A Decision Support System for Face Sketch Synthesis Using Deep Learning and Artificial Intelligence
Abstract
:1. Introduction
- A pre-trained Vgg-19 network is used to help accomplish the exemplar-based technique of selecting the best possible candidate from the viewed sketches during the training process. This part relies upon the distribution of the input photo into a mosaic of overlapping patches and identical division of the sketches in the reference set.
- The patches are selected by the minimal cosine distance, and a candidate feature map of the sketch is formulated.
- The feature sketch and the raw sketch by the compiler network are then compared through a customized convolutional neural network applying the MSE loss function to render a perceptual loss that monitors the training of the compiler network.
- The adversary loss function is also used to give sharpness to the resulting sketches.
2. Related Work
3. Materials and Methods
- Sixty-eight face landmarks on the image are detected by the dlib1* library.
- The image is rescaled in a manner that the two eyes are located at (75; 125) and (125; 125), respectively.
- The resulting image is cropped to a size of 250 × 200.
3.1. Compiler Network C
3.2. Feature Extractor F
- To begin with, is input to the pre-trained Vgg-19 net.
- The feature map is extracted at the -th layer, where , corresponding to ( of F.
- A dictionary/look-up repository of reference representations is built for the entire dataset in the form of and .
- Let us assume an patch centered at point of as . Let us also assume corresponding patches and from the entire dataset.
- For every patch , where and is explained by the relation , where and are the height and the width of the map , respectively, we find its closest patch from the look-up repository or dictionary based on the cosine distance.
- The cosine distance is defined with the help of Equation (1).
- Photos and sketches are aligned in the reference set. We index directly the corresponding feature patches for identified patches by Equation (2).
- Successively, is used in place of every to formulate a complete feature representation or the feature sketch at given layer . Therefore,
3.3. Discriminator D
3.4. Loss Function
4. Results
4.1. Datasets
4.2. Performance Measures
4.3. Face Recognition
4.4. Hardware and Software Setup
4.5. Evaluation of Performance on Public Benchmarks
4.6. Results of CUFS Dataset
4.7. Results of CUFSF Dataset
4.8. Augmented Dataset and New Implementation
4.9. Evaluation of Augmented Datasets
- ▪
- It is important to note that we cannot compare newer results with any previous work since our modified or augmented dataset is put to use for the first time.
- ▪
- The setup was implemented for two schemes, namely Face2Sketch (containing SNET as its component) and Spiral-Net. Therefore, the results may be compared between these two techniques.
- ▪
- The second and third columns of Table 9 relate to these results. The second column gives values of the SNET technique, and the third column depicts result values for the Spiral-Net technique. It is seen that values of the SSIM and the FSIM for Spiral-Net are superior to those of SNET, which means that the proposed setup imparts more accuracy of features to the formulated sketches. Similarly, the face recognition values by NLDA and OpenBR methods for Spiral-Net are better than those for SNET by almost 2% and 5%, respectively. However, this improvement is achieved at the cost of processing time per photo since Spiral-Net contains almost double the layers of SNET (see Table 9).
