
sensors

Article

IoT Micro-Blockchain Fundamentals

Aristidis G. Anagnostakis 1,* , Nikolaos Giannakeas 2 , Markos G. Tsipouras 3 , Euripidis Glavas 2

and Alexandros T. Tzallas 2

����������
�������

Citation: Anagnostakis, A.G.;

Giannakeas, N.; Tsipouras, M.G.;

Glavas, E.; Tzallas, A.T. IoT

Micro-Blockchain Fundamentals.

Sensors 2021, 21, 2784. https://

doi.org/10.3390/s21082784

Academic Editor: Nikos Fotiou

Received: 3 March 2021

Accepted: 13 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Accounting and Finance, University of Ioannina, GR48100 Preveza, Greece
2 Department of Informatics and Telecommunications, University of Ioannina, GR47100 Arta, Greece;

giannakeas@uoi.gr (N.G.); eglavas@uoi.gr (E.G.); tzallas@uoi.gr (A.T.T.)
3 Department of Electrical and Computer Engineering, University of Western Macedonia,

GR50100 Kozani, Greece; mtsipouras@uowm.gr
* Correspondence: arian@uoi.gr

Abstract: In this paper we investigate the essential minimum functionality of the autonomous
blockchain, and the minimum hardware and software required to support it in the micro-scale in
the IoT world. The application of deep-blockchain operation in the lower-level activity of the IoT
ecosystem, is expected to bring profound clarity and constitutes a unique challenge. Setting up
and operating bit-level blockchain mechanisms on minimal IoT elements like smart switches and
active sensors, mandates pushing blockchain engineering to the limits. “How deep can blockchain
actually go?” “Which is the minimum Thing of the IoT world that can actually deliver autonomous
blockchain functionality?” To answer, an experiment based on IoT micro-controllers was set. The
“Witness Protocol” was defined to set the minimum essential micro-blockchain functionality. The
protocol was developed and installed on a peer, ad-hoc, autonomous network of casual, real-life
IoT micro-devices. The setup was tested, benchmarked, and evaluated in terms of computational
needs, efficiency, and collective resistance against malicious attacks. The leading considerations are
highlighted, and the results of the experiment are presented. Findings are intriguing and prove that
fully autonomous, private micro-blockchain networks are absolutely feasible in the smart dust world,
utilizing the capacities of the existing low-end IoT devices.

Keywords: autonomous blockchain; micro-blockchain; microcontroller blockchain; IoT blockchain;
peer IoT networks; smart dust blockchain

1. Introduction

The IoT is expanding rapidly, based on billions of low-cost, low-end micro-devices [1].
Establishing blockchain operations on every level in the IoT ecosystem is speedily becoming
a field of intensive research activity, due to the unique operational clarity and collective
immunity it delivers [2].

Remarkable works in the field are coming to the light of publicity. In [3], a nonrepu-
diation blockchain architecture for industrial IoT applications is presented by Yang et al.,
while in [4] an arbitrable data auditing blockchain-based schema for running a secure
storage-as-a-service network over the cloud is presented. The IOTA cryptocurrency frame-
work for sharing value in the IoT world through the Tangle IoT network is introduced
in [5], while in [6] a private, domain specific PoS architecture for immune, structured data
sharing over the cloud is analyzed. Most of these works are presenting comparatively
complex blockchain architectures of the “cryptocurrency type” that are built to operate on
the “upper-levels” of IoT ecosystem. With a few exceptions like in [7], they are considering
the presence of plentiful, in the sense of “always adequate” processing capacity, memory,
power and network resources on the nodes. Still, the low-cost low-level IoT components of
the smart dust world such as active sensors and smart switches [8], are characterized by
extremely minimal capacities and operability.

Sensors 2021, 21, 2784. https://doi.org/10.3390/s21082784 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0633-7774
https://orcid.org/0000-0002-0615-783X
https://orcid.org/0000-0002-6757-1698
https://orcid.org/0000-0001-9043-1290
https://doi.org/10.3390/s21082784
https://doi.org/10.3390/s21082784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082784
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082784?type=check_update&version=1

Sensors 2021, 21, 2784 2 of 22

The primary objective of the current work is to highlight “minimum”. This paper, at-
tempts to answer to the questions: “How deep can a blockchain go?”, “How much of a thing
must an IoT component be to be able to engage in peer, autonomous, blockchain operation?”

To establish autonomous, end-to-end blockchain operations in the IoT world, we
need to “plant” it “as deep as possible” inside the tiny IoT devices. We need to get down
to single-processor, single-sensor, even single-accumulator level. In the quest to reach
the limits, blockchain components must be analyzed in terms of “glass-box”, and to be
constrained down to the absolutely necessary. This will enable every minimal IoT device,
even the “hard-wired” ones like smart switches and active sensors, to spontaneously form
and operate autonomous micro-blockchains.

The proposed Witness Protocol is defined as a “minimal functionality containment”,
to operate the minimum essential autonomous blockchain on the least-possible hardware
configuration. In our experiment the Witness Protocol, is utilized to establish minimum
blockchain functionality over a network of IoT microcontrollers. The protocol resembles to
the “ear-witness” real world scenario. It creates and runs a minimal, distributed, blockchain
structure, over an ad-hoc local network neighborhood of peer, autonomous microcontrollers,
without the prerequisite of additional equipment or centralized network access. The
protocol is designed to meet to the features and the limitations of the conventional IoT
devices. It utilizes their limited memory and computational capacity to build an overall
collective resistance to malicious attacks, which is “significantly large” in comparison to that
of the isolated IoT device.

Introducing blockchain to the lowest operational level of the IoT world, will bring
unprecedented transactional clarity and immunity to malicious attacks. It is a rational
step towards a “world of absolute trust”, a world where questioning “done” becomes
meaningless. Even the tiniest actions, like turning on the light, opening a door, tapping on
a screen, or accessing a data record, can become provable and verifiable in an undoubtable
manner on a collective basis. Being for example able to verify without doubt when car was
last serviced, a door was unlocked or what was the temperature reading inside a refrigerator, can
become of vital significance, even in casual, “non-military” environments (especially under
the scope of the recent pandemic).

In contradiction to the “cryptocurrency” type of protocols [9], in which traversing
the entire blockchain back to the constitutional Block 0 is absolutely necessary, the Witness
Protocol defines essential nonrepudiation functionality on “limited-horizon events’ history”,
over partial symphony and eventual consistency environments [10,11].

Our experiment proves in practice that micro-blockchains of basic functionality can be
well-run in the micro-controller level on the current IoT devices. Getting even deeper, down
to the single-switch or single-sensor level is considered feasible under the assumption that
the components are active, they can perform a minimum amount of actions even in “hardwired”
implementation and they have sufficient memory to store at least two consecutive transactions’
data. The Witness Protocol is developed and tested on Arduino Nano 33 IoT microcontrollers,
which proved capable of processing everyday transactions in “human timescale” event
frequencies (i.e., 10−5 ∼ 102 Hz), over neighborhoods of 10s of IoT devices. The system
is benchmarked and evaluated in terms of neighborhood population, computational efficiency,
and resilience to malicious attacks. As part of the ongoing research, the setup will be utilized
for immunizing data readings form sensors in the field of healthcare.

2. Background

Establishing micro-blockchain operation in autonomous networks of peer IoT micro-
devices requires thorough consideration of the technological features of the IoT devices, as
well as of the conceptual frontiers of the blockchain models. How exactly, and why should
blockchain apply in the low-level IoT? What can it improve and on what cost? Which are
the minimum technical requirements for this?

Blockchain was primarily developed to bring trust in cryptographic currencies’ trans-
actions and is often “miss-classified” under this prism. Still, its functionality can extend

Sensors 2021, 21, 2784 3 of 22

way beyond. The principles of blockchain can be applied on any system of peer, transacting
entities, to deliver collective immunity and trust.

On the other hand, the majority of the IoT micro-devices are designed and utilized to
carry out mostly trivial, automated tasks, such as gathering and sharing data from their
environment. In many applications they constitute the physical “access points” of the
cloud to the real world. They bear “by definition”, significant limitations in memory capacity,
processing power, consumption, networking, and data transfer capabilities in comparison to the
high-performance nodes. Many of them, like for instance PLC’s and microcontrollers, allow
only for minimal, single-threaded code execution, while others, like i-beacons can merely be
classified as programable machines. Identifying the minimum requirements for blockchain
operation on smart dust micro-networks is essential.

Micro-networking has been the trend for several years; autonomous IoT devices,
capable both in forming peer micro networks, as well as in connecting broadly over the
internet are becoming mainstream. Evolving standards, such as the Bluetooth-mesh, which
enable powerful concurrent multicast many-to-many communication in networks with
thousands of devices, the Bluetooth Low Energy, NFC, and LoRa WAN provide IoT devices
with significant communication capabilities [12]. Extremely low-consumption devices like
i-beacons and RF-ids, demonstrate in practice that the micro-networking era has arrived and
is here to stay [13].

Technologies in the world of micro-devices are becoming mature enough to support
sophisticated internetworking, providing the ideal testbed for new ideas.

2.1. What Is a Blockchain Made of?

Taking blockchain back to its “primevals”: The primitive notion upon which the total
construct of “universal trust” relies, is the consistent recursive application of a single-direction,
monotonical transformation, over a time-evolving sequence of data [14,15]. Blockchain is in
essence the combination of two major logical mechanisms:

• The hashing mechanism, which binds the chain links together, and
• The consensus mechanism, which safeguards the integrity of the chain throughout

the network [16].

Peer-ness also constitutes a mandate: with the penalty of exclusion, every node in the
Blockchain network is operating using the same hashing and consensus algorithm; no one
can violate the rules and keep being part of the community.

