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Abstract: Cebrenus Rechenburgi, a member of the huntsman spider family have inspired researchers
to adopt different locomotion modes in reconfigurable robotic development. Object-of-interest
perception is crucial for such a robot to provide fundamental information on the traversed pathways
and guide its locomotion mode transformation. Therefore, we present a object-of-interest perception
in a reconfigurable rolling-crawling robot and identifying appropriate locomotion modes. We
demonstrate it in Scorpio, our in-house developed robot with two locomotion modes: rolling and
crawling. We train the locomotion mode recognition framework, named Pyramid Scene Parsing
Network (PSPNet), with a self-collected dataset composed of two categories paths, unobstructed
paths (e.g., floor) for rolling and obstructed paths (e.g., with person, railing, stairs, static objects and
wall) for crawling, respectively. The efficiency of the proposed framework has been validated with
evaluation metrics in offline and real-time field trial tests. The experiment results show that the trained
model can achieve an mIOU score of 72.28 and 70.63 in offline and online testing, respectively for
both environments. The proposed framework’s performance is compared with semantic framework
(HRNet and Deeplabv3) where the proposed framework outperforms in terms of mIOU and speed.
Furthermore, the experimental results has revealed that the robot’s maneuverability is stable, and the
proposed framework can successfully determine the appropriate locomotion modes with enhanced
accuracy during complex pathways.

Keywords: shape reconfigurable robots; locomotion mode; environment perception; object-of-interest;
deep learning; computer vision

1. Introduction

Living beings possess the ability to coordinate and adapt their gaits to walk on various
complicated pathways. Various creatures use multiple locomotion modes and switch to
appropriate locomotion types to overcome various pathway challenges. Inspiration from
such creatures has tremendously enhanced mechanism design and overcoming traditional
limitations in field robotics. Further, a dynamically changing environment has increased
locomotion challenges for the robots to operate effectively. Thus, robots need to perceive
objects of interests in the pathways and features in the surrounding, recognize the context
of the situation and plan their locomotion mode, path, and interaction accordingly. Finally,
determining the appropriate locomotion mode will improve the synergy of the robot and
the surrounding environments.

This paper presents a semantic segmentation-based approach to perceive object-of-
interest of indoor environment and determine the appropriate rolling or crawling morphol-
ogy locomotion modes of our in-house developed shape-shifting robot ‘Scorpio’. To the
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best of our knowledge, there is no direct framework to recognize appropriate locomotion
modes using visual features and a convolutional neural network.

This paper is organized as follows; Sections 1 and 2 present the introduction and
literature review. Section 3 provides the methodology and the overview of the proposed
system. The experimental setup, findings, and discussion are covered in Sections 4 and 5.
Finally, Section 6 concludes this research work.

2. Related Work

In literature, various reconfigurable robots have been reported to dynamically adapt
to environment changing. Reconfigurable robots have potential applications such as search
and rescue, de-mining, environmental monitoring, and planetary exploration. Here, the ap-
plication of bio-inspired principles leads to adaptive, flexible interaction and improves
the performance limitations of fixed dimension robots. In [1], a quadruped wheeled robot
Tarantula with variable wheel footprint kinematics was introduced by Aamir et al. for
the specific geometry of the drain. In another study, Aamir et al. [2] designed a reconfig-
urable pavement sweeping robot Panthera for different pavement width conditions. In [3],
Ilyas et al. presented a novel, modular, and reconfigurable staircase cleaning robot named
sTetra. In [4], Vega et al. designed a modular window facade cleaning robot called Mantis.
In [5], Jayaram and Full introduced a cockroach exoskeleton-inspired robot to explore
confined environments. In [6], Peyer et al. presented bio-inspired magnetic swimming
microrobots for biomedical applications. An inchworm-inspired crawling robot controlled
by shape memory alloy was introduced by Shi et al. [7]. Further, in [8], Lin et al. introduced
a caterpillar-inspired soft-bodied rolling robot named GoQBot. In [9], the authors presented
an integrated jumping-crawling robot using a height-adjustable jumping module. In [10],
a Salamander-inspired robot was presented that can change its locomotion mode from
swimming to walking depending on the terrain it is traversing. The literature survey
shows that reconfigurability can help overcome obstacles or continue task performance
and showcase the structural capabilities despite changing pathways and environments.
However, object-of-interest perception and transitions between locomotion modes remain
a significant challenge faced by a reconfigurable robot.

