Thermal Drift Correction for Laboratory Nano Computed Tomography via Outlier Elimination and Feature Point Adjustment
Abstract
:1. Introduction
2. Method
2.1. Alignment Model of Main Projection and Reference Projection
2.2. Rough Elimination of Outliers Based on Feature Angle
2.3. Refined Elimination of Outliers Based on SSIM
2.4. Position Adjustment of Feature Points Based on SSIM
2.5. Implementation Details
3. Experiment
3.1. 2D Transmission Imaging Alignment Experiment
3.2. 3D Reconstruction Experiment
3.3. Evaluation Criteria
4. Experimental Results and Discussion
4.1. 2D Transmission Imaging Experiment
4.2. 3D Imaging Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samber, B.D.; Renders, J.; Elberfeld, T.; Maris, Y.; Sijbers, J. FleXCT: A Flexible X-ray CT scanner with 10 degrees of freedom. Opt. Express 2021, 29, 3438–3457. [Google Scholar] [CrossRef]
- Oliveira, F.D.; Maurício, D.; Nardelli, V.C.; Arenhart, F.A.; Donatelli, G.D. Characterization and Correction of Geometric Errors Induced by Thermal Drift in CT Measurements. Key Eng. Mater. 2014, 613, 327–334. [Google Scholar] [CrossRef]
- Vavřík, D.; Jandejsek, I.; Pichotka, M. Correction of the X-ray tube spot movement as a tool for improvement of the micro-tomography quality. J. Instrum. 2016, 11, C01029. [Google Scholar] [CrossRef]
- Odstril, M.; Holler, M.; Raabe, J.; Guizar-Sicairos, M. Alignment methods for nanotomography with deep subpixel accuracy. Opt. Express 2019, 27, 36637. [Google Scholar] [CrossRef] [Green Version]
- Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C.M.; Wepf, R.; Bunk, O.; Pfeiffer, F. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010, 467, 436. [Google Scholar] [CrossRef] [PubMed]
- Guizar-Sicairos, M.; Diaz, A.; Holler, M.; Lucas, M.S.; Bunk, O. Phase tomography from x-ray coherent diffractive imaging projections. Opt. Express 2011, 19, 21345–21357. [Google Scholar] [CrossRef] [Green Version]
- Kingston, A.; Sakellariou, A.; Varslot, T.; Myers, G.; Sheppard, A. Reliable automatic alignment of tomographic projection data by passive auto-focus. Med Phys. 2011, 38, 4934–4945. [Google Scholar] [CrossRef]
- Ramos, T.; Jrgensen, J.S.; Andreasen, J.W. Automated angular and translational tomographic alignment and application to phase-contrast imaging. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2017, 34, 1830–1843. [Google Scholar] [CrossRef]
- Huang, X.; Wild, S.M.; Di, Z.W. Calibrating Sensing Drift in Tomographic Inversion. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Beijing, China, 1–2 February 20219. [Google Scholar]
- Sasov, A.; Xuan, L.; Salmon, P.L. Compensation of mechanical inaccuracies in micro-CT and nano-CT. Proc. SPIE-Int. Soc. Opt. Eng. 2008, 7078, 70781C. [Google Scholar]
- Evangelidis, G.D.; Psarakis, E.Z. Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1858–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manuel Guizar-Sicairos, S.T.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Calonder, M. BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1281–1298. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhou, H.; Zhao, J.; Gao, Y.; Jiang, J.; Tian, J. Robust Feature Matching for Remote Sensing Image Registration via Locally Linear Transforming. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6469–6481. [Google Scholar] [CrossRef]
- Ma, J.; Ji, Z.; Tian, J.; Yuille, A.L.; Tu, Z. Robust Point Matching via Vector Field Consensus. IEEE Trans. Image Process. 2014, 23, 1706–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, S.; Xue, J.; Qi, T.; Zheng, N. Exploiting local linear geometric structure for identifying correct matches. Comput. Vis. Image Underst. 2014, 128, 51–64. [Google Scholar] [CrossRef]
- Ma, J.; Ma, Y.; Zhao, J.; Tian, J. Image Feature Matching via Progressive Vector Field Consensus. IEEE Signal. Process. Lett. 2014, 22, 767–771. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, J.; Jiang, J.; Zhou, H.; Guo, X. Locality Preserving Matching. Int. J. Comput. Vis. 2019, 127, 512–531. [Google Scholar] [CrossRef]
- Torr, P.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef] [Green Version]
- Jian, F.; Chen, L.; Zhenzhong, L.; Roeder, R.K. Analysis and Correction of Dynamic Geometric Misalignment for Nano-Scale Computed Tomography at BSRF. PLoS ONE 2015, 10, e0141682. [Google Scholar]
- Flay, N.; Sun, W.; Brown, S. Investigation of the Focal Spot Drift in Industrial Cone-Beam X-ray Computed Tomography. Digital Industrial Radiology and Computed Tomography (DIR). 2015. Available online: https://www.ndt.net/events/DIR2015/app/content/Paper/77_Sun.pdf (accessed on 10 December 2021).
