Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Test
Abstract
:1. Introduction
- The use of a set of three IMUs should provide more information about the b&r test and allows the whole lumbopelvic–hip complex to be examined. Some authors placed the IMUs at L2 and S2 vertebrae to measure low lumbar flexion–extension movements [22], while others chose T10-12 and S2 to be able to measure the local dynamic stability, coordination, and variability of the lumbar spine in repeated flexion–extension movements [23]. We chose T12 and S2 so to consider the entire lumbar spine for a given movement. Differences between the time series of different sensors can provide information about the relative angular velocity and acceleration between two anatomical landmarks. Typically, for sagittal plane angular velocities, the difference between the data from a sensor placed at the twelfth thoracic vertebra and a sensor placed at the second sacral vertebra should provide an estimate of the lumbar angular velocity. From a clinical perspective, the use of three IMUs placed at different points may help to identify the most relevant location for a single IMU, which may be useful when time constraints apply.
- Two main techniques were used in this study. The first is a standard statistical analysis, which consists of computing the SampEn from the IMUs time series in two groups—NLBP subjects and CLBP patients—and comparing them. The second technique is ML, which has been used for about 40 years in the study of LBP [13], especially in the field of medical imaging and clinical data analysis for diagnostic and decision-making purposes [14,15]. Note that SampEn will be part of the data used by ML to identify CLBP patients.
- We believe that a first step toward integrating the clinical interpretation of a test, such as the b&r test, into a biopsychosocial model must be to examine its ability to discriminate between CLBP patients and NLBP subjects. A recent study using a particular supervised ML algorithm (Support Vector Machine, SVM) to analyze IMU data has already shown that a kinematic test of the lumbar spine is able to discriminate NLBP subjects from LBP patients and classify them according to their risk of chronicity, i.e., between high risk and medium to low risk, with an accuracy of >75% [12]. Moreover, it has been shown in [24] that SVM can detect neck pain from rotational head movements with an accuracy of 82%. These last two studies show that a diagnostic analysis using ML algorithms supplied with kinematic parameters is a promising way to investigate these spinal conditions further. Our work focuses on the kinematic signature of patients suffering from CLBP and, more specifically, on the complexity of their variability during repetitive movements of the trunk along the lines of [20].
2. Materials and Methods
2.1. Population
2.2. Protocol, Data Collection and Preprocessing
2.3. SampEn and Complexity Factors
2.4. Machine Learning Analysis
2.4.1. Data Segmentation
2.4.2. Discrimination of NLBP and CLBP Participants
2.4.3. Most Discriminative Features
3. Results
3.1. SampEn & CF
3.2. Cycle Segmentation
3.3. Machine Learning
3.4. Most Discriminative Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Ippersiel, P.; Teoli, A.; Wideman, T.H.; Preuss, R.A.; Robbins, S.M. The Relationship Between Pain-Related Threat and Motor Behavior in Nonspecific Low Back Pain: A Systematic Review and Meta-Analysis. Phys. Ther. 2022, 102, pzab274. [Google Scholar] [CrossRef] [PubMed]
