A Pilot Study to Validate a Wearable Inertial Sensor for Gait Assessment in Older Adults with Falls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Pilot Study
2.2. Sample
2.3. Falls Assessment
- -
- Age, sex, height, weight, height, and body mass index (BMI).
- -
- Global cognition measured using Reisberg Global Deterioration Scale (GDS) [30].
- -
- Self-report physical activity: it is assessed according to frailty criteria considering sedentary if they walk less than 3 h per week in the case of men or less than 1 h per week in women.
- -
- Assessment of frailty status using the Standardized Frailty Criteria (SFC) that includes five criteria: weight loss; measured weakness; self-report exhaustion; measured slowness; low activity questionnaire. The score range 0 to 5 being Frail when ≥3 criteria are present, Pre-frail when 1 or 2 criteria are present and Robust or Non-frail when there are no criteria present [31].
- -
- Short Falls Efficacy Scale-International (Short FES-I): This scale measures “fear of falling” or, more properly, “concerns about falling” in older adults living in the community. The scale includes different activities of daily living and it scores from 7 to 28 seven (no concern) to 28 (severe concern). From 9 points onwards, it is considered moderate concern [32].
- -
- Four-Meter Gait Speed (FMGS): patients are instructed to walk 4 m at their “usual speed”. Timing with a stopwatch began when the first foot pass the starting line and ends when the same foot pass the finish line. Three-time trials are taken, choosing the best of them. Gait speed below <0.8 m/s suggests an increased risk of frailty and below 0.6 m/s an increased risk of disability and they both need further clinical review [33].
- -
- Short Physical Performance Battery (SPPB): is an objective assessment tool for evaluating lower extremity functioning in older persons combining three tests: gait speed, chair stand and balance tests. It has been used as a predictive tool for possible adverse events and disability. The scores range from 0 to 12 with higher scores indicating better lower body function.
- -
- Timed Up and Go Test (TUG): The patient is observed and timed while he rises from an armchair, walks 3 m, turns, walks back, and sits down again. A score of ≥14 s has been shown to indicate high risk of falls [34].
2.4. Designed G-STRIDE Architecture
2.4.1. Block 1: Inertial Device
2.4.2. Block 2: Cloud Processing
2.4.3. Block 3: Management App
2.4.4. Block 4: Tests with Patients
2.5. G-STRIDE Hardware and Software Implementation
2.5.1. Implementation of G-STRIDE Sampling Device
2.5.2. Data Processing
2.5.3. Data Transfer and Data Storage
2.5.4. Visualization Interface for Gait Parameters
2.6. Statistical Analysis
3. Results
3.1. Basal Characteristics
3.2. Correlations between Clinical Tests and Gait Characteristics Obtained by G-Stride Device
3.3. Differences in Gait Characteristics between Groups
3.4. Acceptability of G-STRIDE Device
4. Discussion
4.1. The Algorithm
4.2. The Patients
4.3. Pre-Frailty and Frailty Criteria
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35, ii37–ii41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, M.; Jacoby, J.; Barraco, R.D.; Yazdanyar, A.R.; Surmaitis, R.M.; Youngdahl, A.; Chow, R.B.; Murillo, S.M.; Zeng, A.H.; Kane, B.G. Analysis of Falls Efficacy Scale and Vulnerable Elders Survey as Predictors of Falls. Cureus 2021, 13, e14471. [Google Scholar] [CrossRef] [PubMed]