2.1.1. The Hashing Mechanism

Secure hashing algorithms are information reduction mechanisms, producing digital
“fingerprints” of the input data. Hashing fingerprints are a “few bits” words. The process is
lossy in terms of information and, there is no effective way of acquiring the initial data from
a hash sequence; tiny variations on the initial message (e.g., 1-bit) results to a chaotically
different hash (counter-example: the homomorphic hashing, that clusters hashes in response
to clustered inputs). The process is susceptible only to brute force attacks. It is estimated that
a brute force attack over a 64 bytes long initial message which is hashed with the SHA-256
algorithm would require 36~64 years at a 1 M/s attempts rate utilizing every available CPU
in the world [17]. Bringing blockchains to the lowest operational level, requires efficient
cryptographic hash function implementations, both in terms of energy consumption, as
well as in terms of computational and communications’ load.

The hash chain is the primitive mechanism for creating blockchain structures. In this,
each node is formed by the successive application of a cryptographic hash function h to an
initial string x. h(h(h(h(x)))) gives a hash chain of length 4—often denoted hˆ4(x). Bitcoin
blockchain is reliably operating on the SHA-256 algorithm, providing a solid proof of the
concept: any device capable of implementing the robust SHA-256 algorithm, can produce
profoundly hard to compromise hash chains.

Sensors 2021, 21, 2784 4 of 22

Another structure commonly utilized in blockchains is the Merkle tree [18]. Merkle
trees are hash trees in which the leaves contain the actual data, and the non-leaf nodes are
hashes of their children.

Multiple input strings describing concurrent transactions are combined in Merkle
trees through recursive hashing. It is straightforward and computationally inexpensive for
the recipient of the data to verify their correctness, if he only knows the “essential node
values” of the Merkle tree (in the generic case of a complete binary Merkle tree, he has to
know the root and a minimum of log2(m)− 1 nodes, where m is the total number of the
leaves). Merkle trees are utilized in blockchain to cope with high transaction rates. For our
purposes, they can only be considered for application in “higher-end” IoT micro-nodes,
with increased memory and processing capacity (e.g., Raspberry Pi™).

2.1.2. The Consensus Mechanism

The consensus amongst the blockchain nodes is fundamental. In public PoW chains [19–21]
such as the bitcoin [22], the consensus-building process is effectively “hardwired”. In the
smart contracts’ world [23,24], building consensus becomes extremely flexible and allows
for alternative consensus proofs like the Proof of Stake or the Proof of Authority. Still, not every
blockchain implementation shares the same needs: the mechanisms for building consensus,
range from “hardwired” (as in bitcoin) to “totally programable” (as in smart contracts).

2.2. Consistency over Distributed Networks

“In an ideal world there would be only one consistency model: when an update is made
all observers would see that update.” [25].

The CAP theorem, defined in [26], suggests this is not feasible in the generic case.
According to it, out of the three major properties of shared-data systems (i.e., data consis-
tency, system availability, and tolerance to network partition) only two can be satisfied at the
same time.

Perhaps the most treasured property in the IoT world is system availability: “I should
always be able to unlock my car, in spite of the network existence or status”. Under this directive
every Local Event must be treated by the local node in absolute priority. In addition, keeping
local storage consistent is also mandatory in most of the practical IoT applications. “The
last unlock of my car has always have to be recorded locally and be known as last”. To satisfy this,
the system must facilitate Monotonic Writes.

Strong, Weak and Eventual Consistency

How much “consistency” can be supported in the IoT micro-scale?
Throughout the literature, three types of data consistency are identified:

• Strong consistency: In the light of an update anywhere in the network, any subsequent
access will return the same result (i.e., the most recent).

• Weak consistency: There is no guarantee that all processes following an update will
return the same value all the time; in fact, a number of conditions has to take place for
this to happen.

• Eventual consistency: A special case of weak consistency, in which the notion of a finite
duration “inconsistency window” is introduced. A number of eventual consistency
attributes are identified, namely Casual consistency, Read your last write, Monotonic
Reads and Writes. More than one of these properties may be combined in a distributed
system. Eventual consistency is an elegant trade-off, which, tailored accordingly, can
deliver the conceptual framework for requirements to became satisfied by a system.

Eventual consistency models can be fine-tuned to meet the system requirements on
each application.

2.3. IoT Scale Boundaries

As already mentioned, applying blockchain in the micro-scale, requires micro-devices
to setup and operate blockchain mechanisms at the minimum possible resources. Due

Sensors 2021, 21, 2784 5 of 22

to the inevitable memory constraints, they must be able to operate over a finite, minimal
“historical events horizon”.

Effective Events Horizon

Even though in the generic blockchains of “cryptocurrency type” the entire records
back to “Block 0” has to be constantly traversed, not every application shares the same
prerequisite of infinity. In many cases, going “all the way back” is not an absolute necessity.
Even a Limited historical horizon of recorded events can prove enough to increase the
overall robustness. In fact, any amount of local memory capable of storing two or more
consecutive transactions induces positive impact to the collective immunity. The notion of
partial synchrony becomes essential.

Additionally, in the generic case it is not even feasible to store the entire blockchain in
every micro-device at all time. To not compromise the requirement for ad-hoc, peer and
autonomous operation, efficient policies must be adopted.

Every IoT device can store in its’ memory a maximum of M data blocks, representing
the M most recent transaction events. These constitute the “Effective events’ horizon” of the
device. The process can be modeled as a fixed-size FIFO Hash-chain, depicted in Figure 1:

Sensors 2021, 21, x FOR PEER REVIEW 5 of 22

which, tailored accordingly, can deliver the conceptual framework for requirements
to became satisfied by a system.
Eventual consistency models can be fine-tuned to meet the system requirements on

each application.

2.3. IoT Scale Boundaries
As already mentioned, applying blockchain in the micro-scale, requires micro-

devices to setup and operate blockchain mechanisms at the minimum possible resources.
Due to the inevitable memory constraints, they must be able to operate over a finite,
minimal “historical events horizon”.

Effective Events Horizon
Even though in the generic blockchains of “cryptocurrency type” the entire records

back to “Block 0” has to be constantly traversed, not every application shares the same
prerequisite of infinity. In many cases, going “all the way back” is not an absolute
necessity. Even a Limited historical horizon of recorded events can prove enough to
increase the overall robustness. In fact, any amount of local memory capable of storing
two or more consecutive transactions induces positive impact to the collective immunity.
The notion of partial synchrony becomes essential.

Additionally, in the generic case it is not even feasible to store the entire blockchain
in every micro-device at all time. To not compromise the requirement for ad-hoc, peer and
autonomous operation, efficient policies must be adopted.

Every IoT device can store in its’ memory a maximum of M data blocks, representing
the M most recent transaction events. These constitute the “Effective events’ horizon” of
the device. The process can be modeled as a fixed-size FIFO Hash-chain, depicted in
Figure 1:

Figure 1. IoT effective events horizon modeled as a FIFO Hash Chain.

In addition, most IoT devices lack a real-time clock. In the proposed Witness
Protocol, time is defined relatively. Events from neighboring devices (External Events)
are stored in the hash chain along with events that take place locally (Local Events). Each
event taking place in a device (node) is monotonically recorded and acts as a relative
timestamp to the local chains of the receiving nodes. The entire micro-blockchain can then
be seen as the construct (aggregate) of the collective memory of all nodes, depicted in
Figure 2:

Figure 1. IoT effective events horizon modeled as a FIFO Hash Chain.

In addition, most IoT devices lack a real-time clock. In the proposed Witness Protocol,
time is defined relatively. Events from neighboring devices (External Events) are stored in
the hash chain along with events that take place locally (Local Events). Each event taking
place in a device (node) is monotonically recorded and acts as a relative timestamp to the
local chains of the receiving nodes. The entire micro-blockchain can then be seen as the
construct (aggregate) of the collective memory of all nodes, depicted in Figure 2:

Sensors 2021, 21, x FOR PEER REVIEW 5 of 21

Eventual consistency models can be fine-tuned to meet the system requirements on
each application.

2.3. IoT Scale Boundaries
As already mentioned, applying blockchain in the micro-scale, requires micro-de-

vices to setup and operate blockchain mechanisms at the minimum possible resources.
Due to the inevitable memory constraints, they must be able to operate over a finite, min-
imal “historical events horizon”.

Effective Events Horizon
Even though in the generic blockchains of “cryptocurrency type” the entire records

back to “Block 0” has to be constantly traversed, not every application shares the same
prerequisite of infinity. In many cases, going “all the way back” is not an absolute necessity.
Even a Limited historical horizon of recorded events can prove enough to increase the
overall robustness. In fact, any amount of local memory capable of storing two or more
consecutive transactions induces positive impact to the collective immunity. The notion of
partial synchrony becomes essential.

Additionally, in the generic case it is not even feasible to store the entire blockchain
in every micro-device at all time. To not compromise the requirement for ad-hoc, peer and
autonomous operation, efficient policies must be adopted.

Every IoT device can store in its’ memory a maximum of M data blocks, representing
the M most recent transaction events. These constitute the “Effective events’ horizon” of
the device. The process can be modeled as a fixed-size FIFO Hash-chain, depicted in Fig-
ure 1:

Figure 1. IoT effective events horizon modeled as a FIFO Hash Chain.

In addition, most IoT devices lack a real-time clock. In the proposed Witness Protocol,
time is defined relatively. Events from neighboring devices (External Events) are stored in
the hash chain along with events that take place locally (Local Events). Each event taking
place in a device (node) is monotonically recorded and acts as a relative timestamp to the
local chains of the receiving nodes. The entire micro-blockchain can then be seen as the
construct (aggregate) of the collective memory of all nodes, depicted in Figure 2:

Figure 2. micro-blockchain as a sparse aggregate of local chains. Figure 2. Micro-blockchain as a sparse aggregate of local chains.

Sensors 2021, 21, 2784 6 of 22

Keeping a mirror-copy of the entire activity on every IoT device in every other is not
feasible in the generic case, and poses prohibiting memory and communication overheads.
Under the scope of the CAP theorem (discussed earlier), raising a hard requirement for
mirror redundancy would certainly jeopardize node availability. More flexible approaches
are feasible, (as for example the Probabilistic Finality paradigms discussed in [27]). In our
implementation, every IoT node stores only part of the entire chain, (aka its’ own “view”
of the entire chain).