- André, M.; Lundberg, M. Thoughts on Pain, Physical Activity, and Body in Patients With Recurrent Low Back Pain and Fear: An Interview Study. Phys. Ther. 2022, 102, pzab275. [Google Scholar] [CrossRef] [PubMed]
- Senba, E.; Kami, K. A New Aspect of Chronic Pain as a Lifestyle-Related Disease. Neurobiol. Pain 2017, 1, 6–15. [Google Scholar] [CrossRef]
- Mahdavi, S.B.; Riahi, R.; Vahdatpour, B.; Kelishadi, R. Association between Sedentary Behavior and Low Back Pain; A Systematic Review and Meta-Analysis. Health Promot. Perspect. 2021, 11, 393–410. [Google Scholar] [CrossRef]
- Cappelle, J.; Monteyne, L.; Van Mulders, J.; Goossens, S.; Vergauwen, M.; Van der Perre, L. Low-Complexity Design and Validation of Wireless Motion Sensor Node to Support Physiotherapy. Sensors 2020, 20, 6362. [Google Scholar] [CrossRef]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.; Roy, J.-S. Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Systematic Review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef] [Green Version]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The Use of Wearable Devices for Walking and Running Gait Analysis Outside of the Lab: A Systematic Review. Gait Posture 2018, 63, 124–138. [Google Scholar] [CrossRef]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of Inertial Measurement Units with an Optoelectronic System for Whole-Body Motion Analysis. Med. Biol. Eng. Comput. 2017, 55, 609–619. [Google Scholar] [CrossRef]
- Cuesta-Vargas, A.I.; Galán-Mercant, A.; Williams, J.M. The Use of Inertial Sensors System for Human Motion Analysis. Phys. Ther. Rev. 2010, 15, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Bauer, C.M.; Heimgartner, M.; Rast, F.M.; Ernst, M.J.; Oetiker, S.; Kool, J. Reliability of Lumbar Movement Dysfunction Tests for Chronic Low Back Pain Patients. Man. Ther. 2016, 24, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Ashouri, S.; Abedi, M.; Azadeh-Fard, N.; Parnianpour, M.; Khalaf, K.; Rashedi, E. Using a Motion Sensor to Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach. Sensors 2020, 20, 3600. [Google Scholar] [CrossRef]
- Mathew, B.; Norris, D.; Hendry, D.; Waddell, G. Artificial Intelligence in the Diagnosis of Low-Back Pain and Sciatica. Spine 1988, 13, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, S.D.; Angelova, M.; Zhao, X.; Owen, P.J.; Miller, C.T.; Wilkin, T.; Belavy, D.L. Artificial Intelligence to Improve Back Pain Outcomes and Lessons Learnt from Clinical Classification Approaches: Three Systematic Reviews. NPJ Digit. Med. 2020, 3, 93. [Google Scholar] [CrossRef] [PubMed]
- D’Antoni, F.; Russo, F.; Ambrosio, L.; Vollero, L.; Vadalà, G.; Merone, M.; Papalia, R.; Denaro, V. Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 10909. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Casaroli, G.; Bassani, T. Artificial Intelligence and Machine Learning in Spine Research. JOR Spine 2019, 2, e1044. [Google Scholar] [CrossRef] [Green Version]
- Tack, C. Artificial Intelligence and Machine Learning | Applications in Musculoskeletal Physiotherapy. Musculoskelet. Sci. Pract. 2019, 39, 164–169. [Google Scholar] [CrossRef]
- Girase, H.; Nyayapati, P.; Booker, J.; Lotz, J.C.; Bailey, J.F.; Matthew, R.P. Automated Assessment and Classification of Spine, Hip, and Knee Pathologies from Sit-to-Stand Movements Collected in Clinical Practice. J. Biomech. 2021, 128, 110786. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef]