- Anwary, A.R.; Yu, H.; Vassallo, M. Optimal Foot Location for Placing Wearable IMU Sensors and Automatic Feature Extraction for Gait Analysis. IEEE Sens. J. 2018, 18, 2555–2567. [Google Scholar] [CrossRef]
- Dubois, A.; Bihl, T.; Bresciani, J.P. Identifying fall risk predictors by monitoring daily activities at home using a depth sensor coupled to machine learning algorithms. Sensors 2021, 21, 1957. [Google Scholar] [CrossRef] [PubMed]
- Rispens, S.M.; van Schooten, K.S.; Pijnappels, M.; Daffertshofer, A.; Beek, P.J.; van Dieen, J.H. Identification of fall risk predictors in daily life measurements: Gait characteristics? Reliability and association with self-reported fall history. Neurorehabil. Neural Repair 2015, 29, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J.; Mattek, N.; Dodge, H.; Buracchio, T.; Austin, D.; Hagler, S.; Pavel, M.; Hayes, T. One walk a year to 1000 within a year: Continuous in-home unobtrusive gait assessment of older adults. Gait Posture 2012, 35, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home. J. Gerontol. 1994, 29, M85–M94. [Google Scholar] [CrossRef]
- Ganz, D.A.; Latham, N.K. Prevention of Falls in Community-Dwelling Older Adults. N. Engl. J. Med. 2020, 382, 734–743. [Google Scholar] [CrossRef]
- Diao, Y.; Lou, N.; Liang, S.; Zhang, Y.; Ning, Y.; Li, G.; Zhao, G. A Novel Environment-Adaptive Timed Up and Go Test System for Fall Risk Assessment with Wearable Inertial Sensors. IEEE Sens. J. 2021. [Google Scholar] [CrossRef]
- Menz, H.B.; Latt, M.D.; Tiedemann, A.; Mun San Kwan, M.; Lord, S.R. Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture 2004, 20, 20–25. [Google Scholar] [CrossRef]
- Bilney, B.; Morris, M.; Webster, K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 2003, 17, 68–74. [Google Scholar] [CrossRef]
- Reza, B.; Soltani, A.; Ruparathna, R.; Sadiq, R.; Hewage, K. Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: A case study of Metro Vancouver Waste Management. Resour. Conserv. Recycl. 2013, 81, 105–114. [Google Scholar] [CrossRef]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.R.; McGrath, D.; O’Neill, R.; O’Donovan, K.J.; Burns, A.; Caulfield, B. An adaptive gyroscope-based algorithm for temporal gait analysis. Med. Biol. Eng. Comput. 2010, 48, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Gong, J.; Kerrigan, D.C.; Bennett, B.C.; Lach, J.; Russell, S. Gait tracker shoe for accurate step-by-step determination of gait parameters. In Proceedings of the BSN 2016—13th Annual Body Sensor Networks Conference, San Francisco, CA, USA, 14–17 June 2016; pp. 13–18. [Google Scholar] [CrossRef]
- Chang, H.C.; Hsu, Y.L.; Yang, S.C.; Lin, J.C.; Wu, Z.H. A wearable inertial measurement system with complementary filter for gait analysis of patients with stroke or Parkinson’s disease. IEEE Access 2016, 4, 8442–8453. [Google Scholar] [CrossRef]
- Apsega, A.; Petrauskas, L.; Alekna, V.; Daunoraviciene, K.; Sevcenko, V.; Mastaviciute, A.; Vitkus, D.; Tamulaitiene, M.; Griskevicius, J. Wearable sensors technology as a tool for discriminating frailty levels during instrumented gait analysis. Appl. Sci. 2020, 10, 8451. [Google Scholar] [CrossRef]