- ▪
- It is also observed from columns fourth and fifth, related to the VSF data component employed by SNET and Spiral-Net, respectively, that there is no marked difference of values between the two techniques. It indicates that CUFSF is inherently a challenging dataset since it copies the characteristics of real-life forensic sketches. Therefore, more research effort is required to fine-tune proposed and other new techniques to improve upon results of a singular CUFSF dataset or any combination of sets involving CUFSF.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Yang, S.; Wen, Y.; He, L.; Zhou, M.C.; Abusorrah, A. Sparse Individual Low-rank Component Representation for Face Recognition in IoT-based System. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Chauhan, D.; Kumar, A.; Bedi, P.; Athavale, V.A.; Veeraiah, D.; Pratap, B.R. An effective face recognition system based on Cloud based IoT with a deep learning model. Microprocess. Microsyst. 2021, 81, 103726. [Google Scholar] [CrossRef]
- Kanwal, S.; Iqbal, Z.; Al-Turjman, F.; Irtaza, A.; Khan, M.A. Multiphase fault tolerance genetic algorithm for vm and task scheduling in datacenter. Inf. Process. Manag. 2021, 58, 102676. [Google Scholar] [CrossRef]
- Sujitha, B.; Parvathy, V.S.; Lydia, E.L.; Rani, P.; Polkowski, Z.; Shankar, K. Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications. Trans. Emerg. Telecommun. Technol. 2020, 32, e3976. [Google Scholar] [CrossRef]
- Goyal, P.; Sahoo, A.K.; Sharma, T.K.; Singh, P.K. Internet of Things: Applications, security and privacy: A survey. Mater. Today Proc. 2021, 34, 752–759. [Google Scholar] [CrossRef]
- Akhtar, Z.; Lee, J.W.; Khan, M.A.; Sharif, M.; Khan, S.A.; Riaz, N. Optical character recognition (OCR) using partial least square (PLS) based feature reduction: An application to artificial intelligence for biometric identification. J. Enterp. Inf. Manag. 2020. [Google Scholar] [CrossRef]
- Khan, M.A.; Javed, K.; Khan, S.A.; Saba, T.; Habib, U.; Khan, J.A.; Abbasi, A.A. Human action recognition using fusion of multiview and deep features: An application to video surveillance. Multimed. Tools Appl. 2020, 1–27. [Google Scholar] [CrossRef]
- Sharif, A.; Li, J.P.; Saleem, M.A.; Manogran, G.; Kadry, S.; Basit, A.; Khan, M.A. A dynamic clustering technique based on deep reinforcement learning for Internet of vehicles. J. Intell. Manuf. 2021, 32, 757–768. [Google Scholar] [CrossRef]
- Khan, M.A.; Zhang, Y.-D.; Alhusseni, M.; Kadry, S.; Wang, S.-H.; Saba, T.; Iqbal, T. A Fused Heterogeneous Deep Neural Network and Robust Feature Selection Framework for Human Actions Recognition. Arab. J. Sci. Eng. 2021, 1–16. [Google Scholar] [CrossRef]
- Khan, M.A.; Muhammad, K.; Sharif, M.; Akram, T.; de Albuquerque, V.H.C. Multi-Class Skin Lesion Detection and Classification via Teledermatology. IEEE J. Biomed. Heal. Inform. 2021, 1. [Google Scholar] [CrossRef] [PubMed]
- Geremek, M.; Szklanny, K. Deep Learning-Based Analysis of Face Images as a Screening Tool for Genetic Syndromes. Sensors 2021, 21, 6595. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ihm, S.-Y.; Son, Y. Two-Level Blockchain System for Digital Crime Evidence Management. Sensors 2021, 21, 3051. [Google Scholar] [CrossRef] [PubMed]
- Klare, B.F.; Li, Z.; Jain, A.K. Matching Forensic Sketches to Mug Shot Photos. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klum, S.J.; Han, H.; Klare, B.F.; Jain, A.K. The FaceSketchID System: Matching Facial Composites to Mugshots. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2248–2263. [Google Scholar] [CrossRef]