- Thiry, P.; Nocent, O.; Buisseret, F.; Bertucci, W.; Thevenon, A.; Simoneau-Buessinger, E. Sample Entropy as a Tool to Assess Lumbo-Pelvic Movements in a Clinical Test for Low-Back-Pain Patients. Entropy 2022, 24, 437. [Google Scholar] [CrossRef]
- van Emmerik, R.E.A.; Ducharme, S.W.; Amado, A.C.; Hamill, J. Comparing Dynamical Systems Concepts and Techniques for Biomechanical Analysis. J. Sport Health Sci. 2016, 5, 3–13. [Google Scholar] [CrossRef]
- Falk, J.; Aasa, U.; Berglund, L. How Accurate Are Visual Assessments by Physical Therapists of Lumbo-Pelvic Movements during the Squat and Deadlift? Phys. Ther. Sport 2021, 50, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Beange, K.H.E.; Chan, A.D.C.; Beaudette, S.M.; Graham, R.B. Concurrent Validity of a Wearable IMU for Objective Assessments of Functional Movement Quality and Control of the Lumbar Spine. J. Biomech. 2019, 97, 109356. [Google Scholar] [CrossRef] [PubMed]
- Hage, R.; Buisseret, F.; Houry, M.; Dierick, F. Head Pitch Angular Velocity Discriminates (Sub-)Acute Neck Pain Patients and Controls Assessed with the DidRen Laser Test. Sensors 2022, 22, 2805. [Google Scholar] [CrossRef] [PubMed]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A.; et al. Comparison of Pain Syndromes Associated with Nervous or Somatic Lesions and Development of a New Neuropathic Pain Diagnostic Questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Cleland, C.L.; Hunter, R.F.; Kee, F.; Cupples, M.E.; Sallis, J.F.; Tully, M.A. Validity of the Global Physical Activity Questionnaire (GPAQ) in Assessing Levels and Change in Moderate-Vigorous Physical Activity and Sedentary Behaviour. BMC Public Health 2014, 14, 1255. [Google Scholar] [CrossRef] [Green Version]
- Hage, R.; Detrembleur, C.; Dierick, F.; Pitance, L.; Jojczyk, L.; Estievenart, W.; Buisseret, F. DYSKIMOT: An Ultra-Low-Cost Inertial Sensor to Assess Head’s Rotational Kinematics in Adults during the Didren-Laser Test. Sensors 2020, 20, 833. [Google Scholar] [CrossRef] [Green Version]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2019; ISBN 978-1-4920-3264-9. [Google Scholar]
- Ndiaye, E.; Le, T.; Fercoq, O.; Salmon, J.; Takeuchi, I. Safe Grid Search with Optimal Complexity. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 4771–4780. [Google Scholar]
- Aha, D.W.; Bankert, R.L. A Comparative Evaluation of Sequential Feature Selection Algorithms. In Learning from Data; Fisher, D., Lenz, H.-J., Eds.; Lecture Notes in Statistics; Springer: New York, NY, USA, 1996; Volume 112, pp. 199–206. ISBN 978-0-387-94736-5. [Google Scholar]
- Pourahmadi, M.R.; Ebrahimi Takamjani, I.; Jaberzadeh, S.; Sarrafzadeh, J.; Sanjari, M.A.; Bagheri, R.; Taghipour, M. Kinematics of the Spine During Sit-to-Stand Movement Using Motion Analysis Systems: A Systematic Review of Literature. J. Sport Rehabil. 2019, 28, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Pourahmadi, M.R.; Ebrahimi Takamjani, I.; Jaberzadeh, S.; Sarrafzadeh, J.; Sanjari, M.A.; Bagheri, R.; Jannati, E. Test-Retest Reliability of Sit-to-Stand and Stand-to-Sit Analysis in People with and without Chronic Non-Specific Low Back Pain. Musculoskelet. Sci. Pract. 2018, 35, 95–104. [Google Scholar] [CrossRef]
- Shojaei, I.; Vazirian, M.; Salt, E.G.; Van Dillen, L.R.; Bazrgari, B. Timing and Magnitude of Lumbar Spine Contribution to Trunk Forward Bending and Backward Return in Patients with Acute Low Back Pain. J. Biomech. 2017, 53, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.L.; Peng, C.-K.; Lipsitz, L.A. What Is Physiologic Complexity and How Does It Change with Aging and Disease? Neurobiol. Aging 2002, 23, 23–26. [Google Scholar] [CrossRef]
