Implementation of Non-Linear Non-Parametric Persistent Scatterer Interferometry and Its Robustness for Displacement Monitoring
Abstract
:1. Introduction
2. Background
2.1. Review of NN-PSI
2.2. The Range and Resolution of EV Spectrum
2.3. Observation Intervals
3. Proposed Method
- (1)
- Decide the range and sampling resolution of EV spectrum by the ambiguity based on the observation conditions.
- (2)
- Select the height by the minimum average value of the total coherence values at each height in the velocity direction.
- (3)
- Extract coherence profile along the velocity direction at the selected height, in Step 2.
- (4)
- Estimate the displacement with the coherence profile by Equation (2).
4. Simulations and Verification
4.1. Simulation Method
4.1.1. Displacement Types
Step Displacement
Exponential Displacement
Sinusoidal Displacement
4.1.2. Observation Conditions
4.1.3. Observation Intervals
4.2. Simulation Results
4.2.1. Step Displacement
4.2.2. Exponential Displacement
4.2.3. Sinusoidal Displacement
4.2.4. Observation Interval
5. Real Data Processing
5.1. Study Area
5.2. Method and Materials
5.3. Results of the Validation with GEONET
5.4. Periodical Displacement
6. Discussion
6.1. Evaluation of the Proposed Method
6.2. Periodical Displacements
6.3. Other Improvement by NN-PSI
6.4. Atomospheric Correction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasquali, P.; Cantone, A.; Riccardi, P.; Defilippi, M.; Ogushi, F.; Gagliano, S.; Tamura, M. Mapping of Ground Deformations with Interferometric Stacking Techniques. Land Appl. Radar Remote Sens. 2014, 233–259. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Liu, G.; Jia, H.; Zhang, R.; Zhang, H.; Jia, H.; Yu, B.; Sang, M. Exploration of subsidence estimation by persistent scatterer InSAR on time series of high resolution TerraSAR-X images. IEEE J Sel. Top Appl. Earth Obs. Remote Sens. 2011, 4, 159–170. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Lin, H. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Sousa, J.J.; Bastos, L. Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse. Nat. Hazards Earth Syst. Sci. 2013, 13, 659–667. [Google Scholar] [CrossRef]
- Pratesi, F.; Tapete, D.; Terenzi, G.; Del, C.; Moretti, S. Rating health and stability of engineering structures via classification indexes of InSAR Persistent Scatterers. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 81–90. [Google Scholar] [CrossRef] [Green Version]
- D’Aranno, P.; Di Benedetto, A.; Fiani, M.; Marsella, M. Remote sensing technologies for linear infrastructure. Proceeding of the Photogrammetry Remote Sensing and Spatial Information Sciences, Milan, Italy, 8–10 May 2019; pp. 461–468. [Google Scholar]
- Peduto, D.; Nicodemo, G.; Cuevas-Gonzáles, M.; Crosetto, M. Analysis of Damage to Buildings in Urban Centers on Unstable Slopes via TerraSAR-X PSI Data: The Case Study of El Papiol Town (Spain). IEEE Geosci. Remote Sens. Lett. 2019, 16, 1706–1710. [Google Scholar] [CrossRef]
- Qin, X.; Ding, X.; Liao, M.; Zhang, L.; Wang, C. A bridge-tailored multi-temporal DInSAR approach for remote exploration of deformation characteristics and mechanisms of complexly structured bridges. ISPRS J. Photogramm. Remote Sens. 2019, 156, 27–50. [Google Scholar] [CrossRef]
- Ho, D.; Minh, T.; Hanssen, R. Radar Interferometry: 20 Years of Development in Time Series Techniques and Future Perspectives. Remote Sens. 2020, 12, 1364. [Google Scholar]
- Bianchini Ciampoli, L.; Gagliardi, V.; Ferrante, C.; Calvi, A.; D’Amico, F.; Tosti, F. Displacement Monitoring in Airport Runways by Persistent Scatterers SAR Interferometry. Remote Sens. 2020, 12, 3564. [Google Scholar] [CrossRef]
- Orellana, F.; Delgado Blasco, J.M.; Foumelis, M.; D’Aranno, P.J.V.; Marsella, M.A.; Di Mascio, P. DInSAR for Road Infrastructure Monitoring: Case Study Highway Network of Rome Metropolitan (Italy). Remote Sens. 2020, 12, 3697. [Google Scholar] [CrossRef]
- Anghel, A.; Vasile, G.; Boudon, R.; d’Urso, G.; Girard, A.; Boldo, D. Combining spaceborne SAR images with 3D point clouds for infrastructure monitoring applications. ISPRS J. Photogramm. Remote Sens. 2016, 111, 45–61. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.; Montazeri, S.; Ge, N. A Review of Ten-Year Advances of Multi-Baseline SAR Interferometry Using TerraSAR-X Data. Remote Sens. 2018, 10, 1374. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhou, W.; Chen, C.; Ma, P. Extended D-TomoSAR Displacement Monitoring for Nanjing (China) City Built Structure Using High-Resolution TerraSAR/TanDEM-X and Cosmo SkyMed SAR Data. Remote Sens. 2019, 11, 2623. [Google Scholar] [CrossRef] [Green Version]
- Aghababaei, H. On the Assessment of Non-Local Multi-Looking in Detection of Persistent Scatterers Using SAR Tomography. Remote Sens. 2020, 12, 3195. [Google Scholar] [CrossRef]
- Refice, A.; Pasquariello, G.; Bovenga, F. Model-Free Characterization of SAR MTI Time Series. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Monserrat, O.; Crosetto, M.; Cuevas, M.; Crippa, B. The Thermal Expansion Component of Persistent Scatterer Interferometry Observations. IEEE Geosci. Remote Sens. Lett. 2011, 8, 864–868. [Google Scholar] [CrossRef]
