mmS-TCP: Scalable TCP for Improving Throughput and Fairness in 5G mmWave Networks
Abstract
:1. Introduction
- The mmS-TCP algorithm simultaneously improves intra-protocol and inter-protocol fairness without degrading the throughput of a single TCP in mmWave networks;
- mmS-TCP greatly enhances network stability through a simple modification of the cwnd increase/decrease mechanism of S-TCP. Therefore, it is easy to deploy and implement;
- By using the mmS-TCP proposed in this study and CoDel scheme together, TCP can guarantee adequate performance in mmWave networks.
2. Related Work
2.1. Characteristics of 5G MmWave Channel
2.2. Congestion Control in MmWave Network
2.3. AQM in MmWave Network
3. Scalable TCP for 5G MmWave Networks
3.1. Scalable TCP
- 1.
- For each ACK received:
- 2.
- For each packet loss:
3.2. Problem Analysis
3.3. MmWave Scalable TCP
3.3.1. Cwnd Increase Mechanism of mm-Scalable TCP
- For each ACK received:
3.3.2. Cwnd Decrease Mechanism of mm-Scalable TCP
- For each packet loss:
- While repeated slowstart phases by S-TCP caused many duplicated ACKs, mmS-TCP was able to significantly reduce the number of duplicated ACKs at the beginning of the connection;
- Improved network stability and slightly increased throughput;
- After slowstart, mmS-TCP was able to improve fairness with other TCP CCAs because the ssthresh was not too high.
4. Evaluations
4.1. 5G MmWave Framework
4.2. Experimental Scenarios
4.3. Number of Duplicated ACKs
4.4. End-To-End Throughput of Single Flow
4.5. Inter-Protocol Fairness (vs. CUBIC)
4.6. Intra-Protocol Fairness
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Postel, J. RFC 793: Transmission Control Protocol. 1991. Available online: https://tools.ietf.org/html/rfc793 (accessed on 13 April 2022).
- Mittal, R.; Lam, V.T.; Dukkipati, N.; Blem, E.; Wassel, H.; Ghobadi, M.; Vahdat, A.; Wang, Y.; Wetherall, D.; Zats, D. TIMELY: RTT-based Congestion Control for the Datacenter. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 537–550. [Google Scholar] [CrossRef]
- Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. ACM Queue 2016, 14, 58–66. [Google Scholar] [CrossRef]
- Hock, M.; Neumeister, F.; Zitterbart, M.; Bless, R. TCP LoLa: Congestion Control for Low Latencies and High Throughput. In Proceedings of the IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9–12 October 2017; pp. 215–218. [Google Scholar]
- Dong, M.; Li, Q.; Zarchy, D.; Godfrey, P.B.; Schapira, M. PCC: Rearchitecting congestion control for consistent high performance. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Oakland, CA, USA, 4–6 May 2015; pp. 395–408. [Google Scholar]
- Polese, M.; Jana, R.; Zorzi, M. NGMN view on 5G architecture. In Proceedings of the IEEE 81st Vehicular Technology Conference (VTC), Glasgow, Scotland, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Lu, J.S.; Steinbach, D.; Cabrol, P.; Pietraski, P. Modeling human blockers in millimeter wave radio links. ZTE Commun. 2012, 10, 23–28. [Google Scholar]
- Lorincz, J.; Klarin, Z.; Ozegovic, J. A comprehensive overview of tcp congestion control in 5g networks: Research challenges and future perspective. Sensors 2021, 21, 4510. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yang, W.; Zhou, X.; Chen, H.; Liu, B. A survey on TCP over mmWave. Comput. Commun. 2021, 181, 80–88. [Google Scholar] [CrossRef]
- Hindawi, B.; Abbas, A.S. Congestion control techniques in 5G mmwave networks: A review. In Proceedings of the 1st Babylon International Conference on Information Technology and Science (BICITS), Babil, Iraq, 28–29 April 2021; pp. 305–310. [Google Scholar]
- Poorzare, R.; Auge, A.C. Open trends on TCP performance over urban 5G mmWave networks. In Proceedings of the 17th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensors, & Ubiquitous Networks, Alicante, Spain, 16–20 November 2020; pp. 85–92. [Google Scholar]
- Poorzare, R.; Auge, A.C. Challenges on the way of implementing TCP over 5G networks. IEEE Access 2020, 8, 176393–176415. [Google Scholar] [CrossRef]
- Poorzare, R.; Auge, A.C. How sufficient Is TCP when deployed in 5G mmWave networks over the urban deployment? IEEE Access 2021, 9, 36342–36355. [Google Scholar] [CrossRef]