In the past decade, environment sensing techniques like surface electromyography
(EMG), radar detectors, laser rangefinders, and inertial measurement units (IMUs) have
been used to develop automated locomotion mode recognition system [11,12]. However,
some of these techniques can be inconvenient and may have bias errors. Recently, re-
searchers have also used Decision Trees (DT) [13,14], Support Vector Machines (SVM) [15–17],
Neural Networks (NN) [18–20] for solving environment perception problems. Among
these techniques, NNs based frameworks are the most popular and widely used by many
researchers in many different applications. Further, NNs have many types such as Multi-
layer Feed-forward Neural Network (MLFFNN), Recurrent Neural Network (RNN), Radial
Basis Function (RBF), General Regression Neural Network (GRNN), Probabilistic Neural
network (PNN), Complementary Neural Network (CMTNN), and Space Invariant Arti-
ficial Neural Networks (SIANN) or Convolutional Neural Network (CNN) [21]. Here,
CNNs has features like parameter sharing and dimensionality reduction which reduces the
computational power needed. Thus, CNNS have the potential to solve object-of-interest
perception or scene recognition tasks. In [22], Suryamurthy et al. proposed path planning
framework for wheeled-legged robot CENTAURO. The authors employed a single RGB-
based deep neural network to predict pixel-wise terrain labels and help reconfiguration for
safe traversal among obstacles. In [2], Yi et al. presented a vision-based reconfiguration of a
self-reconfigurable pavement sweeping robot called Panthera, which can adjust its frame
width to ease the cleaning tasks to become friendly with different pavement geometry.
In [23], Aslan et al. developed a deep learning algorithm for humanoid robots to walk to
the target using semantic segmentation and a deep Q network. In [24], Doan et al. proposed
a semantic segmentation network with residual depth-wise separable blocks to detect street
objects such as cars and pedestrians. In [25], Kowalewski et al. presented the object-level
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semantic perception of the environment for indoor mobile robots. The experiments results
indicated that the proposed framework, the Mask-RCNN, achieved the mAP score of 0.414.
In [26], Bersan et al. proposed a semantic segmentation-based approach to localize and
identify different classes of the objects in the scene. In [27], Dvornik et al. presented a deep
real-time network named BlitzNet for scene understanding. In [28], Deng et al. presented a
vision-based navigation method for a small-scale quadruped robot named Pegasus-Mini.
The authors trained ERFNet framework with cityscape, garden, and cityscape-garden
datasets and confirmed satisfactory results. In [29], Belter et al. proposed a motion plan-
ning framework for a robot by employing natural terrain semantics. The above mentioned
studies mainly use semantic segmentation based framework as it clusters the parts of the
images together which belong to the same class. Further, this technique can be exploited
for object-of-interest perception. However, most research in reconfigurable robots was
limited to mechanism design and control studies with minimal effort related to switching
locomotion modes. Object-of-interest is a key characteristic essential for the most reconfig-
urable robots that allows for recognizing appropriate locomotion modes. Therefore, this
study presents object-of-interest perception to determine appropriate locomotion mode in
a reconfigurable rolling-crawling robot.

3. Overview of the Proposed System

Figure 1 presents the overview of the locomotion mode recognition framework. Here,
a semantic segmentation-based approach was used to determine the appropriate locomo-
tion mode of the Scorpio shape-shifting robot. As shown in Figure 1, Scorpio robot has two
locomotion modes: rolling during unobstructed pathways and crawling during obstructed
pathways. The robot perceives object-of-interest of indoor using real-time locomotion mode
recognition framework. This framework segments the environment into different classes of
unobstructed pathways and obstructed pathway. As a result, the robot is able to choose
appropriate locomotion mode with respect to the pathway being traversed. The details of
robot architecture and locomotion mode recognition framework are described below.

Figure 1. Overview diagram of proposed framework.

3.1. Semantic Segmentation Framework

Pyramid Scene Parsing Network (PSPNet) [30] contains two parts: an encoder and
a decoder. The encoder is responsible for extracting the features uses a ResNet101 back-
bone with dilated convolutions and a pyramid pooling module. The features extracted
from the ResNet101 backbone is downsampled 8 times before dilated convolutions and
pyramid pooling are applied. The last two stages of the ResNet101 backbone replace the
traditional convolutional layers with dilated convolution layers where the dilation factor K
equals 2 and 4, respectively. Compared to conventional CNN kernel, dilated convolution



Sensors 2022, 22, 5214 4 of 16

injects zeros into it’s kernel to help increase the receptive field resulting in richer features.
Figure 2 shows an example of a 3 × 3 dilated convolution that has K equivalent to 2 against
conventional convolution.

