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Abstract: As one of the key requirements for underwater exploration, underwater depth map
estimation is of great importance in underwater vision research. Although significant progress has
been achieved in the fields of image-to-image translation and depth map estimation, a gap between
normal depth map estimation and underwater depth map estimation still remains. Additionally, it
is a great challenge to build a mapping function that converts a single underwater image into an
underwater depth map due to the lack of paired data. Moreover, the ever-changing underwater
environment further intensifies the difficulty of finding an optimal mapping solution. To eliminate
these bottlenecks, we developed a novel image-to-image framework for underwater image synthesis
and depth map estimation in underwater conditions. For the problem of the lack of paired data, by
translating hazy in-air images (with a depth map) into underwater images, we initially obtained
a paired dataset of underwater images and corresponding depth maps. To enrich our synthesized
underwater dataset, we further translated hazy in-air images into a series of continuously changing
underwater images with a specified style. For the depth map estimation, we included a coarse-to-
fine network to provide a precise depth map estimation result. We evaluated the efficiency of our
framework for a real underwater RGB-D dataset. The experimental results show that our method
can provide a diversity of underwater images and the best depth map estimation precision.

Keywords: underwater image synthesis; underwater depth map estimation; image-to-image translation

1. Introduction

In 3D computer vision, a depth map refers to a frame in which each pixel represents the
distances of the surfaces of objects in a scene from a viewpoint. There are a number of uses
for depth maps, including machine vision, 3D reconstruction, and shadow mapping [1].
As an important branch of underwater vision, underwater depth map estimation plays an
important role in many fields, including underwater landform surveys, vehicle navigation,
and underwater hull cleaning. Although considerable progress has been achieved in
screening-laser-technology-based underwater 3D reconstruction [2], many approaches
have the limitation that the patterns cannot be changed online [3]. In addition, calibration-
based methods can be affected by the index of refraction transformation [4]. Some in-air
depth map estimation devices, such as the Kinect [5], Lidar [6], or monocular lenses [7], can
only obtain a limited effect in an underwater environment [8]. The major challenge comes
from the complicated underwater environment. Most underwater images are captured
with low contrast due to the scattering and absorption degradation caused by underwater
particulates [9]. Inhomogeneous illumination further intensifies the problem of color
distortion in underwater images.

While deep-learning-based methods have achieved great success in the field of com-
puter vision [10,11], the progress is still considerably limited in the field of image-based
underwater depth map estimation. The lack of data is a major challenge when deploying a
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deep learning model with supervised learning for underwater depth map estimation. Col-
lecting underwater images is expensive and time consuming, as is the collection of paired
underwater RGB-D data containing underwater images and corresponding depth maps.
The success of generative adversarial networks (GANs) in the field of image-to-image
translation [12–15] provides a feasible way to translate images between two domains or
multiple domains in an unsupervised manner.

At present, many researchers are attempting to synthesize underwater images with in-
air RGB-D images to build paired datasets for underwater image color restoration [16–18]
or depth map estimation [10,11,19]. For instance, WaterGAN [16] and UWGAN [20] input
a paired in-air RGB-D image into a physical-model-based generator such that the final
output is a synthesized underwater image produced by the generator [10,11]. However,
these methods adopt a two-stage training strategy in which the modules for underwater
depth map estimation and synthesis of underwater images are isolated, thus ignoring the
latent relationship between visual images and depth information.

In a recent work, a method called UW-Net [11] was constructed in a single-stage
network with two generators to simultaneously synthesize an underwater image and
estimate an underwater depth map. However, all of these models attempted to build a
function for mapping from the synthetic images to the target domain by using one single
network, which led to poor performance in terms of both depth map estimation and image
synthesis tasks. Moreover, none of the methods mentioned above could generate various
underwater images with disentangled representations, which may lead to an inefficient
use of training data and a lack of diversity in underwater image synthesis. In order to solve
these problems, we propose a novel image-to-image translation framework for underwater
image synthesis and depth map estimation. A discussion of our motivations is presented
in the following.