The operation of the IoT micro-devices is characterized by Increased locality of refer-
ences in time and space. This allows for a highly efficient utilization of the resources. In the
case of “extremely limited memory capacity”, which may practically scale down to few-bit
accumulators, the effective horizon of events of a device can become accordingly short; still,
even the tiniest capacity, can become substantial part of the ecosystem, providing valuable
validation data to siblings and increasing the overall robustness.

3. IoT Micro-Blockchain Essentials

The Witness Protocol introduced in this work, defines the functionality of a model-
blockchain, minimal enough to operate in the minimum imaginable scale within the IoT
micro-devices. We address this model under the graceful term “micro-blockchain”.

3.1. Unilateral Transactions

The usefulness of micro-blockchain extends way beyond modeling monetary transac-
tions; the nature and the essence of transaction can be extended beyond the classic bilateral
act of “give and take”. In fact, transaction can be semantically reduced to the bit-level, to
capture a single toggle of an electric switch. For instance, unlocking a secured door, turning
on a light, or even accessing a specific bit of data, are unilateral transactions, that do not
necessarily invoke more than one actors; still they constitute local events and raise the need
for being recorded in blockchain.

Extending the notion of Transaction to the space of unilateral actions is essential; it
constitutes the philosophical cornerstone for the application of the fundamental blockchain
initiatives in every single action in the IoT world. Unilateral actions are themselves parts
of the whole, “capable” of altering the current state of the collective system memory.

3.2. Locality of Events

In the IoT world, extensive locality is observed both in time and space; under the scope
of this paper, we use blockchain as a robust construct for the provision of a distributed,
immune mechanism, upon which local transactions can be inter-Locked and intra-Verified
over local autonomous networks. As described in the previous sections, for a linked list
to become blockchain, at least two semantic mechanisms must exist simultaneously, the
hashing mechanism for linking the records and the consensus mechanism for allowing verification.
Following, we shall try to set a minimum requirements threshold for these.

• Assumption A: If a device can perform hashing, then it is capable of building a local
hash chain.

Merkle trees may be also developed on top of the local hash-chains, to cope with
increased events rate occurrence on a device and to further augment “internal” immunity.
Due to the fact that they introduce additional write cost, computational complexity and
storage needs, they are not investigated in this work.

• Assumption B: Building consensus requires knowledge of the domain and the frame
in which the Blockchain is going to operate.

The Witness Protocol is mainly defined to raise collective non-repudiation and follows
a “write-intensive” consideration. Writes are expected to occur at relatively high rates,
while verifications will only occur in the light of external investigation (dispute resolution)
or apparent inconsistency.

Consensus is then achieved under two “low-cost” presumptions:

Sensors 2021, 21, 2784 7 of 22

• Every Node running the same code (implementing the Witness Protocol) is trusted
trustee (unless proven false).

• A Verifier can access concurrently the memory of every node in the network. In
practice, every node with adequate storage capacity may act as verifier; still for the
purposes of our experiment, we consider the verifier to be an abstract entity with
concurrent access in the “collective memory” of all nodes.

3.3. Collective Memory

Treasuring the peer-ness and autonomy of the IoT world, the “absolute syncing”
demand must be relaxed: not all nodes have to be aware of the entire chain. In the Witness
Protocol, every node is mostly occupied handling its’ “own events” and spends a significant
amount of its “free time” to listen to its’ Neighbors. As soon as an incoming external event
report is captured, the local node verifies it and adds it into his chain—thus building its’
own version of the universal truth. It is the aggregate contents of the memories that compose
the entire Blockchain. The construct is susceptible only of 51% attacks.

In the generic case, the entire data sequence may not be “recoverable” at all time.
In the light of absolute coherency requirement, the collective memory may be viewed as a
collective Redundant Array of Inexpensive Disks (RAID).

3.4. Minimum Hardware Requirements

We will now try to answer to the question: How much of a “thing” must an IoT device
be to be able to engage spontaneous micro-blockchain activity?

To autonomously operate in a peer, elementary chain, a general purpose IoT device
must be “at-least” capable of:

(a) Defining primitive data structures (to represent transactions’ data)
(b) Storing at minimum two consecutive transaction records
(c) Binding the records within hash chains (done through secure hashing)
(d) Signing the records (done through public key cryptography)
(e) Transmitting & receiving data to and from other alike devices within its’ scope/reach

The minimum ingredients to build an elementary chain are presented in Figure 3:

Sensors 2021, 21, x FOR PEER REVIEW 7 of 21

Consensus is then achieved under two “low-cost” presumptions:
• Every Node running the same code (implementing the Witness Protocol) is trusted

trustee (unless proven false).
• A Verifier can access concurrently the memory of every node in the network. In prac-

tice, every node with adequate storage capacity may act as verifier; still for the pur-
poses of our experiment, we consider the verifier to be an abstract entity with con-
current access in the “collective memory” of all nodes.

3.3. Collective Memory
Treasuring the peer-ness and autonomy of the IoT world, the “absolute syncing” de-

mand must be relaxed: not all nodes have to be aware of the entire chain. In the Witness
Protocol, every node is mostly occupied handling its’ “own events” and spends a significant
amount of its “free time” to listen to its’ Neighbors. As soon as an incoming external event
report is captured, the local node verifies it and adds it into his chain—thus building its’
own version of the universal truth. It is the aggregate contents of the memories that com-
pose the entire Blockchain. The construct is susceptible only of 51% attacks.

ln the generic case, the entire data sequence may not be “recoverable” at all time. In
the light of absolute coherency requirement, the collective memory may be viewed as a col-
lective Redundant Array of Inexpensive Disks (RAID).

3.4. Minimum Hardware Requirements
We will now try to answer to the question: How much of a “thing” must an IoT de-

vice be to be able to engage spontaneous micro-blockchain activity?
To autonomously operate in a peer, elementary chain, a general purpose IoT device

must be “at-least” capable of:
a) Defining primitive data structures (to represent transactions’ data)
b) Storing at minimum two consecutive transaction records
c) Binding the records within hash chains (done through secure hashing)
d) Signing the records (done through public key cryptography)
e) Transmitting & receiving data to and from other alike devices within its’ scope/reach

The minimum ingredients to build an elementary chain are presented in Figure 3:

Figure 3. Elementary IoT device blockchain-capable configuration block diagram.

Prerequisites a), b), c) and d) proclaim the convenience of the IoT device being a Tu-
ring machine, capable of executing general purpose programs. In addition, the existence
of a “Turing complete” code execution machine, theoretically allows for smart contract
execution-capable blockchains, operating in pure-peer-mode in the IoT world. The exist-
ence of a minimal programmable framework is also a very convenient approach while
developing and testing protocols. Still, general purpose “Turing” programmability is not
compulsory to establish micro-blockchain; the required functionality can be hardwired,
leading to even lower capacity, special-purpose smart dust hardware.

Figure 3. Elementary IoT device blockchain-capable configuration block diagram.

Prerequisites (a), (b), (c) and (d) proclaim the convenience of the IoT device being a
Turing machine, capable of executing general purpose programs. In addition, the existence
of a “Turing complete” code execution machine, theoretically allows for smart contract
execution-capable blockchains, operating in pure-peer-mode in the IoT world. The exis-
tence of a minimal programmable framework is also a very convenient approach while
developing and testing protocols. Still, general purpose “Turing” programmability is not

Sensors 2021, 21, 2784 8 of 22

compulsory to establish micro-blockchain; the required functionality can be hardwired,
leading to even lower capacity, special-purpose smart dust hardware.

IoT devices are designed to cope with real-world conditions and are often used for
real-world interfacing, like temperature measurement, doors’ unlocking, etc. This poses
a rational minimum limit in IoT micro-blockchains’ performance: they must be at-least
capable of operating within the human-perception timescale. In the vast majority of the
cases, the rate of the recordings spans in the range of 10−5~102 Hz (from a few hundred
events per second to some events per hour).

In the generic case, enough CPU power to conduct the primitive hashing and signing
functions (i.e., SHA-256 & RSA in our experiment) is necessary [28,29]. In addition, enough
memory to store the program and at least two consequent event records in the local chain
is needed as well. Even though the system becomes multivariate (as discussed in the Results
section), indicative performance outlines for the Witness Protocol are presented in Table 1:

Table 1. Indicative minimum IoT device capacity outlining.

Metric Description Minimum Indicative Value (Witness Protocol)

Memory capacity

Each Event block is expected to occupy rank 102 Bytes. In
Witness Protocol an event record of 248 Bytes is utilized.
In case of programmable IoT implementation, extra
memory space for the program is required. In our
implementation, 37.7 KB including all necessary

libraries were occupied by the program.

496 Bytes (for 2 records)
or M*248 for Local Event chain of length M

plus ~40 KB for program storage

CPU capacity

Equivalent capability for executing rank 102 Bytes
SHA-256 and 32 bit RSA at a rate range of 10−5~102 Hz
A write in the Local Chain under the Witness Protocol

was held on an average of 20 ms time.
Communications overhead comes on top and vastly varies

8 MIPS 8-bit AVR family microprocessor is found
capable of serving up to ~102 events per second

on the local chain (see Section 4 Results)

Data transfer
Single-Event data transfer in WP was benchmarked at
510 ms. Communication speed is setting the overall

WP Blockchain operation rate limit.

Event data transfer speed down to 0.5 Kbps were
proved adequate for multi-node Neighborhoods

of relatively low (human-timescale) event rate
(Section 4-Results)

3.5. The Experiment: Smartdust Blockchain

In our ground-base scenario, N autonomous, peer, IoT microcontrollers operating
in a Neighborhood of peer devices are forming the micro-blockchain, providing the con-
ceptual framework to our study. The objective of the chain is to provide with a robust
“Witness/Guarantor” mechanism: Upon the advent of a local event (e.g., a door unlocking),
W randomly picked neighbors are becoming potential “external” witnesses.