The pyramid pooling module helps the model capture a more global context of images.
This is done by pooling the feature map from the ResNet101 backbone with different sizes.
Upsampling ensures the output is the same size as the original feature map. The original
feature map is then concatenated with the different sized upsampled pooling feature maps.
Figure 3 shows the pyramid pooling module. The decoder then takes the features and
converts them into predictions. The decoder used after the pyramid pooling module is an
8 times bilinear upsampling decoder as the features were initially downsampled by 8 times.

Figure 2. Dilated convolution (left) and conventional convolution (right).

Figure 3. Pyramid pooling module.

3.2. Physical Layer

The main scope of inspiration for the Scorpio robot is a Cebrennus Rechenburgi spider
capable of switching rolling and crawling locomotion modes [31]. Further, the Scorpio
robot is defined as a quadruped robot with a spider’s appearance and is divided into two
regions, namely the body and limbs. The body consists of the control and power units
with four limbs attached. Each limb has three active joints powered by servo motors,
and these active joints consolidate a multi-joint structure that gives each limb three Degrees
of Freedom (DOF). This ensures the necessary motions for the reconfigurable platform,
such as crawling and rolling locomotion modes. Finally, the distal servo motor is attached
to a double-layered 5 mm acrylic leg. All the specifications of the Scorpio robot are detailed
in Table 1. The details of the two locomotion modes are as follows.
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Table 1. Technical specifications of Scorpio.

Description Specification

Dimension (Crawling) 46 cm × 46 cm × 27 cm

Dimension (Rolling) 29.5 cm diameter

Weight (including battery) 1.3 kg

Full Body Material Acrylic

Smart Actuators Dynamixel AX-12A (12 no’s)

Working Voltage 7.4 V

Maximum Obstacle Height 0.3 cm

Operational Duration 45 min

Battery 11.1 V

Camera Realsense D435i

3.2.1. Locomotion Module

The Scorpio robot has two modes of locomotion, crawling and rolling; the rotation
limits constrain these locomotion modes from each servo motor. When the robot is crawling,
each servo motor of the multi-joint structure delivers rotational motion that, in combina-
tion, generates forward, clockwise, counter-clockwise and reverse movements of the legs.
The motions and the legs’ positions allow the robot to move forward and make left-right
turns. Figure 4 shows the Scorpio robot in crawling locomotion mode.

Figure 4. Crawling configuration.

In the rolling locomotion, the frontal legs move to the center while the multi-joint
structure allows them to go below the body, and the back legs move to the back center
and involve the body from the top, creating a shell. This configuration results in a circular
shape, and the robot moves the two legs that are in contact with the surface to generate
the rolling movement. The mechanism of this module is divided into two halves. The first
half of the servo motor engages in direct contact with the ground while and the second half
engages in touch with the ground after the first half’s revolution. The Figure 5 shows the
configuration of the rolling locomotion.
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Figure 5. Rolling configuration.

3.2.2. System Architecture

In this version of the Scorpio robot platform, the BIOLOID system was implemented,
including the Robo+ software for programming the interactions between the components
of the system and the configuration of the servomotors for each step on the robot’s gait.
As shown in the system architecture diagram in Figure 6, the control unit used is the
CM-530, powered by an 11.1 V 900 mA LiPo battery. Using a remote controller and an IR
receptor, we made the twelve AX-12A DYNAMIXEL smart actuators move to different
positions, allowing the robot to change between crawling and rolling locomotion modes;
and a Realsense camera connected to a Raspberry Pi to send the captured images via WIFI
to a distant server for processing the collected data.

Figure 6. System architecture.

