 99% 99% 10 99% 99% 99%

5.2. Case Study 2: Missing Faults

In Figure 3, the feature space is depicted for T ∪ Tp for sample selection 1 (Dtrain =
Dtrain/D f ault=1,4,7) and the models sharing the same encoder architecture (AE, classifier
encoder, triplet encoder). The true labels as well as the predicted cluster class of the two
methods (OPTICS and k-means) is displayed.

In the first row of the figure, the true labels of the different feature spaces are shown.
The light grey (fault B7), light orange (fault B14), and light purple (fault B21) correspond
to the novel fault types. These are not well isolated in any of t-SNE visualizations, as can
be seen in the first row Figure 3. Therefore, none of the clustering algorithms can identify
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the novel fault types as distinct clusters. However, the original clusters in T in the triplet
encoder feature space are still being found in T∪Tp using both clustering methods (third
column in Figure 3). While k-means simply assigns the novel fault types to the already
existing clusters, OPTICS identifies some data of the novel fault types as outliers (labeled
with 0): For example, on data selection 1 (Dtrain = Dtrain/D f ault=1,4,7), considering the
triplet encoder feature space, a total of 2036 noisy samples or outliers are detected, of which
166 are B7 faults (11% of all B7 faults), 1140 are B14 faults (76% of all B14 faults), and 623
are B21 faults (43% of all B21 faults). Ultimately, 94% of the outliers are from the novel
fault type.

The evaluation metrics are shown in Table 5. Only the class clusters of the triplet
encoder are similarly compact such that a fixed value of ε could be set (see Section 4.5).
Therefore, outliers could be identified as samples that are not density reachable. For the
other baseline methods, this was not possible (see Section 4.5). As the novel faults are
not well isolated in either of the resulting feature spaces, OPTICS performs well only
in identifying novel faults as outliers on the triplet encoder features, where the cluster
densities are compact. It is apparent that the feature space of the different AE as well as the
FFT features does not provide a feature representation that is able to group the different
fault types. This is also true for the feature space of the classifier. Many classes are grouped
in the same cluster, whereas other classes are split into multiple clusters, resulting in a
higher c score compared to the h score for both clustering methods.

Table 5. Case Study 2: Classification and clustering results with novel faults based on feature spaces of the FFT, the Autoen-
coder based on the FFT (AEFFT), the Autoencoder (AE), the Classifier Encoder (CLE), and Triplet Encoder (TE) Models.
(Bold indicates the best results).

Classification Clustering—OPTICS Clustering—k-Means

T Tp T T∪Tp T T∪Tp

acc acc R AMI h c R AMI h c R AMI h c R AMI h c

Sample Selection 1: Dtrain = Dtrain/D f ault=1,4,7; T = Dtest/D f ault=1,4,7 and Tp = D f ault=1,4,7

FFT 100% 0% 4 37% 24% 86% 5 23% 13% 87% 9 57% 53% 61% 7 41% 31% 59%
AEFFT 100% 0% 4 37% 24% 86% 4 23% 13% 89% 8 51% 47% 57% 7 39% 30% 56%

AE 84% 0% 3 4% 2% 4% 3 3% 1% 43% 13 21% 17% 29% 8 16% 11% 35%
CLE 100% 0% 8 7% 4% 34% 8 7% 4% 41% 9 75 % 68 % 83% 5 54% 41% 80%
TE 100% 0% 8 96% 98% 94% 10 73% 69% 77% 7 100% 100% 100% 7 72% 64% 82%

Sample Selection 2: Dtrain = Dtrain/D f ault=2,5,8; T = Dtest/D f ault=2,5,8 and Tp = D f ault=2,5,8

FFT 97% 0% 3 36% 23% 88% 6 23% 13% 85% 7 35% 28% 50% 7 50% 41% 65%
AEFFT 97% 0% 5 37% 24% 84% 5 23% 14% 87% 7 42% 36% 51% 11 53% 48% 59%

AE 73% 0% 2 1% 1% 3% 2 1% 0% 4% 18 26% 23% 36% 7 28% 21% 43%
CLE 100% 0% 9 36% 25% 68% 9 24% 14% 73% 7 66% 58% 77% 7 61% 50% 78%
TE 100% 0% 8 97% 99% 96% 7 76% 65% 93% 7 99% 99% 99% 7 79% 71% 90%

(a) CLE ytrue (b) AE ytrue (c) TE ytrue

Figure 3. Cont.
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(d) CLE ypred kmeans (e) AE ypred kmeans (f) TE ypred kmeans

(g) CLE ypred OPTICS (h) AE ypred OPTICS (i) TE ypred OPTICS

Figure 3. Case Study 2: t-SNE plot of feature space of the classifier encoder (first column), AE (second column), and triplet
encoder (last column) model on T ∪ Tp with the true labels (first row), the predicted labels with k-means (second row),
and the predicted labels with OPTICS (last row).