- Falla, D.; Gizzi, L.; Tschapek, M.; Erlenwein, J.; Petzke, F. Reduced Task-Induced Variations in the Distribution of Activity across Back Muscle Regions in Individuals with Low Back Pain. Pain 2014, 155, 944–953. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human Movement Variability, Nonlinear Dynamics, and Pathology: Is There a Connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, R.A.; Keating, J.L.; Kent, P. Subgroups of Lumbo-Pelvic Flexion Kinematics Are Present in People with and without Persistent Low Back Pain. BMC Musculoskelet. Disord. 2018, 19, 309. [Google Scholar] [CrossRef] [PubMed]
- Tousignant-Laflamme, Y.; Cook, C.E.; Mathieu, A.; Naye, F.; Wellens, F.; Wideman, T.; Martel, M.; Lam, O.T. Operationalization of the New Pain and Disability Drivers Management Model: A Modified Delphi Survey of Multidisciplinary Pain Management Experts. J. Eval. Clin. Pract. 2020, 26, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Molgaard Nielsen, A.; Hestbaek, L.; Vach, W.; Kent, P.; Kongsted, A. Latent Class Analysis Derived Subgroups of Low Back Pain Patients—Do They Have Prognostic Capacity? BMC Musculoskelet. Disord. 2017, 18, 345. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cervantes, J.; Yu, W. A Novel SVM Classification Method for Large Data Sets. In Proceedings of the 2010 IEEE International Conference on Granular Computing, San Jose, CA, USA, 14–16 August 2010; pp. 297–302. [Google Scholar]
- Davoudi, M.; Shokouhyan, S.M.; Abedi, M.; Meftahi, N.; Rahimi, A.; Rashedi, E.; Hoviattalab, M.; Narimani, R.; Parnianpour, M.; Khalaf, K. A Practical Sensor-Based Methodology for the Quantitative Assessment and Classification of Chronic Non Specific Low Back Patients (NSLBP) in Clinical Settings. Sensors 2020, 20, 2902. [Google Scholar] [CrossRef]
- Cholewicki, J.; Breen, A.; Popovich, J.M.; Reeves, N.P.; Sahrmann, S.A.; van Dillen, L.R.; Vleeming, A.; Hodges, P.W. Can Biomechanics Research Lead to More Effective Treatment of Low Back Pain? A Point-Counterpoint Debate. J. Orthop. Sports Phys. Ther. 2019, 49, 425–436. [Google Scholar] [CrossRef]
- Lu, H.; He, B.; Gao, B. Emerging Electrochemical Sensors for Life Healthcare. Eng. Regen. 2021, 2, 175–181. [Google Scholar] [CrossRef]
ML Algorithm | Hyperparameters |
---|---|
BF KNN | number of neighbours (3, 5, 8, 10), weighting function (uniform, distance), algorithm (Brute-Force (BF KNN or BF KNN), kd_tree, auto, ball_tree) |
Linear SVM | regularization parameter (0.001, 0.01, 0.1, 1, 10, 100, 1000) |
SVM RBF | C-parameter (0.001, 0.01, 0.1, 1, 10, 100), kernel coefficient Gamma (0.001, 0.01, 0.1, 1, 10, 100) |
DT | maximum depth of the tree (1, 5, 10, 100), function to measure the quality of the splits (gini, entropy), strategy to select the split nodes (best, random) |
RF | maximum depth of the tree (1, 5, 10, 100), number of trees in the forest (1, 5, 10, 100), number of features considered in the search for the best split (1, 5, 10, 100) |
AdaBoost | maximum number of estimators at which boosting stops (5, 10, 50, 100, 500), weight applied to each classifier at each boosting iteration (0.000001, 0.001, 0.1, 1, 5, 10, 100) |
GaussianNB | ratio of the largest variance of all features added to the variances for computational stability (0.0000001, 0.01, 1, 10, 100) |
SampEn | Gyr Y SENS1 | Gyr Z SENS2 | HCF | Gyr Y SENS2 | Acc X SENS2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CLBP | NLBP | CLBP | NLBP | CLBP | NLBP | CLBP | NLBP | CLBP | NLBP | ||