- Galea, C.; Farrugia, R. Forensic Face Photo-Sketch Recognition Using a Deep Learning-Based Architecture. IEEE Signal Process. Lett. 2017, 24, 1586–1590. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Bao, L.; Yang, Q.; Yang, M.-H. Real-Time Exemplar-Based Face Sketch Synthesis. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 800–813. [Google Scholar]
- Klare, B.F.; Jain, A.K. Heterogeneous Face Recognition Using Kernel Prototype Similarities. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1410–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negka, L.; Spathoulas, G. Towards Secure, Decentralised, and Privacy Friendly Forensic Analysis of Vehicular Data. Sensors 2021, 21, 6981. [Google Scholar] [CrossRef] [PubMed]
- Abayomi-Alli, O.O.; Damaševičius, R.; Maskeliūnas, R.; Misra, S. Few-shot learning with a novel Voronoi tessellation-based image augmentation method for facial palsy detection. Electronics 2021, 10, 978. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Wang, Y.; Fu, Z. Multiple Object Tracking for Dense Pedestrians by Markov Random Field Model with Improvement on Potentials. Sensors 2020, 20, 628. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Ho, E.S.; McCay, K.D.; Damaševičius, R.; Maskeliūnas, R.; Esposito, A. Assessing facial symmetry and attractiveness using augmented reality. Pattern Anal. Appl. 2021, 1–17. [Google Scholar] [CrossRef]
- Ioannou, K.; Myronidis, D. Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks. Sustainability 2021, 13, 5323. [Google Scholar] [CrossRef]
- Ranjan, N.; Bhandari, S.; Khan, P.; Hong, Y.-S.; Kim, H. Large-Scale Road Network Congestion Pattern Analysis and Prediction Using Deep Convolutional Autoencoder. Sustainability 2021, 13, 5108. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W.; Tan, X.; Wong, K.-Y.K. Semi-supervised Learning for Face Sketch Synthesis in the Wild. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; pp. 216–231. [Google Scholar]
- Chen, C.; Tan, X.; Wong, K.-Y.K. Face Sketch Synthesis with Style Transfer Using Pyramid Column Feature. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018. [Google Scholar]
- Sultan, S.; Javaid, Q.; Malik, A.J.; Al-Turjman, F.; Attique, M. Collaborative-trust approach toward malicious node detection in vehicular ad hoc networks. Environ. Dev. Sustain. 2021, 1–19. [Google Scholar] [CrossRef]
- Khan, M.A.; Kadry, S.; Parwekar, P.; Damaševičius, R.; Mehmood, A.; Khan, J.A.; Naqvi, S.R. Human gait analysis for osteoarthritis prediction: A framework of deep learning and kernel extreme learning machine. Complex Intell. Syst. 2021, 1–19. [Google Scholar] [CrossRef]
- Jeong, Y.-S.; Kim, Y.-T.; Park, G.-C. Blockchain-based multi-IoT verification model for overlay cloud environments. J. Digit. Converg. 2021, 19, 151–157. [Google Scholar]
- Cauteruccio, F.; Cinelli, L.; Corradini, E.; Terracina, G.; Ursino, D.; Virgili, L.; Savaglio, C.; Liotta, A.; Fortino, G. A framework for anomaly detection and classification in Multiple IoT scenarios. Futur. Gener. Comput. Syst. 2021, 114, 322–335. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G.; Nitti, M. The Social Internet of Things (SIoT)—When social networks meet the Internet of Things: Concept, architecture and network characterization. Comput. Networks 2012, 56, 3594–3608. [Google Scholar] [CrossRef]
- Jabar, M.K.; Al-Qurabat, A.K.M. Human Activity Diagnosis System Based on the Internet of Things. J. Phys. Conf. Ser. 2021, 1897, 022079. [Google Scholar] [CrossRef]
- Ansari, G.J.; Shah, J.H.; Khan, M.A.; Sharif, M.; Tariq, U.; Akram, T. A Non-Blind Deconvolution Semi Pipelined Approach to Understand Text in Blurry Natural Images for Edge Intelligence. Inf. Process. Manag. 2021, 58, 102675. [Google Scholar] [CrossRef]