6. Discussion

The goal of this research is to learn a feature representation that allows for robust
classification under changing operating conditions as well as identification of novel faults.
None of the goals are a classification task per se. However, the classification results on test
dataset (T) allow for comparison with results of other State-of-the-Art (SOTA) publications
on the used benchmark dataset. Accuracies above 99% have been achieved by various
SOTA methods (see Section 4.1). Despite the rather simple model architectures evaluated in
this paper (compared to other SOTA models—see Section 4.1), the classification results on
the test dataset T of up to 100% showcase the validity of the proposed methods including
the chosen baseline methods.

Over all the case studies, the performance based on the AE with the 16-dimensional
feature space is very low. However, we consider a low-dimensional feature space more
suited to filtering out uninformative variations from the input data, which is one of the
objectives of this work. Therefore, we consider this a fair comparison. The lack of robustness
of these autoencoding methods to new operating conditions becomes particularly apparent
in the high classification performance drop in case study 1 from T to Tp (see Table 4).
This is not surprising as the AE is trained to fully reconstruct the input signal. Hence,
the objective is to pass all information regarding the measurements through the bottleneck
layer, including information related to various operating conditions. Therefore, variations
in the operating conditions appear in the feature space as well, making this approach
not suitable if the objective is to achieve invariance or robustness to operating conditions.
Similarly, the FFT features contain all information of the signal including variations caused
by operating conditions. Therefore, the classification performance based on these features
are equally affected by the change in operating conditions.
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The labels are directly considered when training the classifier encoder and triplet
encoder, enabling the models to focus on the semantic meaning. This results in a better clas-
sification performance. Remarkably, the classification performance based on the classifier
encoder and triplet encoder features is hardly affected if the operating conditions change
at inference time. The clustering performance on the features of these two models varies
significantly, both on T and T∪Tp. As the features of a certain class are represented in a
more compact way by the triplet encoder, the space is more suited for clustering. However,
a shift can be visually observed between the data of T and Tp within the respective clusters.
This means that the model is not invariant to the shift in operating conditions. However,
the different classes in T ∪ Tp are still cohesive and separable. Therefore, neither the
classification nor the clustering performance is negatively impacted by the novel operating
conditions. Both clustering methods perform well on T∪Tp, with k-means even delivering
results comparable to the classification performance.

All feature encodings are sensitive to variations in the data corresponding to novel
faults. However, they do not provide a representation that allows the clustering algorithms
to isolate them in the feature space. Therefore, none of the clustering methods identifies
clusters including most of a novel fault class. However, the compactness of the learned fea-
ture representations per class of triplet encoder enables to set a fixed value of ε in OPTICS,
i.e.,a fixed maximal value for two samples to be considered neighbors in a cluster. This
enables us to detect novel faults at least as outliers (if not as distinct clusters). A detected
outlier could raise an alarm to the operator and initiate a further evaluation. For example,
in the sample selection 1 of case study 2, 94% of the outliers actually correspond to novel
faults, and relatively few false alarms will be raised. However, many novel faults will not
be detected but simply registered as another fault class. In this case, fault detection will
still be ensured.

Limitations: The performance of the OPTICS clustering algorithm depends strongly
on the data at hand: If the dataset contains mainly novel faults (|Tp| >> |T|), these will
primarily determine the clusters and will not be detected as outliers anymore. Therefore, it
is important to keep the dataset T with known conditions as a reference for the clustering
algorithm. Continuously, a novel dataset with unknown conditions Tp can be added. Our
case studies have been conducted under an approximate balance between the two datasets
(|T| ≈ |Tp|); this ratio can be tuned according to the safety criticality of the system.

7. Conclusions

In this research, contrastive learning has been evaluated in the context of PHM ap-
plications. Specifically, two typical scenarios in PHM were investigated: a trained model
is faced with new operating conditions and new faults at inference time. We were able to
show that a feature representation trained with a contrastive learning paradigm is well
suited to the clustering of classes under different and partially novel operating conditions.
This enables clustering that is invariant to fluctuation in the data corresponding to sim-
ilar but novel operating conditions, as seen before. Simultaneously, the compactness of
the retrieved feature representations enables density-based clustering that is sensitive to
novel faults. Ultimately, contrastive learning seems to be a promising paradigm for PHM
applications. To further establish contrastive learning in PHM applications, we propose
to dedicate future work to the question of how contrastive learning can be applied in a
semi-supervised or unsupervised setting.
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