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar]
- Hiller, J.; Maisl, M.; Reindl, L.M. Physical characterization and performance evaluation of an X-ray micro-computed tomography system for dimensional metrology applications. Meas. Sci. Technol. 2012, 23, 085404. [Google Scholar] [CrossRef]
Input:, ,. |
Output: The refined set of feature points |
1. and by the SURF. |
2. . |
3. . |
4. based on (5) and (8). |
5. based on (9). |
6. . |
7. . |
8. Calculate the SSIM between the reference projection and the main projection moved in step 7 based on (11). |
9. . |
Input:. |
Output:. |
1. . |
2. . |
3. . |
4. is obtained. |
No. | Sample | Exposure Time (s) | Interval Time (s) |
---|---|---|---|
1 | Wasp | 10 | 4860 |
2 | Cabbage seed | 15 | 25,500 |
3 | Bamboo stick | 20 | 32,700 |
4 | Star card | 60 | 3660 |
Parameter | Electronic Component | Cabbage Seed |
---|---|---|
Voltage (kV) | 60 | |
Exposure time (s) | 15 | |
Image size (pixel) | 1065 × 1030 | |
Resolution (nm) | 350 | 700 |
Main rotation step (°) | 0.36 | 0.25 |
Reference rotation step (°) | 3.6 | 2.5 |
Scanning time (h) | 5.5 | 7.5 |
Image Number | Sample | Method | Horizontal | Vertical | RMSE |
---|---|---|---|---|---|
1 | Wasp | Ground truth | 3.58 | 1.13 | |
SURF | 3.08 | −1.33 | 1.78 | ||
RANSAC | 3.71 | 1.00 | 0.11 | ||
LPM | 3.85 | 0.99 | 0.21 | ||
ASIM | 3.63 | 1.14 | 0.038 | ||
2 | Cabbage seed | Ground truth | 0.89 | 2.77 | |
SURF | 0.41 | 1.09 | 1.24 | ||
RANSAC | 0.60 | 1.77 | 0.74 | ||
LPM | 0.84 | 2.26 | 0.36 | ||
ASIM | 0.91 | 2.88 | 0.079 | ||
3 | Bamboo stick | Ground truth | 20.75 | 11.99 | |
SURF | 11.67 | 8.96 | 6.77 | ||
RANSAC | 21.71 | 13.23 | 1.11 | ||
LPM | 22.11 | 11.68 | 0.99 | ||
ASIM | 20.60 | 12.35 | 0.27 | ||
4 | Star card | Ground truth | 41.93 | 90.14 | |
SURF | 59.64 | 63.61 | 22.56 | ||
RANSAC | 41.98 | 89.97 | 0.13 | ||
LPM | 44.67 | 83.98 | 4.77 | ||
ASIM | 41.91 | 90.18 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Han, Y.; Xi, X.; Tan, S.; Chen, J.; Li, L.; Yan, B. Thermal Drift Correction for Laboratory Nano Computed Tomography via Outlier Elimination and Feature Point Adjustment. Sensors 2021, 21, 8493. https://doi.org/10.3390/s21248493
Liu M, Han Y, Xi X, Tan S, Chen J, Li L, Yan B. Thermal Drift Correction for Laboratory Nano Computed Tomography via Outlier Elimination and Feature Point Adjustment. Sensors. 2021; 21(24):8493. https://doi.org/10.3390/s21248493
Chicago/Turabian StyleLiu, Mengnan, Yu Han, Xiaoqi Xi, Siyu Tan, Jian Chen, Lei Li, and Bin Yan. 2021. "Thermal Drift Correction for Laboratory Nano Computed Tomography via Outlier Elimination and Feature Point Adjustment" Sensors 21, no. 24: 8493. https://doi.org/10.3390/s21248493
APA StyleLiu, M., Han, Y., Xi, X., Tan, S., Chen, J., Li, L., & Yan, B. (2021). Thermal Drift Correction for Laboratory Nano Computed Tomography via Outlier Elimination and Feature Point Adjustment. Sensors, 21(24), 8493. https://doi.org/10.3390/s21248493