- Hussain, N.; Khan, M.A.; Kadry, S.; Tariq, U.; Mostafa, R.R.; Choi, J.-I.; Nam, Y. Intelligent Deep Learning and Improved Whale Optimization Algorithm Based Framework for Object Recognition. Hum. Cent. Comput. Inf. Sci. 2021, 11, 34. [Google Scholar]
- Kiran, S.; Khan, M.A.; Javed, M.Y.; Alhaisoni, M.; Tariq, U.; Nam, Y.; Damaševičius, R.; Sharif, M. Multi-Layered Deep Learning Features Fusion for Human Action Recognition. Comput. Mater. Contin. 2021, 69, 4061–4075. [Google Scholar] [CrossRef]
- Masood, H.; Zafar, A.; Ali, M.U.; Khan, M.A.; Ahmed, S.; Tariq, U.; Kang, B.-G.; Nam, Y. Recognition and Tracking of Objects in a Clustered Remote Scene Environment. Comput. Mater. Contin. 2022, 70, 1699–1719. [Google Scholar] [CrossRef]
- Xiaoou, T.; Xiaogang, W. Face sketch synthesis and recognition. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 1, pp. 687–694. [Google Scholar]
- Qingshan, L.; Xiaoou, T.; Hongliang, J.; Hanqing, L.; Songde, M. A nonlinear approach for face sketch synthesis and recognition. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 1005–1010. [Google Scholar]
- Wang, X.; Tang, X. Face Photo-Sketch Synthesis and Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Kuang, Z.; Wong, K.-Y.K. Markov Weight Fields for face sketch synthesis. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1091–1097. [Google Scholar]
- Gao, X.; Wang, N.; Tao, D.; Li, X. Face Sketch–Photo Synthesis and Retrieval Using Sparse Representation. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1213–1226. [Google Scholar] [CrossRef]
- Wang, N.; Gao, X.; Li, J. Random sampling for fast face sketch synthesis. Pattern Recognit. 2018, 76, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Akram, A.; Wang, N.; Li, J.; Gao, X. A Comparative Study on Face Sketch Synthesis. IEEE Access 2018, 6, 37084–37093. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, L.; Wu, X.; Ding, S.; Zhang, L. End-to-End Photo-Sketch Generation via Fully Convolutional Representation Learning. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Shanghai, China, 23–26 June 2015. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. arXiv 2017, arXiv:1611.07004. [Google Scholar]
- Zhang, D.; Lin, L.; Chen, T.; Wu, X.; Tan, W.; Izquierdo, E. Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning. IEEE Trans. Image Process. 2016, 26, 328–339. [Google Scholar] [CrossRef]
- Wang, L.; Sindagi, V.; Patel, V. High-Quality Facial Photo-Sketch Synthesis Using Multi-Adversarial Networks. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018. [Google Scholar]
- Wang, N.; Gao, X.; Sun, L.; Li, J. Anchored Neighborhood Index for Face Sketch Synthesis. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 2154–2163. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, S.; Li, L.; Liu, F.; Ma, W. A modified convolutional neural network for face sketch synthesis. Pattern Recognit. 2018, 76, 125–136. [Google Scholar] [CrossRef]
- Zhang, S.; Ji, R.; Hu, J.; Lu, X.; Li, X. Face Sketch Synthesis by Multidomain Adversarial Learning. IEEE Trans. Neural Networks Learn. Syst. 2019, 30, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, R.; Gao, X.; Li, J.; Tao, D. Dual-Transfer Face Sketch–Photo Synthesis. IEEE Trans. Image Process. 2018, 28, 642–657. [Google Scholar] [CrossRef]
- Lin, Y.; Ling, S.; Fu, K.; Cheng, P. An Identity-Preserved Model for Face Sketch-Photo Synthesis. IEEE Signal Process. Lett. 2020, 27, 1095–1099. [Google Scholar] [CrossRef]
- Fang, Y.; Deng, W.; Du, J.; Hu, J. Identity-aware CycleGAN for face photo-sketch synthesis and recognition. Pattern Recognit. 2020, 102, 107249. [Google Scholar] [CrossRef]
