A Capacitive 3-Axis MEMS Accelerometer for Medipost: A Portable System Dedicated to Monitoring Imbalance Disorders
Abstract
:1. Introduction
2. MEMS Accelerometer Design and Manufacturing
2.1. Capacitive Accelerometer Operation Principle and Design
2.2. Dedicated Readout Circuit Design
- Each structure of the MEMS sensor can have its own dedicated readout circuit whose parameters are tailored to this particular structure.
- It allows us to align the bonding pads of the readout circuit with the pads of the sensor. It equalizes the bonding wire lengths and creates a regular, symmetrical connection structure between both dies, minimizing the influence of parasitics.
- Each of the three readout channels is digitally configurable, i.e., the parameters of the channel, such as: gain, reference voltages, mismatch compensation, switching frequency, etc., can be easily adapted to application requirements.
2.3. Manufacturing of the Accelerometer
3. Simulation Results and Measurements
3.1. Accelerometer Capacitance Measurements Using Impedance Analyzer
3.2. Accelerometer Capacitance Measurements with External Readout Circuit
3.3. Gravitional Acceleration Measurements
3.4. Comparison of the Three-axis Multiple Sesmic Mass Accelerometers
4. Conclusions
5. Patents
- Three-axis acceleration sensor layout in XMB10 MEMS technology (INNOREH MEMS C1), Authors: Szermer, M., Maj, C., Zając, P., Nazdrowicz, J. Application Number: S.0071, Application Date: 03.02.2021
- Readout integrated circuits layout for a three-axis acceleration sensor in CMOS 180 nm technology (INNOREH ASIC C1), Authors: Amrozik, P., Kiełbik, R., Zając, P., Jankowski, M., Jabłoński, G. Application Number: S.0072, Application Date: 3 February 2021
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hoang, M.L.; Pietrosanto, A. A New Technique on Vibration Optimization of Industrial Inclinometer for MEMS Accelerometer without Sensor Fusion. IEEE Access 2021, 9, 20295–20304. [Google Scholar] [CrossRef]
- Fitzgerald, A.M. MEMS Inertial Sensors. In Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications; IEEE: Piscataway, NJ, USA, 2021; pp. 1435–1446. [Google Scholar]
- Rasras, M.; Elfadel, I.M.; Ngo, H.D. MEMS Accelerometers; Printed Edition of the Special Issue Published in Micromachines; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Bryzek, J. MEMS Tornado to Challenge Next Generation Packaging. In Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT); IMAPS, Research Triangle Park: Research Triangle, NC, USA, 2012; pp. 000417–000456. [Google Scholar]
- Park, W.J.; Song, J.W.; Kang, C.H.; Lee, J.H.; Seo, M.H.; Park, S.Y.; Yeo, J.Y.; Park, C.G. MEMS 3D DR/GPS Integrated System for Land Vehicle Application Robust to GPS Outages. IEEE Access 2019, 7, 73336–73348. [Google Scholar] [CrossRef]
- Kim, Y.; An, J.; Lee, J. Robust navigational system for a transporter using GPS/INS fusion. IEEE Trans. Ind. Electron. 2017, 65, 3346–3354. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Gao, J. An Enhanced GPS/INS Integrated Navigation System with GPS Observation Expansion. J. Navig. 2016, 69, 1041–1060. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.S.; Denison, T.; Kaung, J. A monolithic high-g SOI-MEMS accelerometer for measuring projectile launch and flight accelerations. In Proceedings of the SENSORS, 2004 IEEE, Vienna, Austria, 24–27 October 2004; pp. 296–299. [Google Scholar]
- Lanniel, A.; Alpert, T.; Boeser, T.; Ortmanns, M. Evaluation of Frontend Readout Circuits for High Performance Automotive MEMS Accelerometers. In Proceedings of the 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2–5 July 2018; pp. 229–232. [Google Scholar]
- Stauffer, J.; Dietrich, O.; Dutoit, B. RS9000, a novel MEMS accelerometer family for Mil/Aerospace and safety critical applications. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 1–5. [Google Scholar]
- Chiari, L. Wearable systems with minimal set-up for monitoring and training of balance and mobility. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5828–5832. [Google Scholar]
- Mukhopadhyay, S.C. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-L.; Chiu, W.-C.; Chu, T.-C.; Ho, Y.-H.; Chen, F.-H.; Hsu, C.-C.; Hsieh, P.-H.; Chen, C.-H.; Lin, C.-C.K.; Sung, P.-S.; et al. Innovative Head-Mounted System Based on Inertial Sensors and Magnetometer for Detecting Falling Movements. Sensors 2020, 20, 5774. [Google Scholar] [CrossRef] [PubMed]
- SwayStar™ Balance International Innovations GmbH. Available online: https://www.b2i.info/ (accessed on 12 January 2021).