- Zhang, M.; Mezzavilla, M.; Ford, R.; Rangan, S.; Panwar, S.; Mellios, E.; Kong, D.; Nix, A.; Zorzi, M. Transport layer performance in 5G mmWave cellular. In Proceedings of the IEEE Conference on Computer Communications Workshops, San Francisco, CA, USA, 10–14 April 2022; pp. 730–735. [Google Scholar]
- Polese, M.; Jana, R.; Zorzi, M. TCP and MP-TCP in 5G mmWave networks. IEEE Internet Comput. 2017, 21, 12–19. [Google Scholar] [CrossRef]
- Gettys, J.; Nichols, K. Bufferbloat: Dark buffers in the internet. ACM Queue 2011, 15, 40–54. [Google Scholar] [CrossRef]
- Kim, G.-H.; Seo, W.-K.; Cho, Y.-Z. Performance Evaluations of TCP in 5G mmWave Cellular Network. J. Korean Inst. Commun. Inf. Sci. 2021, 46, 2237–2250. [Google Scholar]
- Kim, G.-H.; Cho, Y.-Z. TCP performance analysis in 5G mmWave network according to queue management policy. In Proceedings of the KICS Summer Conference, Jeju, Korea, 16–18 June 2021; pp. 1038–1039. [Google Scholar]
- Ha, S.; Rhee, I.; Xu, L. CUBIC: A new TCP-friendly high speed TCP variants. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 64–74. [Google Scholar] [CrossRef]
- Nichols, K.; Jacobson, V. Controlling queue delay. ACM Queue 2012, 10, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-H.; Cho, Y.-Z. Performance evaluation between TCP congestion control algorithms in 5G mmWave networks. In Proceedings of the KICS Autumn Conference, Yeosu, Korea, 17–19 November 2021; pp. 881–882. [Google Scholar]
- Nguyen, B.; Banerjee, A.; Gopalakrishnan, V.; Kasera, S.; Lee, S.-J.; Shaikh, A.; Merwe, J.V.D. Towards understanding TCP performance on LTE/EPC mobile networks. In Proceedings of the 4th Workshop on All Things Cellular: Operations, Applications, & Challenges, London, UK, 17 August 2014; pp. 41–46. [Google Scholar]
- Li, R.; Shariat, M.; Nekovee, M. Transport protocols behaviour study in evolving mobile networks. In Proceeding of the International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2016; pp. 456–460. [Google Scholar]
- Polese, M.; Mezzavilla, M.; Zhang, M.; Zhu, J.; Rangan, S.; Panwar, S.; Zorzi, M. Milliproxy: A TCP proxy architecture for 5G mmWave cellular systems. In Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 951–957. [Google Scholar]
- Azzino, T.; Drago, M.; Polese, M.; Zanella, A.; Zorzi, M. X-TCP: A cross layer approach for TCP uplink flows in mmWave networks. In Proceedings of the 16th Annual Mediterranean Ad Hoc Networking Workshop, Budva, Montenegro, 28–30 June 2017; pp. 1–6. [Google Scholar]
- Pieska, M.; Kassler, A.; Lundqvist, H.; Cai, T. Improving TCP fairness over latency controlled 5G mmWave communication links. In Proceedings of the 22nd International ITG Workshop on Smart Antennas, Bochum, Germany, 14–16 June 2018; pp. 1–8. [Google Scholar]
- Wischik, D.; Raiciu, C.; GreenHalgh, A.; Handley, M. Design, implementation and evaluation of congestion control for multipath TCP. In Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Boston, MA, USA, 30 March–1 April 2011; pp. 99–112. [Google Scholar]
- Zhang, M.; Mezzavilla, M.; Zhu, J.; Rangan, S.; Panwar, S. TCP Dynamics over mmWave Links. In Proceedings of the 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 3–6 July 2017; pp. 1–6. [Google Scholar]
- Kelly, T. Scalable TCP: Improving performance in highspeed wide area networks. Comput. Commun. Rev. 2003, 32, 83–91. [Google Scholar] [CrossRef]
- Gurtov, A.; Henderson, T.; Floyd, S. RFC 2582: The NewReno Modification to TCP’s Fast Recovery Algorithm. 1999. Available online: https://tools.ietf.org/html/rfc2582 (accessed on 13 April 2022).
- Floyd, S. RFC 3649: HighSpeed TCP for Large Congestion Windows. 2003. Available online: https://tools.ietf.org/html/rfc3649 (accessed on 13 April 2022).
- Combs, G. Wireshark-Interactively Dump and Analyze Network Traffic. Available online: https://manpages.ubuntu.com/manpages/bionic/man1/wireshark.1.html (accessed on 13 April 2022).
- Henderson, T.R.; Lacage, M.; Riley, G.F.; Dowell, C.; Kopena, J. Network simulations with the ns-3 simulator. SIGCOMM Demonstr. 2008, 14, 527. [Google Scholar]
- LTE-EPC Network Simulator. Available online: https://www.nsnam.org/doxygen/lena-simple-epc_8cc.html (accessed on 13 April 2022).
- Centre Tecnologic de Telecomunicacions de Catalunya. The LENA ns-3 LTE Module Documentation. Available online: https://dokumen.tips/documents/lena-lte-module-doc.html (accessed on 13 April 2022).