4. Experimental Setup & Results

This section describes the experimental setup and results of the proposed framework.
The experiments were carried out in five phases: dataset preparation and training of the
proposed framework, validation of the Scorpio’s performance in the indoor environment,
evaluating the trained model on both offline and real-time field tests, comparing the trained
model with other semantic frameworks and validating the proposed framework in false
ceiling environment.
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4.1. Data-Set Preparation and Training

The training dataset of the Scorpio semantic segmentation framework for indoor en-
vironment is categorized into two groups: unobstructed paths (i.e., floor) and obstructed
paths (e.g., with persons, railing, stairs, static objects, walls). Here, an unobstructed path is
ideal for rolling locomotion mode, and the obstructed pathway is adequate for crawling
locomotion mode. For indoor environment, the dataset consists of 100 images of each
categories, resulting in a total of 453 training images where multiple classes co-exist in a
single image in some cases. The dataset consists purely of the real-time collected dataset
from the perspective of Scorpio within the Singapore University of Technology and Design
campus. The images were resized to 512 × 512 pixel resolution before augmentation. First,
the semantic segmentation ground truth was labeled using CVAT [32]. Then, data augmen-
tation is applied to the training dataset to control over-fitting, resulting in 4530 images.
Data augmentation processes such as scaling, rotation, horizontal flip, color enhancement,
blurring, brightness, shearing, cutout, and mosaic are applied. Figure 7 shows the sample
of data augmentation of one image. Table 2 elaborates the settings of the various types of
augmentation applied.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Data-augmentation example. (a) Original image. (b) Flip. (c) Shear. (d) Scale. (e) Contrast.
(f) Rotation. (g) Cut out. (h) Brightness. (i) Blur. (j) Mosaic.

Table 2. Augmentation type and setting.

Augmentation Type Augmentation Setting

Scaling 0.5× to 1.5×

Rotation from −45 degree to +45 degree

Horizontal flip flip the image horizontally

Color enhancing contrast (from 0.5× to 1.5×)

Blurring Gaussian Blur (from sigma 1.0× to 3.0×)

Brightness from 0.5× to 1.5×

Shear x axis (−30 to 30) y aixs (−30 to 30)

Cutout 1 to 3 squares up to 35% of pixel size

Mosaic random crop and combination of 4 images

4.1.1. Training Hardware and Software Details

The Scorpio semantic segmentation algorithm is trained using the PyTorch library.
PSPNet was pre-trained on the ImageNet dataset consisting of 1000 classes using the
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ResNet101 architecture. Stochastic Gradient Descent (SGD) optimizer was used to train the
model. The hyper-parameters used are 0.9 for momentum, an initial learning rate of 0.01,
and weight decay at 0.0005. Here, the learning rate of 0.01 was selected through the use of
a learning rate range test starting from a very small learning rate 0.00001 all the way to a
large learning rate 0.1. Similarly for momentum, short runs of training were done with 0.99,
0.97, 0.95 and 0.9. Once the learning rate and momentum were fixed, weight decay was
tested from 0, 0.005, 0.001, 0.0005, 0.0001, 0.00005 and 0.00001. The model is trained for a
total epoch of 2300 using a batch size of 4 before early stopping and validating the model
in real-time inference. The model was trained and tested on the Lenovo ThinkStation P510.
It consists of an Intel Xeon E5-1630V4 CPU running at 3.7 GHz, 64 GB Random Access
Memory (RAM), and Nvidia Quadro P4000 GPU (1792 Nvidia CUDA Cores with 8 GB
GDDR5 memory size running at 192.3 GBps bandwidth).

4.1.2. Evaluation Metrics

The efficiency of our trained model was evaluated in offline and real-time test scenarios.
Standard metrics were used to evaluate the semantic segmentation performance. Pixel
accuracy and intersection over union (IoU) as defined in Equation (1) and (2), respectively
were used to evaluate the model. In the equations, true positive, true negative, false positive
and false negative are tp, tn, fp and fn, respectively.

Pixel Accuracy (Acc) =
tp + tn

tp + f p + tn + f n
(1)

Intersection over union (IoU) =
tp

tp + f p + f n
(2)

4.2. Offline Test

The offline test was performed to determine the efficiency of the locomotion mode
recognition framework using the test dataset. In this evaluation process, 50 images were
tested from the test dataset. Figure 8 show the results of the locomotion mode recognition
framework. Here, the classes of the locomotion mode recognition framework such as the
floor, person, railing, stairs, static objects (door, table, chair), and walls are denoted by the
blue, red, orange, yellow, green, and purple, respectively. As mentioned earlier, the class
floor is considered as an ideal unobstructed path for rolling locomotion mode. Table 3
demonstrates the results of the offline test.

