A Sensor-Based Multichannel FES System to Control Knee Joint and Reduce Stance Phase Asymmetry in Post-Stroke Gait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Control Modality
2.2.1. Knee Control
2.2.2. Pre-Stance Event
3. Clinical Protocol
3.1. Subjects
3.2. Protocol Conduct
3.2.1. Balance Training Protocol
3.2.2. Walking Protocol
- Condition 1 (C1): no assistance, the participants walked at a self-selected speed.
- Condition 2 (C2): the paretic limb was equipped with a knee orthosis (Orliman©, Rennes, France) limiting the knee flexion angle and the knee extension angle around 5°.
- Condition 3 (C3): the paretic limb was stimulated following the control modality described in this study.
3.3. Evaluation Criteria
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rigelsford, J. Control of Movement for the Physically Disabled; Springer: London, UK, 2000; ISBN 978-1-4471-1141-2. [Google Scholar]
- Lyons, G.M.; Sinkjaer, T.; Burridge, J.H.; Wilcox, D.J. A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 260–279. [Google Scholar] [CrossRef]
- Stein, C.; Fritsch, C.G.; Robinson, C.; Sbruzzi, G.; Plentz, R.D.M. Effects of Electrical Stimulation in Spastic Muscles After Stroke. Stroke 2015, 46, 2197–2205. [Google Scholar] [CrossRef] [Green Version]
- Springer, S.; Vatine, J.J.; Wolf, A.; Laufer, Y. The effects of dual-channel functional electrical stimulation on stance phase sagittal kinematics in patients with hemiparesis. J. Electromyogr. Kinesiol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Herr, H.; Wilkenfeld, A. User-adaptive control of a magnetorheological prosthetic knee. Ind. Robot An Int. J. 2003, 30, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Hundza, S.R.; Hook, W.R.; Harris, C.R.; Mahajan, S.V.; Leslie, P.A.; Spani, C.A.; Spalteholz, L.G.; Birch, B.J.; Commandeur, D.T.; Livingston, N.J. Accurate and reliable gait cycle detection in parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Holden, J.P.; Chou, G.; Stanhope, S.J. Changes in knee joint function over a wide range of walking speeds. Clin. Biomech. 1997, 12, 375–382. [Google Scholar] [CrossRef]
- Perry, J.; Antonelli, D.; Ford, W. Analysis of knee-joint forces during flexed-knee stance. J. Bone Jt. Surg. Am. 1975, 57, 961–967. [Google Scholar] [CrossRef]
- Chantraine, F.; Schreiber, C.; Kolanowski, E.; Moissenet, F. Control of Stroke-Related Genu Recurvatum With Prolonged Timing of Dorsiflexor Functional Electrical Stimulation. J. Neurol. Phys. Ther. 2016, 40, 209–215. [Google Scholar] [CrossRef]
- Rose, J.; Gamble, J.G. Human Walking, 2nd ed.; Williams & Wilkins: Baltimore, MD, USA, 1994; ISBN 9780683073607. [Google Scholar]
- Reinbolt, J.A.; Fox, M.D.; Arnold, A.S.; Õunpuu, S.; Delp, S.L. Importance of preswing rectus femoris activity in stiff-knee gait. J. Biomech. 2008, 41, 2362–2369. [Google Scholar] [CrossRef] [Green Version]
- Kobetic, R.; Triolo, R.J.; Uhlir, J.P.; Bieri, C.; Wibowo, M.; Polando, G.; Marsolais, E.B.; Davis, J.A.; Ferguson, K.A. Implanted functional electrical stimulation system for mobility in paraplegia: A follow-up case report. IEEE Trans. Rehabil. Eng. 1999, 7, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Van Bloemendaal, M.; Bus, S.A.; de Boer, C.E.; Nollet, F.; Geurts, A.C.H.; Beelen, A. Gait training assisted by multi-channel functional electrical stimulation early after stroke: Study protocol for a randomized controlled trial. Trials 2016, 17, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, P.; Del Ama, A.J.; Moreno, J.C.; Schauer, T. Adaptive multichannel FES neuroprosthesis with learning control and automatic gait assessment. J. Neuroeng. Rehabil. 2020. [Google Scholar] [CrossRef]
- Sijobert, B.; Feuvrier, F.; Froger, J.; Guiraud, D.; Coste, C.A. A sensor fusion approach for inertial sensors based 3D kinematics and pathological gait assessments: Toward an adaptive control of stimulation in post-stroke subjects. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar]