- Mezzavilla, M.; Zhang, M.; Polese, M.; Ford, R.; Dutta, S.; Rangan, S.; Zorzi, M. End-to-End Simulation of 5G mmWave Networks. IEEE Commun. Surv. Tutor. 2018, 20, 2237–2263. [Google Scholar] [CrossRef]
- NYU Wireless and University of Padova ns-3 Module for Simulating mmwave-Based Cellular Systems. Available online: https://github.com/nyuwireless-unipd/ns3-mmwave (accessed on 13 April 2022).
- Leith, D.; Shorten, R. H-TCP: TCP for high-speed and long-distance networks. In Proceedings of the International Workshop on Protocols for Future, Large-Scale and Diverse Network Transports (PFLDnet), Argonne, IL, USA, 16–17 February 2004; pp. 1–13. [Google Scholar]
- Baiocchi, A.; Castellani, A.P.; Vacirca, F. YeAH-TCP: Yet another highspeed TCP. In Proceedings of the International Workshop on Protocols for Future, Large-Scale and Diverse Network Transports (PFLDnet), Manchester, UK, 7–9 February 2007; pp. 37–42. [Google Scholar]
- Jain, R.; Chiu, D.M.; Hawe, W.R. A quantitative measure of fairness and discrimination for resource allocation in shared computer system. arXiv 1998, arXiv:cs/9809099. [Google Scholar]
- Kozu, T.; Akiyama, Y.; Yamaguchi, S. Improving RTT Fairness on CUBIC TCP. In Proceedings of the First International Symposium on Computing and Networking, Matsuyama, Japan, 4–6 December 2013; pp. 162–167. [Google Scholar]
Carrier Frequency | Bandwidth | TxPower | RLC Buffer Size | RLC ACK Mode | Hybrid ARQ | TCP RTO | Queue Management | Simulation Time | |
---|---|---|---|---|---|---|---|---|---|
Set value | 28 GHz | 1 GHz | 30 dBm | 4 MB | Enabled | Enabled | 200 ms | CoDel | 15 s |
Scenario 1 | Scenario 2 | Scenario 3 | ||||
---|---|---|---|---|---|---|
Total Dup. ACKs/Total Packets | Dup. ACKs (≤3.0 s)/Total Packets | Total Dup. ACKs/Total Packets | Dup. ACKs (≤3.0 s)/Total Packets | Total Dup. ACKs/Total Packets | Dup. ACKs (≤3.0 s)/Total Packets | |
S-TCP | 9.7% | 6.4% | 11.4% | 7.4% | 11.5% | 7.5% |
mmS-TCP | 5.0% | 1.8% | 5.8% | 2.3% | 6.1% | 2.6% |
CUBIC | 0.56% | 0.35% | 1.92% | 0.84% | 2.23% | 1.35% |
HS-TCP | 4.65% | 3.82% | 7.66% | 6.63% | 10.26% | 8.84% |
H-TCP | 2.97% | 2.22% | 3.65% | 3.1% | 3.32% | 2.74% |
Yeah | 0.13% | 0.13% | 0.19% | 0.19% | 0.67% | 0.32% |
Flow 1 [Mbps] | Flow 2 [Mbps] | Flow 3 [Mbps] | Flow 4 [Mbps] | Flow 5 [Mbps] | Average Total Throughput [Mbps] | Jain’s Fairness Index [Ratio] | |
---|---|---|---|---|---|---|---|
S-TCP | 141.8775 | 217.5223 | 147.088 | 181.7001 | 165.7131 | 853.901 | 0.975083 |
mmS-TCP | 161.6046 | 174.928 | 184.4512 | 181.9639 | 183.1542 | 886.102 | 0.997718 |
CUBIC | 169.239 | 129.0921 | 138.1982 | 201.5095 | 179.7331 | 817.772 | 0.974036 |
HS-TCP | 168.977 | 172.6625 | 180.5496 | 175.9145 | 148.8744 | 846.978 | 0.995843 |
H-TCP | 99.5897 | 121.7243 | 164.707 | 164.5096 | 133.5064 | 684.037 | 0.967242 |
Yeah | 112.3956 | 127.9662 | 178.8458 | 176.2211 | 163.2704 | 758.699 | 0.96984 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.-H.; Cho, Y.-Z. mmS-TCP: Scalable TCP for Improving Throughput and Fairness in 5G mmWave Networks. Sensors 2022, 22, 3609. https://doi.org/10.3390/s22103609
Kim G-H, Cho Y-Z. mmS-TCP: Scalable TCP for Improving Throughput and Fairness in 5G mmWave Networks. Sensors. 2022; 22(10):3609. https://doi.org/10.3390/s22103609
Chicago/Turabian StyleKim, Geon-Hwan, and You-Ze Cho. 2022. "mmS-TCP: Scalable TCP for Improving Throughput and Fairness in 5G mmWave Networks" Sensors 22, no. 10: 3609. https://doi.org/10.3390/s22103609
APA StyleKim, G.-H., & Cho, Y.-Z. (2022). mmS-TCP: Scalable TCP for Improving Throughput and Fairness in 5G mmWave Networks. Sensors, 22(10), 3609. https://doi.org/10.3390/s22103609