In practice, it is relatively easy to obtain unlabeled underwater images from the
internet. These images may include rich information on various underwater conditions,
which may help our synthetic framework in generating underwater images with a rich
diversity. However, labeling these images is a time-consuming task. Inspired by the success
of InfoGAN [21] and its extensions [22], we redesigned the loss functions of our framework
to include interpretative disentangled representations of various underwater conditions,
including the illumination and water color.

Due to the decreased visibility and lack of references, another practical problem of
our underwater depth map estimation task is that objects at different distances cannot
show uniformly show precise information. Therefore, we adopted a multi-depth estimator
mechanism to accomplish coarse-to-fine adjustment. As Figure 1 shows, our two depth
generators are responsible for the global–coarse depth map estimation and local–fine depth
map estimation, respectively. With the depth map passing though these two generators,
depth information is refined and forces the generators to pay attention to nearby objects.
Overall, the main contributions of this paper are summarized as follows:

• We propose a novel end-to-end framework that applies image-to-image translation to
underwater depth map estimation and further boosts current underwater depth map
estimation research.

• To enrich our synthesized underwater dataset, we propose a disentangled representa-
tion loss along with style diversification loss to identify interpretable and meaningful
representations from the unlabeled underwater dataset and the synthesized underwa-
ter images with a rich diversity.

• Following the coarse-to-fine principle, and inspired by the work of Eigen et al. [23] and
Skinner et al. [19], our approach adopted global–local generators for the estimation
of coarse and fine depth maps, respectively. We evaluated our model on a real
underwater RGB-D dataset and achieved better results than those of other state-of-
the-art models.
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Figure 1. The network framework of our proposed model was designed to synthesize multiple
underwater images and estimate underwater depth maps. We used the generator Gu and the
discriminator Du to synthesize various underwater images in the given underwater domain cy. We
designed the generators Gd1 and Gd2 and the discriminator Dd to learn to estimate underwater depth
maps based on the synthesized underwater RGB-D dataset.

2. Methods
2.1. Overall Framework

Because supervised learning could not be directly performed due to the lack of paired
underwater RGB-D images, we designed a two-stage model, as described in Figure 1.
Our model includes two cascades: an underwater image synthesis module and an un-
derwater depth map estimation module. The first underwater image synthesis module
can translate an original in-air image with its corresponding depth into the underwater
domain with disentangled representations to generate various underwater RGB-D pseudo-
pairs. The synthetic pseudo-pairs were further used to provide the underwater depth
map estimation module with supervised learning through a coarse-to-fine process. Our
overall framework consists of three generators, namely, Gu : (x, d, cy, z)→ ỹ, Gd1 : ỹ→ d1,
and Gd2 : (ỹ, d1)→ d2, where x represents the original in-air images, d is the corresponding
depth map, cy is the target underwater domain, z is the continuous noise vector, ỹ is the
generated underwater image, d1 represents the global results of the underwater depth map
estimation, and d2 is the final estimated depth map. According to the two tasks, we also
designed two discriminators, Du and Dd. Du aims to distinguish real and fake underwater
images and classify their corresponding domains in the real and fake underwater images.
The discriminator Dd only aims to distinguish real and fake underwater depth maps.

Underwater image synthesis with disentangled representation. We referred to Star-
GAN [15] and InfoGAN [21] to design the underwater image synthesis module. We defined
a random noise vector (z) and target domain label vector (cy) to produce multiple out-
puts in a specific domain. To ensure that the generated underwater images preserved the
original depth information after translation, the inputs of our module included four parts,
namely, the in-air image (x), the corresponding depth (d), the target underwater label (cy),
and the noise vector (z), to synthesize an underwater image ỹ = Gu(C(x, d, cy, z)), where C
represents depth-wise concatenation. The generator Gu was taken from CycleGAN [12]
and StarGAN [15]. To guarantee that the synthetic image ỹ belonged to the target domain
cy, we designed the discriminator Du by following the PatchGAN [13] with three branches
(domain classification, computation of naturalness, and limit of the coupling of noise (Z)).
The domain classification loss Lcls was designed for the classification task of recognizing
the underwater domain attributions (cy) of the synthesized image ỹ and real underwater
images y. Notably, y did not have the corresponding depth annotation due to the lack of
an underwater ground truth. Furthermore, to force the noise vector z to represent and
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control the disentangled information from the underwater environment, we also defined
an auxiliary discriminator Q, which refers to InfoGAN [21].