- Sijobert, B.; Lirmm, I.; Coste, C.A.; Denys, J.; Inria, U.M.; Geny, C. IMU Based Detection of Freezing of Gait and Festination in Parkinson’s Disease; International Functional Electrical Stimulation Society: Arlington County, VA, USA, 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Perry, J.; Burnfield, J. GAIT Normal and Pathological Function. J. Sports Sci. Med. 2010, 9, 353. [Google Scholar]
- DeBerardinis, J.; Dufek, J.S.; Trabia, M.B.; Lidstone, D.E. Assessing the validity of pressure-measuring insoles in quantifying gait variables. J. Rehabil. Assist. Technol. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- Popovic, D. Control of functional electrical stimulation for restoration of motor function. Facta Univ. Ser. Electron. Energ. 2017, 30, 295–312. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Komi, P.V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 159–163. [Google Scholar] [CrossRef]
- Zahradka, N.; Behboodi, A.; Wright, H.; Bodt, B.; Lee, S. Evaluation of gait phase detection delay compensation strategies to control a gyroscope-controlled functional electrical stimulation system during walking. Sensors 2019, 19, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, B.J.; Baxendale, R.H.; Barnett, R.; Phillips, G.F.; Yamazaki, T.; Paul, J.P.; Freeman, P.A. Hybrid FES orthosis incorporating closed loop control and sensory feedback. J. Biomed. Eng. 1988, 10, 189–195. [Google Scholar] [CrossRef]
- Sijobert, B.; Azevedo, C.; Andreu, D.; Verna, C.; Geny, C. Effects of Sensitive Electrical Stimulation-Based Somatosensory Cueing in Parkinson’s Disease Gait and Freezing of Gait Assessment. Artif. Organs 2017, 41. [Google Scholar] [CrossRef] [Green Version]
- Sijobert, B.; Benoussaad, M.; Denys, J.; Pissard-gibollet, R.; Coste, C.A. Implementation and validation of a stride length estimation algorithm, using a single inertial sensor on healthy and Parkinson’s disease subjects. Health 2015, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nandy, A.; Mondal, S.; Rai, L.; Chakraborty, P.; Nandi, G.C. A study on damping profile for prosthetic knee. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics ICACCI ’12, Chennai, India, 3–5 August 2012; p. 511. [Google Scholar]
- Mizrahi, J.; Solzi, P.; Ring, H.; Nisell, R. Postural stability in stroke patients: Vectorial expression of asymmetry, sway activity and relative sequence of reactive forces. Med. Biol. Eng. Comput. 1989, 27, 181–190. [Google Scholar] [CrossRef]
- Patterson, K.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization. Gait Posture 2010, 31, 241–246. [Google Scholar] [CrossRef]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar]
- MacGregor, J. The evaluation of patient performance using long-term ambulatory monitoring technique in the domiciliary environment. Physiotherapy 1981, 67, 30–33. [Google Scholar]
- Thirunarayan, M.A.; Kerrigan, D.C.; Rabuffetti, M.; Della Croce, U.; Saini, M. Comparison of three methods for estimating vertical displacement of center of mass during level walking in patients. Gait Posture 1996, 4, 306–314. [Google Scholar] [CrossRef]
- Enomoto, Y.; Aibara, T.; Sugimoto, K.; Seki, K. Estimation of the center of mass and pelvis movement in running using an inertia sensor mounted on sacrum. ISBS Proc. Arch. 2016, 35, 3–6. [Google Scholar]
- Burridge, J.; Taylor, P.; Hagan, S.; Swain, I. Experience of clinical use of the Odstock dropped foot stimulator. Artif. Organs 1997, 21, 254–260. [Google Scholar] [CrossRef]
- Taylor, P.N.; Burridge, J.H.; Dunkerley, A.L.; Wood, D.E.; Norton, J.A.; Singleton, C.; Swain, I.D. Clinical use of the odstock dropped foot stimulator: Its effect on the speed and effort of walking. Arch. Phys. Med. Rehabil. 1999, 80, 1577–1583. [Google Scholar] [CrossRef]