We define Neighborhood as a cluster of IoT devices, which fall into the communication
range of each other. Even though in our experiment the devices were located in Wi-Fi range
from each other, the intra-node communication takes place over TCP/IP, suggesting that
any internet capable device can be part of the neighborhood irrespective of its geo-location.

Neighborhood may be modeled as an evolving complete graph, devices (Nodes) being
the vertices and instant point to point communication paths the edges. In Figure 4 we
depict a neighborhood of nodes, as a graph. Neighborhood is dynamic and new Nodes can
join in “ad-hoc”: every device sharing the same source code (i.e., implementing the Witness
Protocol) can freely connect to and disconnect from any other node.

All nodes are minimal, autonomous, peer components, capable of connecting directly
to each other, running copy of the same source code.

3.6. Definitions

Node: the primary autonomous IoT micro-device. Each device primarily exists to
carry out some transaction such as a door lock/unlock, and secondarily to keep a “log

Sensors 2021, 21, 2784 9 of 22

record” of its’ activity. All nodes in the neighborhood are trusted trustees, communicating
on P2P mode.

Directive 0: Nodes primarily exist to serve events happening locally (aka “Local
Events”), like the the push of a button, the reading of a sensor etc. In this paper we
address this requirement as “Directive 0”.

Directive 1: The nodes secondarily exist to store in their memory a “monotonic log” of
the Local Events, and to notify their neighbours of them. We call this attribute “Directive 1”.

Community: The superset of all devices implementing the Witness Protocol
Neighborhood: Dynamic construct, representing the casual set of devices in the commu-

nication space each time.
N: the set of nodes in the neighborhood at a given time
M: the (maximum) length of the local chain on each node counted in number of blocks

-subject to micro-devices’ memory capacity. In our experiment we consider that all nodes
in the neighborhood have the same storage capacity (i.e., M events).

W: the set of nodes witnessing an event (Witnesses)
Teffective: the average new-event occurrence period in a node
Local Event: Any “worth storing” event (e.g., the push of a button)
Event Unique Identifier (EUI): The main block structure, a collection of data identifying

an Event in a universally unique way throughout the Community. The structure of the
actual event unique identifier of our experiment is illustrated in Figure 5:

Sensors 2021, 21, x FOR PEER REVIEW 9 of 21

Figure 4. Neighborhood of nodes as a graph.

All nodes are minimal, autonomous, peer components, capable of connecting directly
to each other, running copy of the same source code.

3.6. Definitions 𝑁𝑜𝑑𝑒: the primary autonomous IoT micro-device. Each device primarily exists to
carry out some transaction such as a door lock/unlock, and secondarily to keep a “log
record” of its’ activity. All nodes in the neighborhood are trusted trustees, communicating
on P2P mode.

Directive 0: Nodes primarily exist to serve events happening locally (aka “Local
Events”), like the the push of a button, the reading of a sensor etc. In this paper we address
this requirement as “Directive 0”.

Directive 1: The nodes secondarily exist to store in their memory a “monotonic log”
of the Local Events, and to notify their neighbours of them. We call this attribute “Directive
1”. 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦: The superset of all devices implementing the Witness Protocol 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑: Dynamic construct, representing the casual set of devices in the com-
munication space each time. 𝑁: the set of nodes in the neighborhood at a given time 𝑀: the (maximum) length of the local chain on each node counted in number of blocks
-subject to micro-devices’ memory capacity. In our experiment we consider that all nodes
in the neighborhood have the same storage capacity (i.e., M events). 𝑊: the set of nodes witnessing an event (Witnesses) 𝑇௘௙௙௘௖௧௜௩௘: the average new-event occurrence period in a node 𝐿𝑜𝑐𝑎𝑙 𝐸𝑣𝑒𝑛𝑡: Any “worth storing” event (e.g., the push of a button) Event Unique Identifier (𝐸𝑈𝐼): The main block structure, a collection of data identify-
ing an Event in a universally unique way throughout the 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦. The structure of
the actual event unique identifier of our experiment is illustrated in Figure 5:

Figure 4. Neighborhood of nodes as a graph.

Sensors 2021, 21, 2784 10 of 22
Sensors 2021, 21, x FOR PEER REVIEW 10 of 21

Figure 5. The event unique identifier (EUI) structure.

External event: “Other nodes’” event witnessed by Node N in its’ Local Chain
Events are created in the same average rate on every node in a neighborhood; no

“greedy”, nor “lazy” nodes are considered in this study.

3.7. The IoT Witness Protocol
The Witness Protocol introduced herein is implementing an Open blockchain operat-

ing in Private mode. It is designed to safeguard the consistency in the recordkeeping pro-
cess:

“IF an event takes place in node 𝑁௜ which is member of the witness Community,
THEN the Community can verify that node 𝑁௜ reported it did,

in an -exceptionally hard- to question manner”.
The idea is simple: every (last) local transaction which takes place on a device is being

stored locally and broadcasted to a set of W randomly selected neighbors. Every peer re-
ceiver (witness) uses this as an external “lock”, on its’ local chain. Each device can store
the last M transactions data (M > 2). Upon this FIFO queue of events, a Merkle tree can be
built to cope with high-rate bursts of local events. The overall schema falls to the super-
category of Rendezvous distributed hashing [30].

3.7.1. Considerations
1. Open, Private mode of operation: any IoT device can become casual node, by simply

implementing the Witness Protocol.
The Witness Protocol facilitates “open and private” blockchain operation. Nodes are

self-contained and self-acting, choosing to transmit and to accept data “at will”. They au-
tonomously choose if they want to transmit data, and who their witnesses would be. The
transmission is instantiated by the “data owning” device, to a selected set of w peers,
building collective non-repudiation immunity. All potentially sensitive data transmitted
are RSA-encrypted. Blockchain comes on top of the casual communication process to fa-
cilitate an extra level of resistance to malicious attacks.
2. Implied consensus: at the system launch, all nodes implementing the Witness Protocol

are considered “trusted-trustees”. Only a Reader / Verifier with access in all nodes can
tell malicious nodes through majority.

3. The Reader/Verifier can access the memory data of all nodes in range.
The Witness Protocol implements an eventual consistency mechanism and quests its

conceptual limits: the overall “reality” of the system being the aggregate of the local mem-
ories, each IoT device holds a highly “personalized” view. The micro-blockchain can be
modeled as a multi-graph of interlinked chain-lists. Each list is evolving monotonically in
time, and external events stored in it act as relative timestamps to the overall construct,
since, in the generic case, IoT devices do not bear world time clock functionality.

Figure 5. The event unique identifier (EUI) structure.

External event: “Other nodes’” event witnessed by Node N in its’ Local Chain.
Events are created in the same average rate on every node in a neighborhood; no

“greedy”, nor “lazy” nodes are considered in this study.

3.7. The IoT Witness Protocol

The Witness Protocol introduced herein is implementing an Open blockchain operating
in Private mode. It is designed to safeguard the consistency in the recordkeeping process:

“IF an event takes place in node Ni which is member of the witness Community,

THEN the Community can verify that node Ni reported it did,

in an -exceptionally hard- to question manner”.

The idea is simple: every (last) local transaction which takes place on a device is
being stored locally and broadcasted to a set of W randomly selected neighbors. Every
peer receiver (witness) uses this as an external “lock”, on its’ local chain. Each device can
store the last M transactions data (M > 2). Upon this FIFO queue of events, a Merkle tree
can be built to cope with high-rate bursts of local events. The overall schema falls to the
super-category of Rendezvous distributed hashing [30].

3.7.1. Considerations

1. Open, Private mode of operation: any IoT device can become casual node, by simply
implementing the Witness Protocol.

The Witness Protocol facilitates “open and private” blockchain operation. Nodes are
self-contained and self-acting, choosing to transmit and to accept data “at will”. They
autonomously choose if they want to transmit data, and who their witnesses would be.
The transmission is instantiated by the “data owning” device, to a selected set of w peers,
building collective non-repudiation immunity. All potentially sensitive data transmitted
are RSA-encrypted. Blockchain comes on top of the casual communication process to
facilitate an extra level of resistance to malicious attacks.

2. Implied consensus: at the system launch, all nodes implementing the Witness Protocol
are considered “trusted-trustees”. Only a Reader/Verifier with access in all nodes can
tell malicious nodes through majority.

3. The Reader/Verifier can access the memory data of all nodes in range.

The Witness Protocol implements an eventual consistency mechanism and quests its
conceptual limits: the overall “reality” of the system being the aggregate of the local
memories, each IoT device holds a highly “personalized” view. The micro-blockchain can
be modeled as a multi-graph of interlinked chain-lists. Each list is evolving monotonically
in time, and external events stored in it act as relative timestamps to the overall construct,
since, in the generic case, IoT devices do not bear world time clock functionality.

Sensors 2021, 21, 2784 11 of 22

3.7.2. Basic Flow

Each node is always in one of two states:

• “Listener”: This is the default mode. If there are no new Local Events to process, the
node is waiting its’ neighbors to connect and pass their latest event data.

• “Teller”: Upon the rise of a new Local Event, the node enters the “Teller” mode. It
processes the event data, stores it locally and broadcasts it to its’ neighbors. After this,
it returns to the “Listener” mode, until a new local event takes place.

In more detail, upon the advent of a new Local Event, in Nodei, it:

1. Stores it to its local memory.
2. Contacts W (randomly picked) neighbors to inform them of the event. Irrespective of

their availability, N returns in “Listener” mode after a number of attempts. This way
Nodei continues to satisfy Directives 0 and 1, even in the case of unavailability of some
or all the W. This way the system stabilizes. In the opposite case, every Node could
eventually become “trapped” trying to contact witnesses and the system would be
destabilized in an “all transmitting” condition.