Table 3. Statistical measures for offline locomotion mode recognition.

Category Class Pixel Accuracy IoU mIoU

Unobstructed Path (Rolling) Floor 92.5 86.2

72.28
Obstructed Path (Crawling)

Person 93.4 89.6
Railing 82.9 64.5
Stairs 88.6 71.3
Static object 83.6 62.8
Walls 83.1 59.3

It was observed that the framework identifies the appropriate locomotion mode
with an average pixel accuracy of 87.35. Classes floor, person, railing, stairs, static objects,
and walls were classified with an IoU score of 86.2, 89.6, 64.5, 71.3, 62.8 and 59.3, respectively.
The proposed framework achieved an mIoU (mean IoU) of 72.28. The miss detection, false
classification, and detection with lower pixel accuracy happened only for partially occluded
objects. Hence, the framework is accurate for identifying appropriate locomotion modes
for dynamically changing pathways.
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(a) (b)

(c) (d)

(e)

Figure 8. The offline test results of the locomotion mode recognition framework. (a) Floor and wall.
(b) Floor, wall, and static object. (c) Floor and wall. (d) Stairs, person, and wall. (e) Floor, stair,
and wall.

4.3. Real-Time Field Trial

The real-time field trial experiments include validating Scorpio’s performance and
evaluating the locomotion mode recognition framework using Scorpio-collected real-time
pathway video feed.

4.3.1. Validation of Scorpio’s Performance

In this section, the robot’s performance was validated by evaluating the two locomo-
tion modes, including rolling and crawling. During the experiment, the robot autonomously
wandered around a given space in explore mode. The crawling locomotion of the Scorpio
robot was tested on flat and rough terrain (Figure 9). Similarly, we performed the rolling
locomotion of Scorpio in a teleoperated mode (Figure 10). In the entire course of our
experiment, the Scorpio robot effectively exhibited both crawling and walking modes of
locomotion. In addition, the experiments also verified the recovery and transformation
gaits that allow switching between locomotion modes. Figure 11 shows the step-by-step
transformation of the robot’s crawling to rolling and back to crawling. Further, it can move
around the complex pathway and accurately capture images for the proposed real-time
locomotion recognition.
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(a) (b)

Figure 9. Crawling locomotion mode. (a) On smooth surface. (b) On rough surface.

(a) (b)

Figure 10. Rolling locomotion mode. (a) Front view. (b) Side view.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Transformation from crawling to rolling and back to crawling mode. (a) Crawling mode.
(b) Frontal legs side by side. (c) Frontal legs under robot’s body. (d) Left back leg over robot’s body.
(e) Rolling mode (frontal legs under robot’s body and back legs over it). (f) Back legs pushed out.
(g) Back legs in crawling position. (h) Frontal legs pushed out and separated. (i) Crawling mode.
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4.3.2. Real-Time Locomotion Mode Recognition Framework

This section evaluates the locomotion mode recognition framework in the real-time
field trial. The experiments were carried out in an unexplored environment on the SUTD
campus. Here, an unexplored environment has not been used for data-set collection. In our
experiments, the Scorpio robot captured the pathway images using its onboard camera
after every rolling and crawling cycle to capture better quality images. The captured images
are transmitted over WiFi to a high-powered GPU-enabled local server for recognizing
appropriate locomotion modes. Figure 12 depicts the test results of the locomotion mode
recognition framework. Table 4 shows the statistical measure results of the locomotion
mode recognition framework.

(a) (b)

(c) (d)

(e)

Figure 12. The online test results of the locomotion mode recognition framework. (a) Floor, static
object, and wall. (b) Railing, stairs, floor and wall. (c) Floor, person, static object, and wall. (d) Floor
and wall. (e) Floor, static object, and wall.

The experimental results demonstrate that the locomotion mode recognition frame-
work classified obstructed and unobstructed paths with an average pixel accuracy of 86.5.
The proposed framework’s performance is also accurate with respect to object boundaries.
The evaluation metric indicates that the framework has detected classes floor, person,
railing, stairs, static object, and walls with an mIoU score of 70.63. Miss classification is at-
tributed to blurring caused by the jerks when traversing on uneven ground and other factors.
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Table 4. Statistical measures for online locomotion mode recognition.