- Hood, V.L.; Granat, M.H.; Maxwell, D.J.; Hasler, J.P. A new method of using heart rate to represent energy expenditure: The total heart beat index. Arch. Phys. Med. Rehabil. 2002, 83, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Cetin, E.; Muzembo, J.; Pardessus, V.; Puisieux, F.; Thevenon, A. Impact of different types of walking aids on the physiological energy cost during gait for elderly individuals with several pathologies and dependent on a technical aid for walking. Ann. Phys. Rehabil. Med. 2010, 53, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peebles, K.C.; Woodman-Aldridge, A.D.; Skinner, M.A. The Physiological Cost Index in elderly subjects during treadmill and floor walking. N. Z. J. Physiother. 2003, 31, 11–16. [Google Scholar]
- Engsberg, J.R.; Herbert, L.M.; Grimston, S.K.; Fung, T.S.; Harder, J.A. Relation among indices of effort and oxygen uptake in below-knee amputee and able-bodied children. Arch. Phys. Med. Rehabil. 1994, 75, 1335–1341. [Google Scholar] [CrossRef]
- Saini, M.; Kerrigan, D.C.; Thirunarayan, M.A.; Duff-Raffaele, M. The vertical displacement of the center of mass during walking: A comparison of four measurement methods. J. Biomech. Eng. 1998, 1998, 133–139. [Google Scholar] [CrossRef]
- Singleton, C.; Jones, H.; Maycock, L. Functional electrical stimulation (FES) for children and young people with cerebral palsy. Paediatr. Child Health 2019, 29, 498–502. [Google Scholar] [CrossRef]
- Al-Abdulwahab, S.S.; Al-Khatrawi, W.M. Neuromuscular electrical stimulation of the gluteus medius improves the gait of children with cerebral palsy. NeuroRehabilitation 2009, 24, 209–217. [Google Scholar] [CrossRef]
Mean +/− SD | Med [Q1; Q3] | Min; Max | |
---|---|---|---|
Gait Velocity (m/min) | 18.6 ± 7.4 | 16.5 [12.7; 25.3] | 7.8; 34.5 |
10 m path duration (s) | 37.7 ± 15.5 | 36.3 [23.7; 46] | 17.4; 76.8 |
PCI | 0.3 ± 0.8 | 0.4 [0.1; 0.8] | −3.2; 2.2 |
Borg | 9.2 ± 1.7 | 9 [8; 10] | 7; 13 |
Gait quality | 3.8 ± 0.7 | 4 [3; 4] | 2; 5 |
Stance Force Index (%) | −36.0 ± 32.3 | −41.4 [−55.2; −4.6] | −90.5; 21.3 |
Stance Force Ratio (%) | 0.7 ± 0.2 | 0.7 [0.6; 1] | 0.4; 1.2 |
Stance Time Index (%) | −19.1 ± 11.9 | −20.1 [−27; −14.7] | −39.2; 23.9 |
Stance Time Ratio (%) | 0.8 ± 0.1 | 0.8 [0.8; 0.9] | 0.7; 1.3 |
Stance time left foot (s) | 1.7 ± 0.6 | 1.8 [1.3; 2.2] | 0.8; 2.9 |
Stance time right foot (s) | 1.7 ± 0.6 | 1.6 [1.1; 2] | 0.9; 3.4 |
Trunk vertical motion (cm) | 3.3 ± 1.6 | 2.8 [2.1; 4.1] | 1; 9.9 |
Variable | p-Value |
---|---|
Stance force index | 0.33 |
Stance force ratio | 0.078 |
Stance time index | 0.095 |
Stance time ratio | 0.16 |
Gait velocity | 0.31 |
Path duration (log.) | 0.36 |
Borg (log.) | 0.14 |
PCI | 0.35 |
Gait quality | 0.78 |
Trunk vertical motion | 0.0089 |
Condition 2 | Condition 3 | |||
---|---|---|---|---|
Raw | Corrected | Raw | Corrected | |
Condition 1 | p = 0.59 | p = 0.59 | p = 0.013 | p = 0.038 |
Condition 2 | p = 0.030 | p = 0.060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sijobert, B.; Azevedo, C.; Pontier, J.; Graf, S.; Fattal, C. A Sensor-Based Multichannel FES System to Control Knee Joint and Reduce Stance Phase Asymmetry in Post-Stroke Gait. Sensors 2021, 21, 2134. https://doi.org/10.3390/s21062134
Sijobert B, Azevedo C, Pontier J, Graf S, Fattal C. A Sensor-Based Multichannel FES System to Control Knee Joint and Reduce Stance Phase Asymmetry in Post-Stroke Gait. Sensors. 2021; 21(6):2134. https://doi.org/10.3390/s21062134
Chicago/Turabian StyleSijobert, Benoît, Christine Azevedo, Joanna Pontier, Sahara Graf, and Charles Fattal. 2021. "A Sensor-Based Multichannel FES System to Control Knee Joint and Reduce Stance Phase Asymmetry in Post-Stroke Gait" Sensors 21, no. 6: 2134. https://doi.org/10.3390/s21062134