3. Falls back into “Listener” state when write is completed.

3.7.3. The Write Process

Each node Ni stores events on its’ local chain monotonically in time. Apart from data
related to the local activity taking place in Ni, (e.g., “door unlocked”) each block also contains
the hash of the latest External Event it has ever witnessed. External events are added upon
the request of sibling neighbors: Ni verifies the validity of the received event data (EUI) and
stores it in its’ local chain. External events recorded on the local chain, act as “community
collective keys” binding all local chains together.

The model of the EUI is depicted in Figure 6.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 21

3.7.2. Basic Flow
Each node is always in one of two states:

• “Listener”: This is the default mode. If there are no new Local Events to process, the
node is waiting its’ neighbors to connect and pass their latest event data.

• “Teller”: Upon the rise of a new Local Event, the node enters the “Teller” mode. It pro-
cesses the event data, stores it locally and broadcasts it to its’ neighbors. After this, it
returns to the “Listener” mode, until a new local event takes place.
In more detail, upon the advent of a new Local Event, in 𝑁𝑜𝑑𝑒௜, it:

1. Stores it to its local memory.
2. Contacts W (randomly picked) neighbors to inform them of the event. Irrespective of

their availability, N returns in “Listener” mode after a number of attempts. This way 𝑁𝑜𝑑𝑒௜ continues to satisfy Directives 0 and 1, even in the case of unavailability of
some or all the w. This way the system stabilizes. In the opposite case, every Node
could eventually become “trapped” trying to contact witnesses and the system
would be destabilized in an “all transmitting” condition.

3. Falls back into “Listener” state when write is completed.

3.7.3. The Write Process
Each node 𝑁௜ stores events on its’ local chain monotonically in time. Apart from data

related to the local activity taking place in 𝑁௜, (e.g., “door unlocked”) each block also con-
tains the hash of the latest External Event it has ever witnessed. External events are added
upon the request of sibling neighbors: 𝑁௜ verifies the validity of the received event data
(EUI) and stores it in its’ local chain. External events recorded on the local chain, act as
“community collective keys” binding all local chains together.

The model of the EUI is depicted in Figure 6.

Figure 6. Local chain structure.

Ideally, we would like 𝑊 = 𝑁 − 1, i.e., all neighboring nodes witness a local event
taking place on 𝑁௜. Demanding every node to witness every local event taking place in
every other node in the neighborhood, resembles to “full-database replication” scenario. As
we have seen earlier, according to the CAP, this cannot be done without sacrificing system
availability, or tolerance to network partition, and thus in the generic case the system is ex-
pected to perform with 𝑊 ൏ 𝑁 − 1. It is reminded that the Witness Protocol is designed to
optimize Writes. Any number of witnesses 𝑊 > 0 has an overall positive impact, increas-
ing the collective non-repudiation resistance in comparison to the isolated node “local
only” hash-list storage.

Figure 6. Local chain structure.

Ideally, we would like W = N − 1, i.e., all neighboring nodes witness a local event
taking place on Ni. Demanding every node to witness every local event taking place in
every other node in the neighborhood, resembles to “full-database replication” scenario.
As we have seen earlier, according to the CAP, this cannot be done without sacrificing
system availability, or tolerance to network partition, and thus in the generic case the system is

Sensors 2021, 21, 2784 12 of 22

expected to perform with W < N− 1. It is reminded that the Witness Protocol is designed to
optimize Writes. Any number of witnesses W > 0 has an overall positive impact, increasing
the collective non-repudiation resistance in comparison to the isolated node “local only”
hash-list storage.

The process of event transmission is depicted in Figure 7.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 21

The process of event transmission is depicted in Figure 7.

Figure 7. Transmitting local events.

Writes are conducted in linear O(1 + W) cost. To optimize collective immunity against
false witness attacks, W has to be the largest possible; the optimal achievable value of |𝑊|
is subject to the system characteristics (i.e., Events’ rate and distribution, Communication la-
tency, Energy consumption, Number of nodes in Neighborhood, Preemption strategy) and is con-
cluded accordingly. In Section 4 Results, the way W affects (and is affected) by the other
characteristics of the system is highlighted.

IoT devices’ limited storage capacity suggests that event records are accessible/veri-
fiable in a finite event horizon. It is reminded that, in the generic case, IoT devices do not
bear internal world-time clock and relative synchronization is achieved via the monotonic
write property of the devices. Absolute world-time stamping therefore is feasible only if
a node (or a set of nodes) capable of world-time timekeeping comes to the neighborhood.
Every new event creates a repeated one-hope “ripple” without “gossiping” or repeating
past events.

3.7.4. Definitive Decisions—Eventual Consistency
As discussed earlier, every node stores only a part of the entire chain. Still, we shall

demonstrate that the Witness Protocol delivers substantial immunity. In terms of collective
storage, in a stationary neighborhood the Witness Protocol resembles to a collective RAID.
The system can tolerate an overall total failure of ௐଶ − 1 nodes without data loss and with-
out compromising its’ event verification ability. In the generic “ad-hoc neighborhood”
though, full recovery and verification of every transaction in the horizon of events cannot
be guaranteed for small values of W. A modest prerequisite is that a kernel of more than |𝑊| nodes remain “stationary” within the average events horizon of the system.

3.7.5. The Read/Verification Process
The Witness Protocol aims in increasing the collective non-repudiation immunity. An

event is considered verified, if at least 1 + ௐଶ nodes verify it. In a way analogous to real

Figure 7. Transmitting local events.

Writes are conducted in linear O(1 + W) cost. To optimize collective immunity against
false witness attacks, W has to be the largest possible; the optimal achievable value of |W|
is subject to the system characteristics (i.e., Events’ rate and distribution, Communication
latency, Energy consumption, Number of nodes in Neighborhood, Preemption strategy) and is
concluded accordingly. In Section 4 Results, the way W affects (and is affected) by the other
characteristics of the system is highlighted.

IoT devices’ limited storage capacity suggests that event records are accessible/
verifiable in a finite event horizon. It is reminded that, in the generic case, IoT devices do
not bear internal world-time clock and relative synchronization is achieved via the mono-
tonic write property of the devices. Absolute world-time stamping therefore is feasible only
if a node (or a set of nodes) capable of world-time timekeeping comes to the neighborhood.
Every new event creates a repeated one-hope “ripple” without “gossiping” or repeating
past events.

3.7.4. Definitive Decisions—Eventual Consistency

As discussed earlier, every node stores only a part of the entire chain. Still, we shall
demonstrate that the Witness Protocol delivers substantial immunity. In terms of collective

Sensors 2021, 21, 2784 13 of 22

storage, in a stationary neighborhood the Witness Protocol resembles to a collective RAID.
The system can tolerate an overall total failure of W

2 − 1 nodes without data loss and
without compromising its’ event verification ability. In the generic “ad-hoc neighborhood”
though, full recovery and verification of every transaction in the horizon of events cannot
be guaranteed for small values of W. A modest prerequisite is that a kernel of more than
|W| nodes remain “stationary” within the average events horizon of the system.

3.7.5. The Read/Verification Process

The Witness Protocol aims in increasing the collective non-repudiation immunity. An
event is considered verified, if at least 1 + W

2 nodes verify it. In a way analogous to real
life “ear-witness” or “loan-guarantor”, even a single casual witness/guarantor drastically
improves the system robustness. In practice, W may change overtime to cope with the
varying N and events rate. In our post processing model, we study the behavior of the
Witness Protocol for W varying from 1 to N.

To satisfy Directive 0, the proposed architecture optimizes writes. The tradeoff raises
inevitably: the verification process requires full access on every local chain, raising an
average event verification cost of O

(
N ∗ M

2

)
.

3.8. Methodology

The experiment was divided in two phases:

• Phase A: The code implementing the Witness Protocol was developed and debugged on
the Sketch v.1.8.13 Arduino IDE (Figure 8). The selected target machine was Arduino
Nano33 IoT. The details of the software modules and the testbed are discussed below.

• Phase B: The code was physically installed, ran, and benchmarked on a setup of two
microcontrollers. Several iterations have been carried out over a 40-day period. The
observations led the construction of a numerical “post-processing” model in Octave
6.1.0. The benchmarks were then fed to the module, to study the behavior and the
scale-up of the solution in different scenarios, for varying number of nodes, witnesses
and event rates.

The results are presented and discussed on Sections 4 and 5, respectively.

3.8.1. The Ingredients

In Section 3.4 the basic components needed to build a Node are identified (i.e., a hashing
mechanism, a public key encryption mechanism, a way to communicate to each-other).

Each node operates per case as: Access Point, Server, Client, Hash & RSA Encoder and
Verifier, and Storage. In our experiment we developed, integrated, and tested code for
building an access point, a server, a client, secure hash and encryption functionality.

• Public Private Key Infrastructure: 32-bit RSA is chosen as the PPK infrastructure. The
library provided in [31] was debugged, augmented to 32-bit <long unsigned> and
tested. On Setup() a pair of public/private keys is created. The public key of the node
acts as Public ID for Neighbors and Verifiers to address it.

• The hash of each EUI is signed with the private key of the node. It is then transmitted
to Wi randomly chosen Neighbors as part of the block (Figure 6. Block structure). This
way, Wi can verify easily: a. the identity of the transmitting node and b. the validity
of the received block.

• Hashing Mechanism: SHA-256 algorithm is chosen for binding the blocks. The Arduino
Cryptography Library was utilized and tested.

• Communications Mechanism: The selected testbed provides an endless range of connec-
tivity options (i.e., Wired Com Ports, Wi-Fi, Bluetooth, Bluetooth Low Energy, analog
RF, Fiber Optics, etc.). For our purposes we utilized the build-in wireless capabilities
of the device (WiFiNINA library 1.7.0 with 1.4.0 firmware). This allows for fully
autonomous peer connectivity without the need of external devices, access points, etc.,
which was a primary red-line. By default, each node is a fully functional Wi-Fi access

Sensors 2021, 21, 2784 14 of 22

point (while in “Listening” mode) and becomes a Wi-Fi client on the occurrence of the
local event.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 21

life “ear-witness” or “loan-guarantor”, even a single casual witness/guarantor drastically
improves the system robustness. In practice, W may change overtime to cope with the
varying N and events rate. In our post processing model, we study the behavior of the
Witness Protocol for W varying from 1 to N.