- Xie, F.; Yang, J.; Liu, J.; Jiang, Z.; Zheng, Y.; Wang, Y. Skin lesion segmentation using high-resolution convolutional neural network. Comput. Methods Programs Biomed. 2020, 186, 105241. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, J.; Pan, J.; Liu, Y.; Wang, Y.; Chen, J.; Ren, J. Learning to Deblur Face Images via Sketch Synthesis. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11523–11530. [Google Scholar]
- Zhu, M.; Li, J.; Wang, N.; Gao, X. Knowledge Distillation for Face Photo-Sketch Synthesis. IEEE Trans. Neural Networks Learn. Syst. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Radman, A.; Suandi, S.A. BiLSTM regression model for face sketch synthesis using sequential patterns. Neural Comput. Appl. 2021, 33, 12689–12702. [Google Scholar] [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. arXiv 2016, arXiv:1603.08155. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Li, C.; Wand, M. Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis. arXiv 2016, arXiv:1601.04589. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.K.; Wang, Z.; Smolley, S.P. Least Squares Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2947–2960. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Zhang, H.; Dana, K. Photo-Realistic Facial Texture Transfer. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 2097–2105. [Google Scholar]
- Zhang, W.; Wang, X.; Tang, X. Coupled information-theoretic encoding for face photo-sketch recognition. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 20–25 June 2011. [Google Scholar]
- Bhatt, H.S.; Bharadwaj, S.; Singh, R.; Vatsa, M. Memetic approach for matching sketches with digital face images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1522–1535. [Google Scholar] [CrossRef]
- Martínez, A.; Benavente, R. The AR face database. Comput. Vis. Cent. 2007, 3, 5. [Google Scholar]
- Messer, K.; Matas, J.; Kittler, J.; Luettin, J.; Maitre, G. XM2VTSDB: The extended M2VTS database. In Proceedings of the Second International Conference on Audio and Video-Based Biometric Person Authentication, Washington, DC, USA, 22–24 March 1999; pp. 965–966. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Mou, Z.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Klontz, J.C.; Klare, B.F.; Klum, S.; Jain, A.K.; Burge, M.J. Open source biometric recognition. In Proceedings of the 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 29 September–2 October 2013; pp. 1–8. [Google Scholar]
- Rigel, D.S.; Carucci, J.A. Malignant melanoma: Prevention, early detection, and treatment in the 21st century. CA Cancer J. Clin. 2000, 50, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zha, W.; Li, J.; Gao, X. Back projection: An effective postprocessing method for GAN-based face sketch synthesis. Pattern Recognit. Lett. 2018, 107, 59–65. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Li, Z.; Zhou, A. Self-Selection Salient Region-Based Scene Recognition Using Slight-Weight Convolutional Neural Network. J. Intell. Robot. Syst. 2021, 102, 1–16. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, A.; Shen, Y. An End-to-End Trainable Multi-Column CNN for Scene Recognition in Extremely Changing Environment. Sensors 2020, 20, 1556. [Google Scholar] [CrossRef] [Green Version]
Dataset | Total Pairs | Train | Test | |
---|---|---|---|---|
CUFS | CUHK [37] | 188 | 88 | 100 |
AR [65] | 123 | 80 | 43 | |
XM2VTS [66] | 295 | 100 | 195 | |
CUFSF | 1194 | 250 | 944 | |
Total Pairs | 1800 | 518 | 1282 |
S No | Item | CUFS | CUFSF | |
---|---|---|---|---|
1 | Hardware | Core i-7 ®, 7th Gen, NVIDIA 1060 (6GB) GPU | ||
2 | OS | Ubuntu Linux | ||
3 | Environment | PyCharm (CE), Torch 1.4.0 | ||