Category Class Pixel Accuracy (%) IoU mIOU

Unobstructed Path (Rolling) Floor 91.9 84.6

70.63
Obstructed Path (Crawling)

Person 92.5 87.6
Railing 82.2 62.6
Stairs 87.8 70.1
Static object 82.9 61.1
Walls 81.8 57.8

5. Comparison and Validation

It includes the performance comparison of proposed algorithm with other semantic
frameworks and existing works. Further, it validates the performance of the locomotion
mode recognition framework of the Scorpio robot to inspect false-ceiling environment.

5.1. Comparison with Other Semantic Frameworks

This section illustrates the performance comparison of the proposed locomotion mode
recognition framework with other popular semantic segmentation frameworks. Here, HR-
Net [33] and Deeplabv3 [34] are considered for semantic segmentation model comparison
analysis. Figure 13 shows the experimental results of the three models. Table 5 summarizes
the details of comparison analysis. The comparison analysis is based on the common
evaluation metrics for semantic image segmentation. The results of the evaluation metrics
demonstrate that the proposed framework outperformed with an mIOU score of 72.28
and a speed of 96.59 ms. The experimental analysis indicates that HRNet and Deeplabv3
have comparatively less mIOU and PSPNet yields better pixel-wise classification than
other networks. The multi-branch parallel structure of HRNet can effectively gather spatial
information, but it ignores global context, and boundary information [35]. The Deeplabv3
model’s performance was lower due to poor segmentation results along object boundaries.
Whereas the PSPNet architecture considers the global context of the image to generate the
local level predictions, resulting in better performance. Moreover, few errors in PSPNet are
completely related to the illusion created by the reflection of railing glasses.

Figure 13. Comparison with other semantic frameworks.
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Table 5. Comparison with other semantic segmentation framework.

Semantic Framework Pixel Accuracy (%) mIOU Speed (ms)

PSPNet (Proposed framework) 87.35 72.28 96.59

HRNet 78.1 64.17 158.59

Deeplabv3 84.5 69.89 98.53

5.2. Comparison with Other Existing Works

This section elaborates the comparative analysis of the proposed algorithm with other
existing scene classification studies reported in the literature. To our best knowledge, there
is no direct study to perceive object-of-interest and determine the appropriate locomo-
tion mode based on robotic vision. Further, Table 6 states the accuracy of various scene
classifications based on some similar classes.

Table 6. Comparison with other existing works.

Case Studies Classification Type Algorithm Classes mIOU

Rafique et al. [36] Offline Linear SVM 11 72.2

Lopez et al. [37] Offline Two-branched CNN
and Attention Module

61 74.04

Couprie et al. [38] Offline Multiscale Convolu-
tional Network

14 52.4

Proposed framework Real-time with Scorpio PSPNet 6 70.63

The literature has reported various studies focusing on scene classification. However,
the implementations in these case studies cannot be directly compared to our work. The case
studies have employed different training datasets, CNN algorithms, training parameters,
and performed offline inspection. Further, the accuracy of our proposed framework is
comparatively same, and the proposed framework has a key feature of performing real-time
locomotion mode recognition.

5.3. Validation in False-Ceiling Environment

False-ceiling inspection has become essential to ensure the commercial building and
human safety. Typically, a false ceiling is built with material like Gypsum board, Plaster
of Paris, Poly Vinyl Chloride (PVC), and used to hide ducting, messy wires, and Heating,
Ventilation, and Air Conditioning (HVAC) system. The poor construction of false ceiling
environment can lead to early deterioration and unexplained odours. Human visual
inspection of false ceiling environment faces lots of challenges due to requirement of a
highly-skilled labour, safety issue and workforce shortage. These facts highlight the need
for an automated inspection of false ceiling environment. Hence, the aim of this section is
to train and validate the performance of locomotion mode recognition framework of the
Scorpio robot to inspect false-ceiling environment.

In this experimental section, the proposed framework was trained and tested for the
false ceiling environment. Here, the training dataset was composed of two categories: unob-
structed path (i.e., floor) and obstructed path (e.g., ceiling, rails, and wires). The dataset was
self-collected from the perspective of Scorpio and consist of 100 images of each categories.
The images were resized to 512 × 512 pixel resolution and fed into the data augmenta-
tion algorithm to control over-fitting issue. The training hardware and software details
were the same as explained in Section 4.1.1. Further, in the evaluation process, 50 images
were tested from the test dataset. Figure 14 shows the results of locomotion mode recog-
nition framework in the false ceiling environment. Here the classes floor, ceiling, rails,
and wires were denoted by blue, purple, green, and yellow, respectively. Table 7 provide
the statistical results.
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Figure 14. Offline test results of the locomotion mode recognition framework’s in the false ceiling en-
vironment: (a) Recognition of floor, rails and ceiling, (b) Recognition of floor, ceiling, rails and wire,
(c) Recognition of floor, ceiling and wires, and (d) Recognition of floor and rails.