Mean | 0.161 | 0.208 | 0.625 | 0.516 | 0.272 | 0.326 | Median | 0.217 | 0.282 | 0.266 | 0.389 |
SD | 0.05 | 0.072 | 0.168 | 0.144 | 0.053 | 0.100 | Q1 | 0.187 | 0.220 | 0.227 | 0.312 |
SEM | 0.011 | 0.016 | 0.038 | 0.032 | 0.012 | 0.022 | Q3 | 0.261 | 0.343 | 0.407 | 0.523 |
p-value | 0.021 | 0.035 | 0.044 | p-value | 0.021 | 0.047 | |||||
Difference NLBP−CLBP | |||||||||||
Mean | 0.035 | −0.108 | 0.055 | Mean | −0.034 | 0.097 | |||||
SD | 0.168 | 0.254 | 0.111 | SD | 0.159 | 0.301 | |||||
CI | 0.074 | 0.111 | 0.046 | CI | 0.070 | 0.132 | |||||
SEM | 0.038 | 0.057 | 0.024 | SEM | 0.036 | 0.067 | |||||
MDC | 0.104 | 0.157 | 0.070 | MDC | 0.099 | 0.187 |
Whole Sequences | Cycle Segmentation | |||
---|---|---|---|---|
Algorithms | Accuracy (%) | AUC | Accuracy (%) | AUC |
BF KNN | 0.63 ± 0.08 | 0.69 ± 0.09 | 0.65 ± 0.05 | 0.67 ± 0.06 |
Linear SVM | 0.72 ± 0.07 | 0.79 ± 0.07 | 0.68 ± 0.06 | 0.71 ± 0.08 |
SVM RBF | 0.52 ± 0.06 | 0.52 ± 0.09 | 0.64 ± 0.04 | 0.71 ± 0.06 |
DT | 0.66 ± 0.08 | 0.65 ± 0.09 | 0.66 ± 0.06 | 0.65 ± 0.06 |
RF | 0.78 ± 0.07 | 0.83 ± 0.08 | 0.72 ± 0.05 | 0.80 ± 0.06 |
AdaBoost | 0.68 ± 0.07 | 0.74 ± 0.08 | 0.70 ± 0.06 | 0.74 ± 0.08 |
GaussianNB | 0.79 ± 0.08 | 0.85 ± 0.07 | 0.69 ± 0.07 | 0.74 ± 0.07 |
Whole Sequences | Raw Data | SampEn | CF | |||
---|---|---|---|---|---|---|
Algorithms | Accuracy (%) | AUC | Accuracy (%) | AUC | Accuracy (%) | AUC |
BF KNN | 0.63 ± 0.08 | 0.69 ± 0.09 | 0.59 ± 0.10 | 0.62 ± 0.09 | 0.73 ± 0.06 | 0.78 ± 0.06 |
Linear SVM | 0.72 ± 0.07 | 0.79 ± 0.07 | 0.53 ± 0.02 | 0.64 ± 0.10 | 0.68 ± 0.06 | 0.74 ± 0.07 |
SVM RBF | 0.52 ± 0.06 | 0.52 ± 0.09 | 0.53 ± 0.02 | 0.64 ± 0.10 | 0.74 ± 0.06 | 0.80 ± 0.08 |
DT | 0.66 ± 0.08 | 0.65 ± 0.09 | 0.58 ± 0.07 | 0.56 ± 0.07 | 0.60 ± 0.10 | 0.61 ± 0.10 |
RF | 0.78 ± 0.07 | 0.83 ± 0.08 | 0.59 ± 0.08 | 0.64 ± 0.09 | 0.68 ± 0.07 | 0.71 ± 0.07 |
AdaBoost | 0.68 ± 0.07 | 0.74 ± 0.08 | 0.55 ± 0.10 | 0.57 ± 0.10 | 0.62 ± 0.10 | 0.62 ± 0.11 |
GaussianNB | 0.79 ± 0.08 | 0.85 ± 0.07 | 0.64 ± 0.06 | 0.69 ± 0.07 | 0.60 ± 0.08 | 0.60 ± 0.10 |
Feature | First | Feature | Second |
---|---|---|---|
Gyr Y SENS2 min | 355 | Acc Y SENS2 SD | 114 |
Acc X SENS3 Q3 | 136 | Gyr Y SENS2 min | 112 |
Acc Y SENS2 SD | 111 | Acc X SENS3 Q3 | 103 |
Acc Y SENS2 SD | 89 | Acc Y SENS2 Q1 | 83 |
Acc X SENS3 Q1 | 64 | Acc X SENS3 mean | 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiry, P.; Houry, M.; Philippe, L.; Nocent, O.; Buisseret, F.; Dierick, F.; Slama, R.; Bertucci, W.; Thévenon, A.; Simoneau-Buessinger, E. Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Test. Sensors 2022, 22, 5027. https://doi.org/10.3390/s22135027
Thiry P, Houry M, Philippe L, Nocent O, Buisseret F, Dierick F, Slama R, Bertucci W, Thévenon A, Simoneau-Buessinger E. Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Test. Sensors. 2022; 22(13):5027. https://doi.org/10.3390/s22135027
Chicago/Turabian StyleThiry, Paul, Martin Houry, Laurent Philippe, Olivier Nocent, Fabien Buisseret, Frédéric Dierick, Rim Slama, William Bertucci, André Thévenon, and Emilie Simoneau-Buessinger. 2022. "Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Test" Sensors 22, no. 13: 5027. https://doi.org/10.3390/s22135027
APA StyleThiry, P., Houry, M., Philippe, L., Nocent, O., Buisseret, F., Dierick, F., Slama, R., Bertucci, W., Thévenon, A., & Simoneau-Buessinger, E. (2022). Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Test. Sensors, 22(13), 5027. https://doi.org/10.3390/s22135027