To satisfy Directive 0, the proposed architecture optimizes writes. The tradeoff raises
inevitably: the verification process requires full access on every local chain, raising an av-
erage event verification cost of 𝑂(𝑁 ∗ ெଶ).

3.8. Methodology
The experiment was divided in two phases:

• Phase A: The code implementing the Witness Protocol was developed and debugged
on the Sketch v.1.8.13 Arduino IDE (Figure 8). The selected target machine was Ar-
duino Nano33 IoT. The details of the software modules and the testbed are discussed
below.

• Phase B: The code was physically installed, ran, and benchmarked on a setup of two
microcontrollers. Several iterations have been carried out over a 40-day period. The
observations led the construction of a numerical “post-processing” model in Octave
6.1.0. The benchmarks were then fed to the module, to study the behavior and the
scale-up of the solution in different scenarios, for varying number of nodes, witnesses
and event rates.
The results are presented and discussed on Sections 4 and 5, respectively.

Figure 8. Sketch v.1.8.13 Arduino IDE (Source files @: https://github.com/arianagnos-
takis/IoT_Blockchain, accessed on 2 February 2021).

3.8.1. The Ingredients
In Section 3.4 the basic components needed to build a Node are identified (i.e., a hash-

ing mechanism, a public key encryption mechanism, a way to communicate to each-
other).

Each node operates per case as: Access Point, Server, Client, Hash & RSA Encoder and
Verifier, and Storage. In our experiment we developed, integrated, and tested code for
building an access point, a server, a client, secure hash and encryption functionality.
• Public Private Key Infrastructure: 32-bit RSA is chosen as the PPK infrastructure. The

library provided in [31] was debugged, augmented to 32-bit <long unsigned> and
tested. On Setup() a pair of public/private keys is created. The public key of the node
acts as Public ID for Neighbors and Verifiers to address it.

Figure 8. Sketch v.1.8.13 Arduino IDE (Source files @: https://github.com/arianagnostakis/IoT_
Blockchain, accessed on 2 February 2021).

3.8.2. Testbed

The experiment took place on a setup of two Arduino 33 Nano IoT devices, operating
under 1.4.0 framework. NINA library 1.7.0 was used for networking [32]. The specific
IoT devices were chosen due to the fact that they satisfy the minimum requirements
without the need for external components: They facilitate full WiFi, Bluetooth and BLE
connectivity, and support TCP/IP, allowing for peer, fully autonomous operation. They
have adequate CPU capacity to perform SHA-256 and RSA, while their internal memory
can store hundreds of event blocks.

3.9. Security Considerations

The Witness Protocol is designed to operate over private P2P connections, without
the need for central network access, mainly to increase the non-repudiation immunity of
the system.

Ground base scenario: Lets’ consider a set of digital temperature sensors put inside
the refrigerators on an industrial facility. Upon thresholds reached, they transmit their
readings to readers outside of the fridges. By implementing the Witness Protocol, they
also peek w peers out of the pool of neighbors as additional witnesses of the event. With
respect to each application requirements, the sensitive data of the block can be signed by
the owner and encrypted using RSA. Selected events taking place within one device are

https://github.com/arianagnostakis/IoT_Blockchain
https://github.com/arianagnostakis/IoT_Blockchain

Sensors 2021, 21, 2784 15 of 22

then transmitted to the selected peers. The system is write-intensive (writes happen at a
much-higher rate than disputes).

The Witness Protocol runs on top of the casual sensors’ activity and poses no additional
privacy concerns. On the contrary, it increases the non-repudiation immunity of the
community. In the light of a dispute, the validity of the recordings can be verified at
finite cost, either by a peer node, or by an external verifier, by accessing in the witnesses’
local memories.

The Witness Protocol falls under the Byzantine Generals conceptual frame. The Byzantine
Generals problem, solved under a wide variety of initial condition assumptions [33], sets the
frame in modern consensus vulnerability analysis [34–36]. Herein we consider a variation
of the BFT in which messages are being constantly broadcasted in a dynamic Neighborhood
of nodes. The Witness Protocol falls under the BFT with-oral-messages problem sub-category.
The process resembles an “ear-witness” real world scenario. To cope with the resources,
capacities, and consumption limitations of the IoT devices, WP foresees only one-hop event
distribution, no “gossiping” and no retransmission of past events.

Internal & External Integrity

• Internal Integrity: SHAs’ one-trap door property, suggests that as soon as a block is
added in a local chain, the only way to successfully tamper it without being noticed,
is to alter the entire part of the local chain from this block to the last (M

2 blocks
on average). Indeed, a lonely IoT device with hash-linked recordkeeping may be
compensated at a trivial O

(
M
2

)
cost.

• External Integrity: As soon as a local event M of node i (i.e., Ni(M)) is successfully
transmitted to a number of neighbors-witnesses (W > 1), there is no way to solely
attack Ni. For the successful tampering of any Event Block on any local memory, a
combined tampering attack to the “absolute majority” of the set W of the witnesses
of the event will have to take place concurrently. This leads to a minimum “false
quorum” consensus requirement of W

2 + 1 nodes [37,38]. It is noted that this describes
the worst-case scenario, in which the node Ni under attack has W witnesses, out of
which no one has witnesses of his own on its’ successive events. It is evident that, time
evolving, every node will acquire multiple witnesses at the rate of ≈ W

Teventperiod
, (given

random choice of witnesses on each event).
• After a maximum timeframe of ≈ N ∗ Teventperiod

W all nodes in a neighborhood will
become interconnected, introducing N

2 + 1 minimum quorum consensus requirement
to the attacker.

4. Results
4.1. Benchmarking and Findings

A number of processes has been benchmarked, providing the post-processing model
with detailed data:

Timestamping:
Time needed for a new event block to be added to the Blockchain (micro-nlockchain

corresponds to the aggregate of the local chains (depicted in Figures 2 and 7)):

Tteller = Taddtolocal + Ttransmit

Time each node is in Listening mode (within an event period):

Tlistener = Teventperiod − Tteller

Time needed for a node to process and add an event in its Local Chain:

Taddtolocal = Tsha−256 + Tsign + Tcopytochain

Sensors 2021, 21, 2784 16 of 22

Time needed for a listening node to verify add external event in its Local Chain:

Taddexternal = Treceive + Tveri f y + Taddtolocal

Block verification time: Tveri f y = (#BlockBytes)·Tsha−256 + Tdecrypt

Total Block transmission time: TTransmit = ∑w
1

(
Tswapmode + Tconnect + Tserialprint

)
Combined Probabilities are then defined:
Probability of Ni being in “teller” or “listener” mode at a given time:
Pi(teller) = Tteller

Teventperiod
, Pi(listener) = 1− Pteller respectively.

Any local event may be transmitted at most We f f ective times before a new local event rises:

We f f ective =
Teventperiod

Tswapmode + Tlistener

given normal event probability distribution over the Neighborhood (i.e., local events are
considered to occur over the nodes of a neighborhood in the same rate).

Probability of node Ni successfully becoming witness of a specific event is then
defined as:

Pi(witness) = Pi(listener)− Pi(iserveothers) = Pi(listener)−
∑

We f f ective
j=2 Pj(teller)

N − 2

In our variation of the BFT problem-solution, point to point oral messages over non-
gossiping nodes are considered: nodes do not propagate other nodes’ events, nor they are
re-transmitting their own past events.

Benchmarking recorded the following values (Table 2):

Table 2. IoT micro-blockchain benchmarking table.

Parameter Time (ms) 1

TSwapmode 3713
TTransmit 519
TReceive 579
TVeri f y 3

Tsha−256 4
Tcopytochain 9

1 Active benchmark points in source code, utilizing millis() function.

Values indicate that a considerable amount of effort is consumed to constant Wi-Fi
connections and disconnections (required to establish fully autonomous peer operation).
Even though this overhead is susceptive of significant optimization (via broadcasting,
multicasting, multiple concurrent connections, multithreaded processing, etc.), the network
proved highly capable of handling neighborhoods of 10-s of nodes in “human-timescale”
events rates. Results depicted in Figure 9a to Figure 10b indicate that a neighborhood
population of up to 64 nodes, operating at an average “fair” inter-events time period of
120-sec, can operate without significantly compromising the number of acquired witnesses
(Wattainable = N − 1). Modest communications’ optimization, is estimated to allow for up
to 128 node neighborhood (estimation is based on the basic Arduino Nano33 IoT microcon-
troller performance recorded in the experiment). Further to this, our results verify that for a
constant, arbitrarily high neighborhood population, the probability of acquiring N effective
witnesses rises monotonically with average event period: lim

Teventperiod→∞
(Pi(witness))→ 1 ,

while for a constant Teventperiod the number of witnesses that can be effectively acquired
W(Pi(witness) > 0) is bounded by the overall event processing time.

Sensors 2021, 21, 2784 17 of 22Sensors 2021, 21, x FOR PEER REVIEW 17 of 21

(a) Attainable witness count as a function of Local Events Rate in a Neighborhood of 100 nodes.

(b) Normalized Pi(witness) as a function of Local Events Rate in a Neighborhood of 100 nodes.

Figure 9. Attainable witness count and Normalized witness probability as a function of Local
Events’ Rate in a Neighborhood of 100 Nodes

In Figure 9b, the combined probability of the next-contacted node successfully be-
coming Witness as a function of the targeted number of witnesses W in a neighborhood of
100 nodes is presented.

Figure 9. Attainable witness count and Normalized witness probability as a function of Local Events’ Rate in a Neighborhood
of 100 Nodes.