- VertiGuard® Dynamische Posturographie und Balance Training. Available online: https://www.autronic-medizintechnik.de/index.php?id=16 (accessed on 12 January 2021).
- Tylman, W.; Kotas, R.; Kamiński, M.; Marciniak, P.; Woźniak, S.; Napieralski, J.; Sakowicz, B.; Janc, M.; Józefowicz-Korczyńska, M.; Zamysłowska-Szmytke, E. Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test. Sensors 2021, 21, 1338. [Google Scholar] [CrossRef] [PubMed]
- Kotas, R.; Janc, M.; Kamiński, M.; Marciniak, P.; Zamysłowska-Szmytke, E.; Tylman, W. Evaluation of Agreement between Static Posturography Methods Employing Tensometers and Inertial Sensors. IEEE Access 2019, 7, 164120–164126. [Google Scholar] [CrossRef]
- Bluetooth, IEEE Standard 802.15. Available online: https://standards.ieee.org/ (accessed on 12 January 2021).
- Szermer, M.; Amrozik, P.; Zając, P.; Maj, C.; Napieralski, A. Capacitive MEMS accelerometer with open-loop switched-capacitor readout circuit. Int. J. Microelectron. Comput. Sci. 2017, 8, 139–145. [Google Scholar]
- Kempe, V. Inertial MEMS, Principles and Practice; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Maj, C.; Szermer, M. Designing of Z-axis accelerometer with asymmetric proof-mass using surface micromachining process. In Proceedings of the 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Polyana, Ukraine, 26 February–2 March 2019; pp. 1–5. [Google Scholar]
- Tse, C. Design of a Power Scalable Capacitive MEMS Accelerometer Front End. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2013. [Google Scholar]
- Jankowski, M.; Zając, P.; Amrozik, P.; Szermer, M. CMOS Interface for Capacitive Sensors with Custom Fully-Differential Amplifiers. In Proceedings of the 2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), Lodz, Poland, 25–27 June 2020; pp. 89–93. [Google Scholar]
- X-FAB MEMS Foundry. Available online: https://www.xfab.com/mems0/ (accessed on 12 January 2021).
- COVENTOR, a Lam Research company. Available online: https://www.coventor.com/ (accessed on 12 January 2021).
- COVENTOR MEMS+. Available online: https://www.coventor.com/products/coventormp/mems-plus/ (accessed on 15 April 2021).
- Cadence: EDA Tools and IP for System Design Enablement. Available online: https://www.cadence.com (accessed on 12 January 2021).