Table 7. Statistical measures for locomotion mode recognition framework in the false ceiling environment.

Category Class Pixel Accuracy (%) IoU mIOU

Unobstructed Path (Rolling) Floor 89.2 83.2

67.36

Obstructed Path (Crawling)

Rails 88.5 79.3
Walls 81.1 60.1
Wires 85.2 55.3

It was observed that the framework identifies the appropriate locomotion mode in
the false ceiling environment with an average pixel accuracy of 85.52%. Classes floor, rails,
walls, and wires were classified with an IoU score of 83.2, 79.3, 60.1, 55.3, respectively. This
framework has achieved an mIoU score of 67.36. Hence, the framework is accurate for
identifying appropriate locomotion mode in complex false ceiling environment. More-
over, the Scorpio robot with locomotion mode recognition framework can easily traverse
obstacles and help false ceiling inspection tasks.

6. Conclusions

A semantic segmentation-based approach was presented for recognizing the appro-
priate locomotion modes in the shape-reconfigurable robot Scorpio. The experimental
setup has included validating Scorpio’s performance and evaluating the locomotion mode
recognition framework using Scorpio-collected real-time pathway video feed. The robot’s
maneuverability is stable on smooth and rough terrain. Furthermore, the locomotion recog-
nition framework was tested on test dataset and real-time pathway images collected by
the Scorpio robot. The experimental results show that PSPNet is able to detect obstructed
paths and unobstructed paths with a mIoU score of 72.28, 12.6% and 3.4% higher than the
scores of HRNet and Deeplabv3, respectively. It takes only 96.59 ms to process one image
on the local server that is the fastest among the counterparts. Therefore, the proposed
method is more advantageous to recognize the appropriate locomotion modes for shape
reconfigurable robots. Further, in this study, there is a big emphasis on understanding and
predicting the object-of-interest to further improve the synergy of robot and surrounding
environment. The capability to autonomously determine appropriate locomotion mode
is critical for meeting goals around quality, cost, efficiency and speed. In our future work,
we plan to further improve the performance of the locomotion mode recognition frame-
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work with event-based sensors due to exponential growth in the demand for automated
solutions.
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23. Aslan, S.N.; Uçar, A.; Güzeliş, C. Development of Deep Learning Algorithm for Humanoid Robots to Walk to the Target Using
Semantic Segmentation and Deep Q Network. In Proceedings of the 2020 Innovations in Intelligent Systems and Applications
Conference (ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 1–6. [CrossRef]

24. Doan, V.V.; Nguyen, D.H.; Tran, Q.L.; Nguyen, D.V.; Le, T.H. Real-time Image Semantic Segmentation Networks with Residual
Depth-wise Separable Blocks. In Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent
Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), Toyama, Japan, 5–8 December 2018;
pp. 174–179.

25. Kowalewski, S.; Maurin, A.L.; Andersen, J.C. Semantic mapping and object detection for indoor mobile robots. In Proceedings of
the IOP Conference Series: Materials Science and Engineering, Wuhan, China, 10–12 October 2019; Volume 517, p. 012012.

26. Bersan, D.; Martins, R.; Campos, M.; Nascimento, E.R. Semantic Map Augmentation for Robot Navigation: A Learning Approach
Based on Visual and Depth Data. In Proceedings of the 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on
Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), João Pessoa, Brazil, 6–10 November 2018. [CrossRef]

27. Dvornik, N.; Shmelkov, K.; Mairal, J.; Schmid, C. Blitznet: A real-time deep network for scene understanding. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4154–4162.

28. Ganyu, D.; Jianwen, L.; Caiming, S.; Dongwei, P.; Longyao, P.; Ning, D.; Aidong, Z. Vision-based Navigation for a Small-scale
Quadruped Robot Pegasus-Mini. arXiv 2021, arXiv:2110.04426.
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