Sensors 2021, 21, 2784 18 of 22Sensors 2021, 21, x FOR PEER REVIEW 18 of 21

(a) Pi(witness) > 0 as a function of Nodes in Neighborhood at Te = 120 sec.

(b) Normalized Pi(witness) as a function of Nodes in Neighborhood at Te = 120 sec.

Figure 10. Witness probability and Normalized witness probability as a function of number of
Nodes in Neighborhood at Te = 120 s.

For a “fair”, human-timescale average 𝑇௘௩௘௡௧௣௘௥௜௢ௗ of 120 s (period of new local
events on each peer node), the normalized probability of W nodes effectively witnessing
an event (𝑃௜(𝑤𝑖𝑡𝑛𝑒𝑠𝑠) > 0) is depicted on Figure 10a,b s as a function of the neighborhood
population respectively.

4.2. Data Availability Statement
The core of the source code and the technical data will be made available under Cre-

ative Commons license to facilitate future IoT micro-blockchain applications’ develop-
ment.

5. Discussion
Our experiment proves that low-cost low-end IoT devices bear all the necessary ca-

pacities in terms of CPU power, connectivity and software tools, to establish and support
robust, distributed, blockchain-based operation. The fact is intriguing. It is expected to
bring unprecedented security and transparency in the IoT scale, and through this, to the

Figure 10. Witness probability and Normalized witness probability as a function of number of Nodes in Neighborhood at
Te = 120 s.

We highlight the performance of the system as a function of |W|, i.e., the number of
nodes contacted to share local events. We assume equal local events’ rate = 1

Teventperiod
, ∀Ni

(for all Nodes in Neighborhood).
In Figure 9a, the number of nodes that actually became Witnesses as a function of the

number of nodes contacted on a neighborhood of 100 nodes is depicted for various values
of Teventperiod.

Sensors 2021, 21, 2784 19 of 22

In Figure 9b, the combined probability of the next-contacted node successfully be-
coming Witness as a function of the targeted number of witnesses W in a neighborhood of
100 nodes is presented.

For a “fair”, human-timescale average Teventperiod of 120 s (period of new local events
on each peer node), the normalized probability of W nodes effectively witnessing an
event (Pi(witness) > 0) is depicted on Figure 10a,b s as a function of the neighborhood
population respectively.

4.2. Data Availability Statement

The core of the source code and the technical data will be made available under Cre-
ative Commons license to facilitate future IoT micro-blockchain applications’ development.

5. Discussion

Our experiment proves that low-cost low-end IoT devices bear all the necessary
capacities in terms of CPU power, connectivity and software tools, to establish and support
robust, distributed, blockchain-based operation. The fact is intriguing. It is expected
to bring unprecedented security and transparency in the IoT scale, and through this, to
the entire transactional activity. The invoked mechanisms are soon expected to become
“hardwired” down in the sensors’ bit-level.

Bringing blockchain down to the tiniest operational level, requires in-depth, substan-
tial case-specific considerations and poses significant trade-offs (e.g., the Witness Protocol,
while optimizing writes, it mandates simultaneous full access to the memory contents of
all devices to effectively verify events).

Still, considering the relatively low disputes’ occurrence probability compared to
writes’, this is an elegant compromise, which guarantees a significantly high attack cost:
O(1) being the cost of altering the contents of an single event block in an M-length random
access memory, our architecture demonstrates O

(
M
2

)
attack cost for a “lonely” IoT device

and a O
(

M
2 ∗ N

)
attack cost to a stationary neighborhood of N nodes.

The perception of Transaction itself, was pushed to its’ conceptual limits, to also include
unilateral interactions.

Results are intriguing and can be interpreted under a variety of contexts. In a straight
analogy to the real-world ear-witness event situation, it is up to the witness to cooper-
ate, unveil identity and provide world with his own version of “Reality” (aka his/her
memory contents).

The probability of effective witnesses’ existence upon an event, subjects to limitations
extensively studied in communication networks’ theory [39]. In our testbed, single-channel
communications were considered: at a given time, every node can either Listen, or Transmit.
Swapping from Listener to Teller required each node to become an active Access Point and
back, imposing significant overall delay.

Since disputes are rare events compared to the number of the significant events taking
place, our micro-blockchain is optimizing “writes”. Indeed, writes comes at the cost of
O(W + 1) both in space and in overall computational volume.

The number of witnesses acquired on each event is subject to a combination of vari-
ables, i.e., The number of nodes in the neighborhood, the frequency and distribution of the
events, network connection and transmission latency, number of desired witnesses each
time, etc.

To compensate the integrity of the Neighborhood via the typical 51% type of attack, at
least W

2 + 1 nodes have to be compromised by a malicious attacker “at-the-same-time”. Our
results indicate an optimal maximum W → N . Reads/verifications impose a total cost
of O

(
N ∗ M

2

)
and presume concurrent access to the memory contents of every node in

the Neighborhood.
Irrespective of the communications overhead, a significant amount of CPU and storage

capacity must be dedicated in running the chain. This is subject to each application

Sensors 2021, 21, 2784 20 of 22

requirements and thorough consideration of the variables and cost-hazard balancing in
each case is essential.

6. Conclusions

In this paper, the fundamental factors for building, operating and testing micro-Blockchains
on the IoT are introduced. The presented experiment reaches down to the individual IoT de-
vice in micro-controller level and paves the way for blockchains to get even deeper, becoming
functional constructs down to single-sensor and single-processor level.

Blockchain being a software-intensive “conceptual containment” of a series of tech-
nologies, from secure hashing, to cryptography, distributed storage, computing and net-
working, its’ core aspects are highlighted and analyzed. To provide with a solid develop-
ment framework, the novel Witness Protocol was deployed and tested. The setup proved
totally capable of processing and securing everyday transactions over neighborhoods of
tens of nodes.

The major aspects of the process are presented with direct analogies to the technologi-
cal frameworks and their philosophical foundations.

Establishing distributed consensus without the need for centralized third-parties is an
evolving revolution of our era. Yet, despite of the exceptionally intriguing results from the
technical point of view, the current work aspires most of all to pose a small step towards
the distributed trust and liability transformation which takes place in societal level on the
vehicle of blockchain.

Author Contributions: Conceptualization, A.G.A.; methodology, A.G.A., N.G., M.G.T., E.G., and
A.T.T.; software, A.G.A.; validation, A.G.A., N.G., M.G.T., and A.T.T.; formal analysis, A.G.A., N.G.,
M.G.T., and A.T.T.; investigation, A.G.A. and A.T.T.; resources, A.G.A., and A.T.T.; data curation,
A.G.A., N.G., M.G.T., E.G., and A.T.T.; writing—original draft preparation, A.G.A., N.G., M.G.T.,
E.G., and A.T.T.; writing—review and editing, A.G.A., N.G., M.G.T., E.G., and A.T.T.; visualization,
A.G.A., and M.G.T.; supervision, A.G.A., N.G., M.G.T., and A.T.T.; project administration, A.G.A.,
N.G., M.G.T., E.G., and A.T.T.; funding acquisition, N.G., M.G.T. and A.T.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been co-financed by the European Union and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH – CREATE – INNOVATE: T1EDK-01958.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: New data were created and analyzed in this study. Data sharing
not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Statista: Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025. Available online: https:

//www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 2 March 2021).
2. Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Challenges and opportunities.

Future Gener. Comput. Syst. 2018, 88, 173–190. [CrossRef]
3. Xu, Y.; Ren, J.; Wang, G.; Zhang, C.; Yang, J.; Zhang, Y. A blockchain-based nonrepudiation network computing service scheme

for industrial IoT. IEEE Trans. Ind. Inform. 2019, 15, 3632–3641. [CrossRef]
4. Xu, Y.; Ren, J.; Zhang, Y.; Zhang, C.; Shen, B.; Zhang, Y. Blockchain Empowered Arbitrable Data Auditing Scheme for Network

Storage as a Service. IEEE Trans. Serv. Comput. 2019, 13, 1. [CrossRef]
5. Iota: A Cryptocurrency for Internet-of-Things. Available online: https://iotatoken.com/IOTA_Whitepaper.pdf (accessed on

2 March 2021).
6. Anagnostakis, A.G. Towards a blockchain architecture for cultural heritage tokens. In Communications in Computer and Information

Science; Springer: Cham, Switzerland, 2019; Volume 961. [CrossRef]
7. Xu, Y.; Wang, G.; Yang, J.; Ren, J.; Zhang, Y.; Zhang, C. Towards secure network computing services for lightweight clients using

blockchain. Wirel. Commun. Mob. Comput. 2018, 2018, 2051693. [CrossRef]

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://doi.org/10.1016/j.future.2018.05.046
http://doi.org/10.1109/TII.2019.2897133
http://doi.org/10.1109/TSC.2019.2953033
https://iotatoken.com/IOTA_Whitepaper.pdf
http://doi.org/10.1007/978-3-030-12957-6_38
http://doi.org/10.1155/2018/2051693

Sensors 2021, 21, 2784 21 of 22

8. Mattern, F.; Floerkemeier, C. From the Internet of Computers to the Internet of Things; Distributed Systems Group, Institute for
Pervasive Computing: Zurich, Switzerland, 2010.