The coarse-to-fine underwater depth map estimation process. According to the char-
acteristics of underwater depth map estimations, we designed a coarse-to-fine generative
adversarial network that includes two identical generators, Gd1 and Gd2. Following the
work on UW-Net [11], we also chose DenseNet [24] for the generators. Differently from
UW-Net [11], each dense block [24] has five layers with eight filters. In the training stage,
we took the synthetic underwater images ỹ from the synthetic module as the input of the
coarse network Gd1. To obtain a broadly correct result, we adopted the L1 norm, which
makes equal contributions to distant and nearby points in a scene. Then, the output of the
coarse generator Gd1(ỹ) and the generated underwater images ỹ were used as the input of
the fine generator Gd2 to obtain a better depth map Gd2(C(Gd1(ỹ), ỹ)). Unlike the coarse
prediction task in Gd1, we also introduced the Ldepth loss to guide the fine generator Gd2 for
more in-depth observations. Specifically, the discriminator Dd was a PatchGAN [13] with
only one discrimination output.

2.2. Loss Functions

Adversarial Loss. As an extension of a conditional GAN, the conditional generative
adversarial loss [25] was used as a basic component of our loss functions. During the
training process, the generator Gu took hazy in-air RGB-D image pairs (x, d), the target
domain label cy, and the continuous noise vector z as inputs, and it learned to generate
underwater images Gu(x, d, cy, z) through adversarial loss [26]. Lu

GAN can be expressed
as follows:

Lu
GAN = min

G
max

D
{Ex,y∼Pdata(x,y)[(Du(y)− 1)2]

+Ex∼Pdata(x)[(Du(ỹ))2]},
where ỹ = Gu(C(x, d, cy, z)),

(1)

where Gu aims to synthesize the multiple underwater images Gu(C(x, d, cy, z)) belonging
to the target domain cy. The discriminator Du learns to distinguish the real underwater
image y and the synthesized underwater image ỹ. For underwater depth map estimation,
the adversarial loss Ld

GAN is described as:

Ld
GAN = min

G
max

D
{Eỹ,d∼Pdata(ỹ,d)[(Dd(d)− 1)2]

+Eỹ∼Pdata(ỹ)[(Dd(d2))
2]},

where d2 = Gd2(C(Gd1(ỹ), ỹ)),

(2)

where the Gd1 output is a global depth map d1 from the synthesized underwater images ỹ.
Based on the output of Gd1, Gd2 attempts to fine-tune the results. Dd learns to recognize
the estimated depth output d2 from the inputs.

Feature-matching loss. In the process of underwater image synthesis, to preserve
the object content of the original in-air images and to pair the contents of the synthesized
underwater images and their corresponding in-air depth maps, a feature-level loss func-
tion [14,27] was introduced, which is called L f eat. The loss is based on a pre-trained VGG19
network [28] that extracts the feature representations from fake and real underwater images.
It can effectively preserve the content of the objects between the original images x and the
generated underwater images ỹ. Moreover, it only changes the domain-related parts of the
original images and does not have any negative effects on underwater image synthesis.
L f eat is expressed as follows:

L f eat =
N

∑
i=0

1
Mi

[||Φ(i)(x)−Φ(i)(Gu(x, d, cy, z))||1]. (3)
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where Φ(i) denotes the feature maps at the i-th layer with Mi elements of a pre-trained VGG19
network [28]. The parameters that we set can be found in the work of Kupyn et al. [29].