- Fornaro, G.; Reale, D.; Verde, S. Bridge Thermal Dilation Monitoring with Millimeter Sensitivity via Multidimensional SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2013, 10, 677–681. [Google Scholar] [CrossRef]
- Shi, G.; Lin, H.; Bürgmann, R.; Ma, P.; Wang, J.; Liu, Y. Remote Sensing of Environment Early soil consolidation from magnetic extensometers and full resolution SAR interferometry over highly decorrelated reclaimed lands. Remote Sens. Environ. 2019, 231, 111231. [Google Scholar] [CrossRef]
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F.; Trillo, F. Method of persistent scatterer pairs (PSP) and high resolution SAR interferometry. In Proceedings of the 2009 IEEE International Geoscience Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. 904–907. [Google Scholar]
- Ogushi, F.; Matsuoka, M.; Defilippi, M.; Pasquali, P. Improvement of Persistent Scatterer Interferometry to Detect Large Non-Linear Displacements with the 2 π Ambiguity by a Non-Parametric Approach. Remote Sens. 2019, 11, 2467. [Google Scholar] [CrossRef] [Green Version]
- Lombardini, F.; Fornaro, G. First Trials of Fourier and Adaptive Tomo-Doppler SAR Imaging. In Proceedings of the 2005 IEEE International Geoscince Remote Sensing Symposium, Seoul, Korea, 29 July 2005. [Google Scholar] [CrossRef]
- Lombardini, F.; Pauciullo, A.; Fornaro, G.; Reale, D.; Viviani, F. Tomographic Processing of Interferometric SAR Data. IEEE Signal Process. Mag. 2014, 50, 41–50. [Google Scholar]
- Fornaro, G.; Reale, D.; Serafino, F. Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers. IEEE Trans. Geosci. Remote Sens. 2009, 47, 224–237. [Google Scholar] [CrossRef]
- Maio, A.; Fornaro, G.; Pauciullo, A. Detection of Single Scatterers in Multidimensional SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2284–2297. [Google Scholar] [CrossRef]
- Lombardini, F. Differential tomography: A new framework for SAR interferometry. IEEE Trans Geosci. Remote Sens. 2005, 43, 37–44. [Google Scholar] [CrossRef]
- ESA Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/satellite-description/orbit (accessed on 18 November 2020).
- Geospatial Information Authority of Japan, GSI Maps. Available online: https://maps.gsi.go.jp (accessed on 9 November 2020).
- Crustal Displacement Report of June 2018. Available online: https://www.gsi.go.jp/WNEW/PRESS-RELEASE/2018-goudou0709.html (accessed on 23 October 2020).
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
Displacement Type | Total Amount of the Simulated Displacement in 500 Days |
---|---|
Step | −0.25 |
Exponential | −0.5 |
Sinusoidal 1 | 0.5 |
Items | Values |
---|---|
Slant range distance | 700 km |
Wavelength | 1 |
Incidence angle | 45° |
Baseline variance 1 | ±6% |
Backscatter coefficient | 5 dB |
Number of observations | 51 |
Observation interval | 10 days |
Total observation period | 500 days |
Simulated height | 0 m |
Height ambiguity | 306 m |
Height step | 1 m |
Velocity ambiguity | 566 mm/year |
Velocity step | 1 mm/year |
Parameters | Values |
---|---|
Satellite sensor | Sentinel-1 |
Monitoring period | January 2017–December 2018 |
Number of acquisitions | 59 |
Time interval of the acquisitions | 12 days |
Date of the master acquisition | 16 October 2017 |
Incidence angle | 39.0° |
Wavelength () | 55.5 mm |
Average baseline distance | 39.1 m |
Average temporal baseline | 12.6 days |
Height resolution | 113.8 m |
Height ambiguity | 585.6 m |
Velocity resolution | 14.1 mm/year |
Velocity ambiguity | 802.1 mm/year |
Scheme | RMSE (mm) | Temporal Coherence |
---|---|---|
Pt1 | 2.1 | 0.69 |
Pt2 | 3.5 | 0.77 |
Method | T1 (mm/year) | T2 (mm/year) |
---|---|---|
A1 | ||
NN-PSI | −17.1 | −19.0 |
ConvPSI | −10.0 | 28.8 |
A2 | ||
NN-PSI | −14.1 | −17.9 |
ConvPSI | −12.8 | 49.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogushi, F.; Matsuoka, M.; Defilippi, M.; Pasquali, P. Implementation of Non-Linear Non-Parametric Persistent Scatterer Interferometry and Its Robustness for Displacement Monitoring. Sensors 2021, 21, 1004. https://doi.org/10.3390/s21031004
Ogushi F, Matsuoka M, Defilippi M, Pasquali P. Implementation of Non-Linear Non-Parametric Persistent Scatterer Interferometry and Its Robustness for Displacement Monitoring. Sensors. 2021; 21(3):1004. https://doi.org/10.3390/s21031004
Chicago/Turabian StyleOgushi, Fumitaka, Masashi Matsuoka, Marco Defilippi, and Paolo Pasquali. 2021. "Implementation of Non-Linear Non-Parametric Persistent Scatterer Interferometry and Its Robustness for Displacement Monitoring" Sensors 21, no. 3: 1004. https://doi.org/10.3390/s21031004
APA StyleOgushi, F., Matsuoka, M., Defilippi, M., & Pasquali, P. (2021). Implementation of Non-Linear Non-Parametric Persistent Scatterer Interferometry and Its Robustness for Displacement Monitoring. Sensors, 21(3), 1004. https://doi.org/10.3390/s21031004