- Zhou, L.; Tunca, C.; Fischer, E.; Brahms, C.M.; Ersoy, C.; Granacher, U.; Arnrich, B. Validation of an IMU Gait Analysis Algorithm for Gait Monitoring in Daily Life Situations. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Montreal, QC, Canada, 20–24 July 2020; pp. 4229–4232. [Google Scholar] [CrossRef]
- Sijobert, B.; Benoussaad, M.; Denys, J.; Pissard-Gibollet, R.; Geny, C.; Coste, C.A. Implementation and Validation of a Stride Length Estimation Algorithm, Using a Single Basic Inertial Sensor on Healthy Subjects and Patients Suffering from Parkinson’s Disease. Health 2015, 7, 704–714. [Google Scholar] [CrossRef] [Green Version]
- Montesinos, L.; Castaldo, R.; Pecchia, L. Wearable Inertial Sensors for Fall Risk Assessment and Prediction in Older Adults: A Systematic Review and Meta-Analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Pavic, A.; Goodwin, V.A. Wearable inertial sensors to measure gait and posture characteristic differences in older adult fallers and non-fallers: A scoping review. Gait Posture 2020, 76, 110–121. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review. Sensors 2012, 12, 6102–6116. [Google Scholar] [CrossRef] [Green Version]
- Byun, S.; Lee, H.J.; Han, J.W.; Kim, J.S.; Choi, E.; Kim, K.W. Walking-speed estimation using a single inertial measurement unit for the older adults. PLoS ONE 2019, 14, e0227075. [Google Scholar] [CrossRef] [Green Version]
- Vallabhajosula, S.; Humphrey, S.K.; Cook, A.J.; Freund, J.E. Concurrent Validity of the Zeno Walkway for Measuring Spatiotem- poral Gait Parameters in Older Adults. J. Geriatr. Phys. Ther. 2019, 42, E42–E50. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.R.; Seco, F.; Prieto, C.; Guevara, J. A comparison of Pedestrian Dead-Reckoning algorithms using a low-cost MEMS IMU. In Proceedings of the 2009 IEEE International Symposium on Intelligent Signal Processing, Budapest, Hungary, 26–28 August 2009; pp. 37–42. [Google Scholar] [CrossRef]
- Zhou, L.; Fischer, E.; Tunca, C.; Brahms, C.M.; Ersoy, C.; Granacher, U.; Arnrich, B. How We Found Our IMU: Guidelines to IMU Selection and a Comparison of Seven IMUs for Pervasive Healthcare Applications. Sensors 2020, 20, 4090. [Google Scholar] [CrossRef]
- Petraglia, F.; Scarcella, L.; Pedrazzi, G.; Brancato, L.; Puers, R.; Costantino, C. Inertial sensors versus standard systems in gait analysis: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2019, 55, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society. Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J. Am. Geriatr. Soc. 2011, 59, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.; Craig, C.L.; Aoyagi, Y.; Bell, R.C.; Croteau, K.A.; De Bourdeaudhuij, I.; Ewald, B.; Gardner, A.W.; Hatano, Y.; Lutes, L.D.; et al. How many steps/day are enough? For older adults and special populations. Int. J. Behav. Nutr. Phys. Act. 2011, 28, 8–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auer, S.; Reisberg, B. The GDS/FAST staging system. Int. Psychogeriatr. 1997, 167–171. [Google Scholar] [CrossRef]
- Alonso-Bouzón, C.; Carnicero, J.A.; Turín, J.G.; García-García, F.J.; Esteban, A.; Rodríguez-Mañas, L. The Standardization of Frailty Phenotype Criteria Improves Its Predictive Ability: The Toledo Study for Healthy Aging. J. Am. Med. Dir. Assoc. 2017, 18, 402–408. [Google Scholar] [CrossRef]