- Li, Y.; Song, L.; Liang, S.; Xiao, Y.; Yang, F. Nonlinear Vibration Study Based on Uncertainty Analysis in MEMS Resonant Accelerometer. Sensors 2020, 20, 7207. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, Z.; Elfadel, I.M.; Rasras, M. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers. Micromachines 2018, 9, 602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemkin, M.; Boser, B.E. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J. Solid-State Circuits 1999, 34, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, Y.; Nishimura, M.; Matsuura, M.; Ishida, M. Three-axis SOI capacitive accelerometer with PLL C–V converter. Sens. Actuators A Phys. 1999, 75, 77–85. [Google Scholar] [CrossRef]
- Chae, J.; Kulah, H.; Najafi, K. A monolithic three-axis micro-g micromachined silicon capacitive accelerometer. J. Microelectromech. Syst. 2005, 14, 235–242. [Google Scholar] [CrossRef]
- Liu, Y.C.; Tsai, M.H.; Li, S.S.; Fang, W. A Fully-Differential, Multiplex-Sensing Interface Circuit Monolithically Integrated with Tri-Axis Pure Oxide Capacitive CMOS-MEMS Accelerometers. In Proceedings of the 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, 16–20 June 2013. [Google Scholar]
- Tez, S.; Aykutlu, U.; Torunbalci, M.M.; Akin, T. A Bulk-Micromachined Three-Axis Capacitive MEMS Accelerometer on a Single Die. J. Microelectromech. Syst. 2015, 24, 1264–1274. [Google Scholar] [CrossRef]
- Starr, J.B. Squeeze-film damping in solid-state accelerometers. In Proceedings of the IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 3–7 June 1990; pp. 44–47. [Google Scholar]
- Szaniawski, K. Projektowanie i symulacja scalonych czujników wibracji i przyspieszenia. Ph.D. Thesis, Lodz University of Technology, Lodz, Poland, 2005. [Google Scholar]
Accelerometer Type | Resonance Frequency [kHz] | Sensitivity [fF/g] | Max. Measurable/min. Detectable (Ideal, i.e., no Noise) Acceleration [mg] | Resolution at Operating Bandwidth (10 Hz) [mg] |
---|---|---|---|---|
X axis | 6.043 | 13.15 | ±2.85/5.57 | 12.8 |
Y axis | 16.321 | 0.85 | ±2.94/5.74 | 140 |
Z axis | 6.484 | 0.31 | ±4.03/7.87 | – |
Accelerometer | C0 [pF] | |
---|---|---|
Simulations | Measurements | |
X-axis | 3.070 | 2.933 |
Y-axis | 1.446 | 1.449 |
Z-axis | 1.445 | 1.397 |
Ref. | Year | Device Size [mm × mm] | Range X, Y, Z [±g] | Sensitivity X, Y, Z | Nonlinearity X, Y, Z |
---|---|---|---|---|---|
[31] | 1999 | 4 × 4 | |||
1.9 | 0.4 fF/bit | – | |||
[32] | 1999 | 5 × 5 | 25 fF/g | ||
– | 25 fF/g | – | |||
100 fF/g | |||||
[33] | 2005 | 7 × 9 | 6.8 pF/g | ||
1 | 6.8 pF/g | – | |||
2.9 pF/g | |||||
[34] | 2013 | 1.57 × 1.73 | 105 mV/g | 1% | |
0.01 ÷ 2 | 127 mV/g | 0.5% | |||
58 mV/g | 2.4% | ||||
[35] | 2015 | 12 × 7 | 10 | 0.34% | |
10 | – | 0.28% | |||
+12, –7 | 0.41% | ||||
This work | 2018 | 3.95 × 6.55 | 2.85 | 13.15 fF/g, 701 mV/g | 0.40% (R2 = 0.9996) for ±1 g range |
2.94 | 0.85 fF/g, 680 mV/g | 0.83% (R2 = 0.9917) for ±1 g range | |||
4.03 | 0.31 fF/g, 496 mV/g | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szermer, M.; Zając, P.; Amrozik, P.; Maj, C.; Jankowski, M.; Jabłoński, G.; Kiełbik, R.; Nazdrowicz, J.; Napieralska, M.; Sakowicz, B. A Capacitive 3-Axis MEMS Accelerometer for Medipost: A Portable System Dedicated to Monitoring Imbalance Disorders. Sensors 2021, 21, 3564. https://doi.org/10.3390/s21103564
Szermer M, Zając P, Amrozik P, Maj C, Jankowski M, Jabłoński G, Kiełbik R, Nazdrowicz J, Napieralska M, Sakowicz B. A Capacitive 3-Axis MEMS Accelerometer for Medipost: A Portable System Dedicated to Monitoring Imbalance Disorders. Sensors. 2021; 21(10):3564. https://doi.org/10.3390/s21103564
Chicago/Turabian StyleSzermer, Michał, Piotr Zając, Piotr Amrozik, Cezary Maj, Mariusz Jankowski, Grzegorz Jabłoński, Rafał Kiełbik, Jacek Nazdrowicz, Małgorzata Napieralska, and Bartosz Sakowicz. 2021. "A Capacitive 3-Axis MEMS Accelerometer for Medipost: A Portable System Dedicated to Monitoring Imbalance Disorders" Sensors 21, no. 10: 3564. https://doi.org/10.3390/s21103564