Domain classification loss. Our model aims to generate multi-style underwater
images and continuous outputs in a given underwater style. It involves two domain clas-
sification losses: discrete domain classification loss and continuous domain classification
loss. Here, the domain classification loss is used to classify discrete domains. Inspired
by UMGAN [10] and StarGAN [15], we included an optional domain classification loss
to handle a classic domain classification task, which forces the synthetic sample ỹ to be
generated in the target domain cy. The domain classification loss Lr

cls is defined as follows:

Lr
cls = Ey,c′ [− log Du(c′|y)]. (4)

where the discriminator Du learns to classify the real underwater images to their original
domain c′. For generator Gu, the loss function for the domain classification of the synthetic
underwater images is defined as:

L f
cls = Eỹ,cy [− log Du(cy|ỹ)]. (5)

where the discriminator Du attempts to classify the generated underwater images to their
target underwater domain cy.

Disentangled representation loss. To output continuous underwater images in a
given underwater style, a continuous domain classification loss—namely disentangled
representation loss—was designed. Inspired by InfoGAN [21], we included the disentan-
gled representation loss to make the generator Gu extract various representations from real
underwater images with a random noise vector z. The vector z could be set to either a
binary or a decimal value according to the different tasks. In the test stage, the generator
Gu could generate a controllable synthetic underwater image ỹ by using a specified latent
vector z. The disentangled representation loss Lin f o can be expressed as:

Lin f o = [||Qu(ỹ)− z||2]. (6)

Similarly to the model setting in InfoGAN, here, Qu is a sub-network of the discrimi-
nator Du.

Style diversification loss. As a supplement to the disentangled representation loss,
we referred to StarGANv2 [30] and the style diversification loss Ldis to maximize the intra-
domain distance in order to stabilize the training process and produce various outputs for
a given input image pair (x, d) in a target domain cy. We maximized the loss term and
minimized the info loss force of Gu to generate multiple controllable underwater images in
a given domain. The style diversification loss Ldis can be written as follows:

Ldis = [||Gu(x, d, cy, zi)− Gu(x, d, cy, zj)||1]. (7)

where zi and zj represent the latent vectors of two samples.
Reconstruction loss. For unpaired image-to-image translation, the cycle consistency

loss [12] is commonly used to preserve domain-invariant characteristics and stabilize the
training process. In our model of underwater image synthesis, the reconstruction loss Lrec
between the hazy in-air images x and reconstructed image x̃ is defined as follows:

Lrec = Ex,cy ,cx [||x− x̂||1],
x̂ = Gu(C(Gu(C(x, d, cy, z)), d, c′, z)),

(8)

Depth loss. Our coarse network Gd1 estimates a global and coarse depth map d1 from
the generated underwater image ỹ. Here, we adopted the general L1 norm between the
generated depth map d1 and its ground truth d. The L1 norm has an equal contribution
between distant and nearby points in a scene. Separately, the fine network should pay more
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attention to nearby points [31]. Therefore, we explored a loss to guide our coarse-to-fine
network. So, the loss Ldepth can be expressed as follows:

Ldepth = [||Gd1(ỹ)− d||1 +
1
n

i=1

∑
n

ln(||d2 − d||1 + 1)],

d2 = Gd2(C(Gd1(ỹ), ỹ)),

(9)

where Gd1 tries to globally estimate the depth map from the generated underwater images
ỹ. Gd2 tries to locally fine-tune the depth map d1. The final results are d2 after fine-tuning.

Full objective. Our full objective functions can be written as follows:

LDu = Lu
GAN + αLr

cls (10)

LGu = Lu
GAN + αL f

cls + ηL f eat + γLin f o − θLdis + βLrec (11)

LDd = Ld
GAN (12)

LGd = Ld
GAN + λLdepth (13)

where α, η, γ, θ, β, and λ are the hyperparameters for each term. We optimized these
parameters with a greedy search and set α = 1, η = 1, γ = 0.1, θ = 0.1, β = 1, and λ = 50
in all of our experiments. The optimization of our model was successful.