- Kempen, G.I.; Yardley, L.; van Haastregt, J.C.; Zijlstra, G.A.; Beyer, N.; Hauer, K.; Todd, C. The Short FES-I: A shortened version of the falls efficacy scale-international to assess fear of falling. Age Ageing 2008, 37, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Trojaniello, D.; Cereatti, A.; Pelosin, E.; Avanzino, L.; Mirelman, A.; Hausdorff, J.M.; Della Croce, U. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng. Rehabil. 2014, 11, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Sanchez, M.C.; Vaquero-López, J.; Orellana, R.; Borromeo-López, S. A problem and project-based learning for deployment real monitoring and control systems with applications for the industry 4.0. Edulearn 2020. In Proceedings of the 2th International Conference on Education and New Learning Technologies, Palma de Mallorca, Spain, 6–7 July 2020. [Google Scholar] [CrossRef]
- Mandal, P.; Tank, K.; Mondal, T.; Chen, C.H.; Deen, M.J. Predictive Walking-Age Health Analyzer. IEEE J. Biomed. Health Inform. 2018, 22, 363–374. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neira, G.; Ruiz, L.; Jiménez, A.R.; Seco, F.; Sánchez, C. Influence of IMU’s measurement noise on the accuracy of stride length estimation for gait analysis. In Proceedings of the International Indoor Positioning and Indoor Navigation-IPIN Conference, Barcelona, Spain, 29 November–2 December 2021. [Google Scholar]
- Amitrano, F.; Coccia, A.; Ricciardi, C.; Donisi, L.; Cesarelli, G.; Capodaglio, E.M.; D’Addio, G. Design and Validation of an E-Textile-Based Wearable Sock for Remote Gait and Postural Assessment. Sensors 2020, 20, 6691. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Pinto, R.S.; Bottaro, M.; Izquierdo, M. Strength and endurance training prescription in healthy and frail elderly. Aging Dis. 2014, 5, 183–195. [Google Scholar] [CrossRef]
- Jagos, H.; Pils, K.; Haller, M.; Wassermann, C.; Chhatwal, C.; Rafolt, D.; Rattay, F. Mobile gait analysis via eSHOEs instrumented shoe insoles: A pilot study for validation against the gold standard GAITRite®. J. Med. Eng. Technol. 2017, 41, 375–386. [Google Scholar] [CrossRef]
- Duque, G. Osteosarcopenia: A Geriatric Giant of the XXI Century. J. Nutr. Health Aging 2021, 25, 25–32. [Google Scholar] [CrossRef]
- de Oliveira, L.D.S.S.C.B.; Souza, E.C.; Rodrigues, R.A.S.; Fett, C.A.; Piva, A.B. The effects of physical activity on anxiety, depression, and quality of life in elderly people living in the community. Trends Psychiatry Psychother. 2019, 41, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Chiaramonte, R.; Cioni, M. Critical spatiotemporal gait parameters for individuals with dementia: A systematic review and meta-analysis. Hong Kong Physiother. J. 2021, 41, 1–14. [Google Scholar] [CrossRef]
- Mulas, I.; Putzu, V.; Asoni, G.; Viale, D.; Mameli, I.; Pau, M. Clinical assessment of gait and functional mobility in Italian healthy and cognitively impaired older persons using wearable inertial sensors. Aging Clin. Exp. Res. 2020, 25, 1–12. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Blake, C.; Cunningham, C.; Boyle, G.; Finucane, C. Correlation of accelerometry with clinical balance tests in older fallers and non-fallers. Age Ageing 2009, 38, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, R.Z.U.; Zhou, Y.; Din, S.D.; Alcock, L.; Hansen, C.; Guan, Y.; Hortobágyi, T.; Maetzler, W.; Rochester, L.; Lamoth, C.J.C. Gait Analysis with Wearables Can Accurately Classify Fallers from Non-Fallers: A Step toward Better Management of Neurological Disorders. Sensors 2020, 20, 6992. [Google Scholar] [CrossRef] [PubMed]