4 | Moderating Weights | 1 | 1 | |
103 | 103 | |||
10−5 | 10−2 | |||
5 | Learning Weights | 10−3 to 10−5 reducing by a factor of 10−1 | ||
6 | Batch Sizes | 4 to 2 for different iterations | ||
7 | Processing Time | See respective tables |
Dataset | Total Pairs | Train | Test |
---|---|---|---|
CUFS | 338 | 150 | 188 |
CUFSF | 944 | 300 | 644 |
Type | MRF [10] | MWF [11] | LLE [9] | SSD [4] | FCN [15] | GAN [16] | RSLCR [13] | Face2Sketch [6] | BiL-STM [28] | Proposed Spiral-Net |
---|---|---|---|---|---|---|---|---|---|---|
Proc Time (msec/photo) | Not presented by the original works | 7.57 | ||||||||
SSIM | 51.31 | 53.92 | 52.58 | 54.19 | 52.13 | 49.38 | 55.71 | 54.41 | 55.19 | 54.42 |
FSIM | 70.46 | 71.45 | 70.32 | 69.59 | 69.36 | 71.54 | 69.66 | 72.59 | 67.77 | 72.50 |
Type | MRF [10] | MWF [11] | LLE [9] | SSD [4] | FCN [15] | GAN [16] | RSLCR [13] | Face2Sketch [6] | BiL-STM [28] | Proposed Spiral-Net |
---|---|---|---|---|---|---|---|---|---|---|
NLDA Score (Equal/Best) | 87.34 | 92.10 | 90.61 | 90.61 | 96.99 | 93.48 | 98.38 | 97.82 | 94.87 | 97.04/97.23 |
No. of Features (Equal/Best) | 138 | 148 | 144 | 144 | 137 | 139 | 142 | 95 | - | 95/148 |
Type | MRF [10] | MWF [11] | LLE [9] | SSD [4] | FCN [15] | GAN [16] | RSLCR [13] | Face2Sketch [6] | BiL-STM [28] | Proposed Spiral-Net |
---|---|---|---|---|---|---|---|---|---|---|
Proc Time (msec/photo) | Not presented by the original works | 4.37 | - | 7.89 | ||||||
SSIM | 35.36 | 40.83 | 39.66 | 41.88 | 34.39 | 34.81 | 42.69 | 38.97 | 44.56 | 38.32 |
FSIM | 66.06 | 66.76 | 66.89 | 64.81 | 62.91 | 67.05 | 63.16 | 66.87 | 68.04 | 68.10 |
Type | MRF [10] | MWF [11] | LLE [9] | SSD [4] | FCN [15] | GAN [16] | RSLCR [13] | Face2Sketch [6] | BiL-STM [28] | Proposed Spiral-Net |
---|---|---|---|---|---|---|---|---|---|---|
NLDA Score (Equal/Best) | 46.03 | 74.15 | 70.92 | 61.76 | 70.14 | 71.48 | 73.05/75.94 | 73.05 | 71.35 | 73.14/78.42 |
No. of Features (Equal/Best) | 223 | 293 | 266 | 274 | 226 | 164 | 102/296 | 217 | - | 44/184 |
Dataset | Total Pairs | Train | Test | |
---|---|---|---|---|
VSC | CUHK [37] | 188 | 88 | 100 |
AR [65] | 123 | 80 | 43 | |
XM2VTS [66] | 295 | 100 | 195 | |
IIIT-D | 234 | 94 | 140 | |
Total Pairs | 840 | 362 | 478 | |
VSF | CUFSF | 1194 | 250 | 944 |
IIIT-D | 234 | 94 | 140 | |
Total Pairs | 1428 | 344 | 1084 |
Type | VSC-SNET | VSC-Spiral-Net | VSF-SNET | VSF-Spiral-Net |
---|---|---|---|---|
Proc Time (msec/photo) | 4.3033 | 8.5619 | 4.3113 | 8.1858 |
SSIM | 38.18 | 46.81 | 40.33 | 40.51 |
FSIM | 67.65 | 68.34 | 70.25 | 70.13 |
NLDA Score (1998) (%) | 67.82 | 69.61 | 65.99 | 65.44 |
OpenBR_FR Score (2013) (%) | 66 | 71.3 | 30.7 | 30.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azhar, I.; Sharif, M.; Raza, M.; Khan, M.A.; Yong, H.-S. A Decision Support System for Face Sketch Synthesis Using Deep Learning and Artificial Intelligence. Sensors 2021, 21, 8178. https://doi.org/10.3390/s21248178
Azhar I, Sharif M, Raza M, Khan MA, Yong H-S. A Decision Support System for Face Sketch Synthesis Using Deep Learning and Artificial Intelligence. Sensors. 2021; 21(24):8178. https://doi.org/10.3390/s21248178
Chicago/Turabian StyleAzhar, Irfan, Muhammad Sharif, Mudassar Raza, Muhammad Attique Khan, and Hwan-Seung Yong. 2021. "A Decision Support System for Face Sketch Synthesis Using Deep Learning and Artificial Intelligence" Sensors 21, no. 24: 8178. https://doi.org/10.3390/s21248178
APA StyleAzhar, I., Sharif, M., Raza, M., Khan, M. A., & Yong, H.-S. (2021). A Decision Support System for Face Sketch Synthesis Using Deep Learning and Artificial Intelligence. Sensors, 21(24), 8178. https://doi.org/10.3390/s21248178