3. Results
3.1. Datasets and Implementation Details

Our experiments mainly involved two tasks: underwater image synthesis and un-
derwater depth map estimation. For the first task, we synthesized underwater images
from hazy in-air RGB-D images and evaluated the image qualities with multiple image
generation models, including WaterGAN [16], CycleGAN [12], StarGAN [15], UW-Net [11],
and NICE-GAN [32]. For the second task, we evaluated our depth map estimation results
with a real underwater RGB-D dataset. We compared the depth map estimation results
obtained using the methods of dark channel prior (DCP) [33], underwater dark channel
prior (UDCP) [34], Berman et al. [35], and Gupta et al. [11], as well as our method of
underwater depth map estimation. Following the experimental setting of UW-Net [11], we
also chose the D-Hazy dataset [36] as the in-air RGB-D images for the inputs. Note that
both UW-Net and our model can be fine-tuned on the dataset of Berman et al.. The real
underwater datasets for training contained 1031 blue and 1004 green underwater images
from the SUN [37], URPC (http://www.cnurpc.org/ (accessed on 5 August 2019)), and Fish
datasets (http://www.fishdb.co.uk/ (accessed on 7 October 2018)). We randomly chose
1400 images for the training dataset from the D-Hazy dataset [36], which includes 1449
paired in-air RGB-D images. The remaining pairs were used for evaluation. We took
128× 128 patches for training and 256× 256 complete images for testing. The training
took about 40 h on one Nvidia GeForce GTX 1070 (8GB) using the Pytorch framework. To
avoid mode collapse, we also introduced spectral normalization [38]. Following the work
of BigGAN [39] and SAGAN [40], the learning rates were set to 0.0002 in the discriminators
and 0.00005 in the generators. We set the batch size to 10, and the model was trained for
80,000 iterations in our experiments.

3.1.1. Qualitative Evaluation

To evaluate the effectiveness of the synthetic underwater images, we compared our
method with other approaches on the NYU v2 [41] and D-Hazy datasets [36]. To show
how close our synthetic images were to the real underwater images, we present some
synthetic images in Figure 2. WaterGAN [16] refers to the underwater imaging process
and takes in-air RGB-D images as input to synthesize underwater images. As shown in
Figure 2b, the results of WaterGAN [16] are close to the in-air images and lack underwater

http://www.cnurpc.org/
http://www.fishdb.co.uk/
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characteristics. In Figure 2c, the underwater images generated by CycleGAN [12] seem
better than those of WaterGAN [16]. However, the results of CycleGAN [12] include
serious structural distortions, such as the vase in the fifth row of Figure 2c. StarGAN [15]
can simultaneously synthesize multi-style underwater images (Figure 2d), but the results
still do not meet expectations due to the lack of depth information and clear structural
information. In addition, the results retain many artifacts, such as the desk in the last row
of Figure 2d. To retain the depth information for better underwater depth map estimation,
UW-Net [11] takes the hazy in-air RGB-D images as input and uses DenseNet [24] for
the generators, as shown in Figure 2e; this method shows a fuzzy structure. The results
of NICE-GAN [32] can be seen in Figure 2f, and there are many artifacts in the results.
Furthermore, most of the methods, including WaterGAN [16], CycleGAN [12], UW-Net [11],
and NICE-GAN [32], are in two domains, and only StarGAN [15] can synthesize multi-style
images. None of the above-mentioned methods consider the diversities in a given style.
The synthetic underwater images from our method are shown in Figure 2g; the structure
and depth information is well preserved. Our methods can simultaneously synthesize
multi-style underwater images and use the noise z to produce multiple outputs with a
target style, as shown in Figure 3. Here, we set z = 1, 0, −1. Overall, for underwater image
synthesis, our method performed better and generated more diverse outputs than the
other methods.

(a)
In-air

(b)
Water-
GAN

(c)
Cycle-
GAN

(d)
Star-
GAN

(e)
UW-
Net

(f)
NICE-
GAN

(g)
Ours

Figure 2. Comparison of the visual quality of the synthetic underwater images using the following methods: WaterGAN [16],
CycleGAN [12], StarGAN [15], UW-Net [11], NICE-GAN [32], and our method.
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(a) In-air images (b) z = 1 (c) z = 0 (d) z = −1

Figure 3. Sample results of our method for underwater image synthesis. The continuous noise z
was used to generate multiple underwater images with a specific domain. (a) In-air images, (b–d)
multiple underwater images generated in two specific domains (blue and green).