- Tornero-Quiñones, I.; Sáez-Padilla, J.; Espina-Díaz, A.; Abad-Robles, M.T.; Sierra-Robles, Á. Functional Ability, Frailty and Risk of Falls in the Elderly: Relations with Autonomy in Daily Living. Int. J. Environ. Res. Public Health 2020, 17, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total (n = 21) | Non–Fallers (n = 10) | Fallers (n = 11) | p Value | |
---|---|---|---|---|
Age (years) | 81.1 ± 4.8 (73–91) | 78.2 ± 3 (73–83) | 83.7 ± 4.6 (77–91) | 0.011 |
Sex (female/male) | 12 (57.1%)/9 (42.9%) | 6 (60)/4 (40) | 6 (54.5)/5 (45.5) | 0.801 |
Surface (flat/sloped) | 18 (85.7%)/3 (14.3%) | 7 (70%)/3 (30%) | 11 (100%)/0 (0%) | 0.050 |
Physical Activity (No/Yes) | 16 (76.2%)/5 (23.8%) | 10 (100%)/0 (0%) | 6 (54.5%)/5 (45.5%) | 0.015 |
Body Mass (kg) | 63.3 ± 9.6 (45–66) | 66.8 ± 8.9 (54–86) | 60.1 ± 9.8 (46–79) | 0.398 |
Height (m) | 1.61 ± 0,08 (1.40–1.79) | 1.64 ± 0.05 (1.60–1.72) | 1.56 ± 0.10 (1.40–1.79) | 0.091 |
BMI (Kg/m2) | 24.5 ± 2.5 (19.9–31.6) | 24.6 ± 3.3 (21.1–31.6) | 24.4 ± 1.8 (19.9–26.4) | 0.015 |
GDS | 2.1 ± 1 (1–6) | 1 ± 0 (1–1) | 3.20 ± 1.8 (1–6) | 0.001 |
Functional Tests | Fallers (Mean ± SD) | Non-Fallers (Mean ± SD) | Sig. | Z | dr |
---|---|---|---|---|---|
FMGS (m/s) | 1.13 ± 0.70 | 1.92 ± 0.34 | 0.002 | −3.02 | 0.58 |
SFC | 1.55 ± 1.37 | 0.1 ± 0.32 | 0.004 | −2.90 | 0.57 |
SPPB | 7.36 ± 2.54 | 11.30 ± 0.82 | 0.001 | −3.33 | 0.72 |
TUG (s) | 21.85 ± 24.59 | 7.72 ± 1.52 | 0.000 | −3.80 | 0.37 |
Short FES-I | 12.64 ± 5.10 | 9.00 ± 2.49 | 0.080 | −1.75 | 0.41 |
G-STRIDE Parameters | Fallers (Mean ± SD) | Non-Fallers (Mean ± SD) | Sig. | Z | dr |
---|---|---|---|---|---|
Mean Stride Length (m) | 0.68 ± 0.24 | 0.97 ± 0.15 | 0.007 | −2.68 | 0.58 |
SD Stride Length (m2) | 0.08 ± 0.06 | 0.108 ± 0.04 | 0.180 | −1.34 | 0.28 |
Mean Swing Time (s) | 0.75 ± 0.11 | 0.83 ± 0.06 | 0.053 | −1.94 | 0.45 |
SD Swing Time (s2) | 0.04 ± 0.04 | 0.02 ± 0.03 | 0.460 | −0.74 | 0.19 |
Mean Speed (m/s) | 0.58 ± 0.25 | 0.91 ± 0.17 | 0.005 | −2.82 | 0.60 |
Cadence (steps/min) | 46.63 ± 8.25 | 53.11 ± 6.13 | 0.035 | −2.11 | 0.40 |
Steps | 1267.27 ± 415.44 | 1637.70 ± 278.62 | 0.041 | −2.04 | 0.46 |
Total Distance (m) | 905.56 ± 459.42 | 1650.09 ± 374.02 | 0.001 | −3.31 | 0.66 |
Total Walking Time (s) | 1593.96 ± 347.44 | 1819.49 ± 138.64 | 0.105 | −1.62 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Villamil, G.; Neira-Álvarez, M.; Huertas-Hoyas, E.; Ramón-Jiménez, A.; Rodríguez-Sánchez, C. A Pilot Study to Validate a Wearable Inertial Sensor for Gait Assessment in Older Adults with Falls. Sensors 2021, 21, 4334. https://doi.org/10.3390/s21134334
García-Villamil G, Neira-Álvarez M, Huertas-Hoyas E, Ramón-Jiménez A, Rodríguez-Sánchez C. A Pilot Study to Validate a Wearable Inertial Sensor for Gait Assessment in Older Adults with Falls. Sensors. 2021; 21(13):4334. https://doi.org/10.3390/s21134334
Chicago/Turabian StyleGarcía-Villamil, Guillermo, Marta Neira-Álvarez, Elisabet Huertas-Hoyas, Antonio Ramón-Jiménez, and Cristina Rodríguez-Sánchez. 2021. "A Pilot Study to Validate a Wearable Inertial Sensor for Gait Assessment in Older Adults with Falls" Sensors 21, no. 13: 4334. https://doi.org/10.3390/s21134334