9. Rosati, P.; Čuk, T. Blockchain Beyond Cryptocurrencies. In Disrupting Finance; Lynn, T., Mooney, J., Rosati, P., Cummins, M., Eds.;
Palgrave Studies in Digital Business & Enabling Technologies; Palgrave Pivot: Cham, Switzerland, 2018. [CrossRef]

10. Adya, A.; Liskov, B. Lazy Consistency Using Loosely Synchronized Clocks. In Proceedings of the PODC ’97 Sixteenth Annual
ACM Symposium on Principles of Distributed Computing, Santa Barbara, CA, USA, 21–24 August 1997; pp. 73–82. [CrossRef]

11. Dwork, C.; Lynch, N.; Stockmeyer, L. Consensus in the presence of partial synchrony. J. ACM 1988, 35, 288–323. [CrossRef]
12. Bluetooth Wireless Local Networks. 2020. Available online: https://www.bluetooth.com/specifications/specs/ (accessed on 11

November 2020).
13. Wessim, A. Smart Dust: An Overview. 2019. Available online: https://medium.com/@wessimallegue/smart-dust-an-overview-

3c3518e00b92 (accessed on 3 February 2021).
14. Finney, H. “Reusable Proofs of Work”, Web Archives Homepage. 2004. Available online: https://web.archive.org/web/20071222

072154/http://rpow.net/ (accessed on 28 March 2010).
15. Vukolić, M. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. Bft Replication. In Open Problems in Network Security,

Proceedings of the IFIP Wg 11.4 Workshop (INETSEC 2015), Zurich, Switzerland, 29 October 2015; Springer: Basel, Switzerland, 2016;
Volume 9591, pp. 112–125.

16. Mingxiao, D.; Xiaofeng, M.; Zhe, Z.; Xiangwei, W.; Qijun, C. A review on consensus algorithm of blockchain. In Proceedings
of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp.
2567–2572. [CrossRef]

17. Compromising Sha-256. 2018. Available online: https://stackoverflow.com/questions/44472974/how-long-time-would-it-take-
to-decrypt-a-sha256-hash (accessed on 2 February 2021).

18. Merkle, R.C. A Digital Signature Based on a Conventional Encryption Function. In Advances in Cryptology—CRYPTO ’87; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1988; Volume 293, pp. 369–378.

19. Miller, A.; Joseph, J.L., Jr. Anonymous Byzantine Consensus from Moderately Hard Puzzles: A Model for Bitcoin; Tech Report; cs-tr-14-01;
University of Central Florida: Orlando, FL, USA, 2014.

20. Dwork, C.; Naor, M. Pricing Via Processing or Combatting Junk Mail. In Proceedings of the 12th Annual International Cryptology
Conference on Advances in Cryptology, Crypto ‘92, Santa Barbara, CA, USA, 16–20 August 1992; Springer-Verlag: London, UK,
1993; pp. 139–147.

21. Schumann, T. Proof of Work vs. Proof of Stake. Hackernoon Tech BlogSpot. 2014. Available online: https://hackernoon.com/
consensus-mechanisms-explained-pow-vs-pos-89951c66ae10 (accessed on 2 April 2018).

22. Nakamoto, S. A Peer-To-Peer Electronic Cash System. White Paper, Bitcoin Official Homepage. 2010. Available online:
https://bitcoin.org/bitcoin.pdf (accessed on 2 August 2018).

23. Buterin, V. Ethereum Whitepaper. The Ethereum Official Homepage. 2015. Available online: https://www.ethereum.org/
(accessed on 2 June 2018).

24. Szabo, N. Smart Contracts Definition. University of Amsterdam On-Line Courses. 1994. Available online: http://www.fon.hum.
uva.nl/rob/courses/informationinspeech/cdrom/literature/lotwinterschool2006/szabo.best.vwh.net/smart.contracts.html (ac-
cessed on 10 July 2018).

25. Brewer, E.A. Towards Robust Distr2ibuted Systems. In Proceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computing, Portland, OR, USA, 16–19 July 2000.

26. Vogels, W. Eventually Consistent. Commun. ACM 2009, 52, 40–44. [CrossRef]
27. Gauba, A. Finality in Blockchain Consensus. Available online: https://medium.com/mechanism-labs/finality-in-blockchain-

consensus-d1f83c120a9a#:~{}:text=in%20the%20blockchain%20setting%2c%20finality,once%20committed%20to%20the%20
blockchain (accessed on 2 February 2021).

28. Rivest, R.; Shamir, A.; Adleman, L. RSA Asymmetric Encryption Algorithm; Patent granted to MIT. Available online: https:
//patents.google.com/patent/US4405829 (accessed on 2 February 2021).

29. Gilbert, H.; Handschuh, H. Security Analysis of SHA-256 and Sisters. In Lecture Notes in Computer Science; Matsui, M., Zuccherato,
R.J., Eds.; Selected Areas in Cryptography, SAC 2003; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3006. [CrossRef]

30. David, T.; Ravishankar, C. A Name-Based Mapping Scheme for Rendezvous; University of Michigan Technical Report cse-tr-316-96;
University of Michigan: Ann Arbor, MI, USA, 1996.

31. Karthik, V. Experimental RSA in Arduino Library, Source Code Files. 2019. Available online: https://stackoverflow.com/users/
6125661/telkepalli-venkat-karthik (accessed on 3 January 2021).

32. AVR Microchip Instruction Set Manual. 2020. Available online: http://ww1.microchip.com/downloads/en/devicedoc/AVR-
Instruction-Set-Manual-DS40002198A.pdf (accessed on 2 February 2021).

33. Lamport, L.; Shostak, R.; Pease, M. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 1982, 4, 82–401. [CrossRef]
34. Medium Blogspot Vlad Zamfir. Simple Model of an Internal POW Attacker. 2017. Available online: https://medium.com/

@vlad_zamfir/simple-model-of-an-internal-pow-attacker-1a713cf00672 (accessed on 5 May 2017).
35. Eyal, I.; Sirer, E.G. Majority is not Enough: Bitcoin Mining is Vulnerable. In Financial Cryptography and Data Security, Proceedings of

the 18th International Conference Selected Papers, Christ Church, Barbados, 3–7 March 2014; Springer: Berlin/Heidelberg, Germany,
2014; pp. 436–454.

http://doi.org/10.1007/978-3-030-02330-0_10
http://doi.org/10.1145/259380.259425
http://doi.org/10.1145/42282.42283
https://www.bluetooth.com/specifications/specs/
https://medium.com/@wessimallegue/smart-dust-an-overview-3c3518e00b92
https://medium.com/@wessimallegue/smart-dust-an-overview-3c3518e00b92
https://web.archive.org/web/20071222072154/http://rpow.net/
https://web.archive.org/web/20071222072154/http://rpow.net/
http://doi.org/10.1109/SMC.2017.8123011
https://stackoverflow.com/questions/44472974/how-long-time-would-it-take-to-decrypt-a-sha256-hash
https://stackoverflow.com/questions/44472974/how-long-time-would-it-take-to-decrypt-a-sha256-hash
https://hackernoon.com/consensus-mechanisms-explained-pow-vs-pos-89951c66ae10
https://hackernoon.com/consensus-mechanisms-explained-pow-vs-pos-89951c66ae10
https://bitcoin.org/bitcoin.pdf
https://www.ethereum.org/
http://www.fon.hum.uva.nl/rob/courses/informationinspeech/cdrom/literature/lotwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/courses/informationinspeech/cdrom/literature/lotwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://doi.org/10.1145/1435417.1435432
https://medium.com/mechanism-labs/finality-in-blockchain-consensus-d1f83c120a9a#:~{}:text=in%20the%20blockchain%20setting%2c%20finality,once%20committed%20to%20the%20blockchain
https://medium.com/mechanism-labs/finality-in-blockchain-consensus-d1f83c120a9a#:~{}:text=in%20the%20blockchain%20setting%2c%20finality,once%20committed%20to%20the%20blockchain
https://medium.com/mechanism-labs/finality-in-blockchain-consensus-d1f83c120a9a#:~{}:text=in%20the%20blockchain%20setting%2c%20finality,once%20committed%20to%20the%20blockchain
https://patents.google.com/patent/US4405829
https://patents.google.com/patent/US4405829
http://doi.org/10.1007/978-3-540-24654-1_13
https://stackoverflow.com/users/6125661/telkepalli-venkat-karthik
https://stackoverflow.com/users/6125661/telkepalli-venkat-karthik
http://ww1.microchip.com/downloads/en/devicedoc/AVR-Instruction-Set-Manual-DS40002198A.pdf
http://ww1.microchip.com/downloads/en/devicedoc/AVR-Instruction-Set-Manual-DS40002198A.pdf
http://doi.org/10.1145/357172.357176
https://medium.com/@vlad_zamfir/simple-model-of-an-internal-pow-attacker-1a713cf00672
https://medium.com/@vlad_zamfir/simple-model-of-an-internal-pow-attacker-1a713cf00672

Sensors 2021, 21, 2784 22 of 22

36. Fred, B.S. Implementing Fault-tolerant Services Using the State Machine Approach: A tutorial. ACM Comput. Surv. 1990,
22, 299–319.

37. Cai, J.-Y.; Lipton, R.J.; Sedgewick, R.; Yao, A.C.-C. Towards Uncheatable Benchmarks. IEEE Struct. 1993, 2–11.
38. Buterin, V. P-Epsilon Attack, Ethereum Official Blog. 2015. Available online: https://blog.ethereum.org/2015/01/28/p-epsilon-

attack/ (accessed on 2 August 2018).
39. Nasir, A.M. Performance Evaluation of CSMA/CD Local Area Network. Master’s Thesis, Texas Tech University, Lubbock, TX,

USA, May 1986.

https://blog.ethereum.org/2015/01/28/p-epsilon-attack/
https://blog.ethereum.org/2015/01/28/p-epsilon-attack/

	Introduction
	Background
	What Is a Blockchain Made of?
	The Hashing Mechanism
	The Consensus Mechanism

	Consistency over Distributed Networks
	IoT Scale Boundaries

	IoT Micro-Blockchain Essentials
	Unilateral Transactions
	Locality of Events
	Collective Memory
	Minimum Hardware Requirements
	The Experiment: Smartdust Blockchain
	Definitions
	The IoT Witness Protocol
	Considerations
	Basic Flow
	The Write Process
	Definitive Decisions—Eventual Consistency
	The Read/Verification Process

	Methodology
	The Ingredients
	Testbed

	Security Considerations

	Results
	Benchmarking and Findings
	Data Availability Statement

	Discussion
	Conclusions
	References