Following the work of UW-Net [11], we used the dataset from Berman et al. [35] to
compare our method with other methods. Some results are shown in Figure 4. The former
three methods are based on traditional physical processes that rely on pre-estimated
parameters. Comparing them with the deep-learning-based UW-Net [11] and our method,
we note that the latter two were able to obtain depth maps with smoother predictions.
The predicted depth map of our method seems to be more accurate than that of UW-Net [11].
More qualitative results can be seen in Figure 5.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4. Comparison of our method with other methods for underwater depth map estimation.
(a) Teal underwater images. (b–g) Results of DCP [33], UDCP [34], Berman et al. [35], UW-Net [11],
and our method, as well as the ground truth.
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(a)

(b)

(c)

(d)

Figure 5. Estimation of multiple underwater depth maps. (a,c) are real underwater images. (b,d) are
their predicted depth maps. Note that there is no ground truth.

3.1.2. Quantitative Evaluation

To quantitatively evaluate our model, we adopted two metrics for comparison: log
scale-invariant mean squared error (SI-MSE [1]) and the Pearson correlation coefficient
(ρ) with the dataset from Berman et al. [35]. Higher ρ values and lower SI-MSE [1] values
represent better results. Due to the limitations of the Berman dataset, the ground truth was
not fully provided in each depth map. We only evaluated the pixels with a distance value
that was defined in the ground truth (GT). Comparing our method with other approaches,
namely, DCP [33], UDCP [34], Berman et al. [35], and UW-Net [11], we observed that our
method obtained the lowest scale-invariant error (SI-MSE [1]) and the highest Pearson
correlation coefficient (ρ) (Table 1).

Table 1. Quantitative comparison of our method and other methods on the dataset of Berman et al. [35].
FT represents a fine-tuned (FT) underwater model. Lower SI-MSE [1] values and higher ρ values are
better for underwater depth map estimation.

DCP UDCP Berman et al. UW-Net UW-Net
(FT) Ours Ours

(FT)

SI-MSE 1.3618 0.6966 0.6755 0.4404 0.3708 0.3199 0.2486
ρ 0.2968 0.4894 0.6448 0.6202 0.6451 0.7018 0.7600

3.2. Ablation Study

The lack of diversity is the main obstacle in obtaining a precise underwater depth
map with a data-driven model. We believe that the disentangled representation and the
coarse-to-fine strategy play key roles in increasing the diversity of synthetic underwater
images and enhancing the depth map prediction results. We evaluated the effectiveness of
each proposed component, as shown in Table 2. Our framework included the underwater
image synthesis module and the underwater depth map estimation module. Theoretically,
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underwater image synthesis with disentangled representation can be used to generate
realistic underwater images that are rich in diversity. A coarse-to-fine pipeline can further
help our model to obtain better estimation results. From Table 2, we can observe that
synthesizing multiple underwater images with disentangled representation and adopting
a coarse-to-fine pipeline can practically help our model to obtain the best scores for SI-MSE
and ρ in the final depth map estimation task.

Table 2. Ablation study of our method.

Proposed w/o Disentangled Representation w/o Coarse-to-Fine Pipeline

SI-MSE 0.2486 0.2797 0.2707
ρ 0.7600 0.7136 0.7117

4. Discussion
4.1. Cross-Domain Underwater Image Synthesis with Disentangled Representation

In this section, we further explore the potential of our model for underwater image
generation. With the help of the disentangled representation loss, our model can generate
the intermediate information between two domains with semi-supervised learning. In this
experiment, we removed the discrete conditional vector cy. Instead, we assigned a three-
dimensional vector (z1, z2, z3) with decimal values for our task, where z1 and z2 were used
for semi-supervised learning to control the underwater color, and z3 was a free latent
variable. To control the synthesized water color in a continuous manner, we manually
labeled 20% of the underwater images from each underwater domain (blue and green).
The deep blue images are labeled (1, 0), and the deep green images are labeled (0, 1).
Both the labeled (20%) and unlabeled (80%) underwater images were used for training.
The unlabeled underwater images were labeled by the classification branch from the
discriminator Du, which was introduced in Section 2.1. The results are shown in Figure 6.
We can observe that our model can perform a gradual transition from the blue style to
the green style according to the values of z1 and z2. Without any ground truth for the
illumination, we found that our model could also perform a gradual transition from dark
to bright according to the value of the free latent variable z3.

We also evaluated the effectiveness of the synthesized underwater images for under-
water depth map estimation, as shown in Figure 7. The quantitative results can be found in
Table 3. The experiments show that the cross-domain synthetic strategy can also practically
improve the performance in underwater depth map estimation. Our model with the cross-
domain synthesis (Ours-C) setting obtained a lower SI-MSE score and an improved ρ score
compared to Berman et al.’s dataset, which indicates that the cross-domain synthesis task
can practically increase the diversity of the synthetic images and the generalization ability
of our model. Although both models (Ours-C(fine-tuned (FT)), Ours(FT)) had a similar
performance when they were fine-tuned on the unlabeled test dataset, note that one might
not always have the opportunity to obtain a test dataset before deploying the model.

Table 3. Quantitative comparison of our method and other methods using the dataset of Berman et al. [35]. FT represents a
fine-tuned (FT) underwater model. Ours-C is the method proposed in this section.

DCP UDCP Berman et al. UW-Net UW-Net(FT) Ours-C Ours-C(FT)

SI-MSE 1.3618 0.6966 0.6755 0.4404 0.3708 0.3526 0.2447
ρ 0.2968 0.4894 0.6448 0.6202 0.6451 0.6823 0.7423
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In-air

z3 = −1

z3 = 0

z3 = 1

(z1, z2) = (1, 0) (0.8, 0.2) (0.5, 0.5) (0.2, 0.8) (0, 1)

Figure 6. The continuous process of synthesizing underwater images. We used pseudo-labels
to represent domain attributes. The two dimensions represent the green style (deep green when
z1 = 0, z2 = 1) and blue style (deep blue when z1 = 1, z2 = 0), respectively. The first row on the top
is the source in-air image, and the remaining images show the gradual transition from the blue style
to the green style with different latent variables z3.

(a)

(b)

(c)

Figure 7. Sample results of our method using pseudo-labels for underwater depth map estimation.
(a) Real underwater images from the dataset provided by Berman et al. [35]. (b,c) are the results of
our model for depth map estimation and the ground truth.

4.2. Challenges of Underwater Scenes with Inhomogeneous Illumination

Due to the reflections and the angular changing of illuminants, many real underwater
images show bad visibility with inhomogeneous illumination, as seen in Figure 8a. These
factors usually bring negative effects for detection, segmentation, and depth map estimation
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in real underwater images. The inhomogeneous illumination can easily cause a domain
shift and mislead the feature extraction process. As seen in Figure 8, we show some results
of DCP [33], UDCP [34], Berman et al. [35], UW-Net [11], and our method. As seen in
the first two rows of Figure 8, the objects are difficult to accurately recognize from the
real underwater images, which have a low contrast. Compared to the other methods, our
model has a lower error ratio. However, our model still achieves inaccurate background
depth map prediction results. Domain adaptation [42] might be a solution for improving
our model in order to overcome this obstacle. We will consider this in our future research.

(a) Input (b) DCP (c) UDCP (d) Berman et al. (e) UW-Net (f) Ours

Figure 8. Comparison of the results of underwater depth map estimation in various underwater
images with bad visibility by using different methods. We compared the results of dark channel prior
(DCP) [33], underwater dark channel prior (UDCP) [34], Berman et al. [35], and Gupta et al. [11] with
those of our method.

5. Conclusions

In this paper, we proposed an end-to-end system for underwater image synthesis
and underwater depth map estimation. Our model can synthesize underwater images
in a continuous manner to construct RGB-D pairs with disentangled representations.
The coarse-to-fine pipeline can practically increase the performance for the task of under-
water depth map estimation. We adopted a series of experiments for comparisons with
the existing state-of-the-art methods. Both qualitative and quantitative results proved the
efficiency of our method in both tasks.
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