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Abstract: It is an urgent problem to know how to quickly and accurately measure the length of
irregular curves in complex background images. To solve the problem, we first proposed a quasi-
bimodal threshold segmentation (QBTS) algorithm, which transforms the multimodal histogram into
a quasi-bimodal histogram to achieve a faster and more accurate segmentation of the target curve.
Then, we proposed a single-pixel skeleton length measurement (SPSLM) algorithm based on the
8-neighborhood model, which used the 8-neighborhood feature to measure the length for the first
time, and achieved a more accurate measurement of the curve length. Finally, the two algorithms
were tested and analyzed in terms of accuracy and speed on the two original datasets of this paper.
The experimental results show that the algorithms proposed in this paper can quickly and accurately
segment the target curve from the neon design rendering with complex background interference and
measure its length.

Keywords: irregular curves; quasi-bimodal threshold segmentation; single-pixel skeleton; length
measurement

1. Introduction

As cities develop, energy-saving and environmentally friendly neon lights have be-
come a meaningful way to enhance the image of a city [1,2] and an essential part of the
urban night scene [3]. Although the patterns vary in style, the vital elements are all irregular
curves. Measuring the length of the distinctive curves that make up the pattern from the
neon design renderings is necessary before production. It significantly improves efficiency,
saves raw materials, and guides production. In addition, in the field of construction work,
measuring and analyzing the number and length of cracks on building surfaces based
on captured pictures of bridges, tunnels, roads, and other facilities is a significant way
to assess their risk and quality [4,5]. Since there are various background interferences in
addition to the target curve in the design drawings and captured pictures, it is of great
significance in engineering practice to measure the length of the curves in the images with
background interference.

Since separating the background noise from the binarized image is difficult, it is nec-
essary to remove the noise interference before the length measurement. The traditional
segmentation method is manual tracing, which has low measurement efficiency and sig-
nificant error in the results. The blue light and ultraviolet rays from the computer screen
will cause damage to the staff’s eyes [6,7]. With the development of computer technology,
image segmentation technology to segment and extract target curves in design drawings
has gradually become a better way to replace manual tracing. Threshold segmentation is a
technique with the most straightforward principle and the most comprehensive application
range in image segmentation technology. Two classical threshold segmentation algorithms,
the bimodal method [8] and OTSU [9], directly perform image segmentation according to
the grayscale difference between the target and the background. The principle is simple,
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but it only considers the target segmentation under a single background, and the segmen-
tation effect on images with complex backgrounds is poor. AL-Smadi et al. proposed a
foreground bimodal segmentation algorithm based on the bimodal algorithm. The algo-
rithm can accurately segment images in urban traffic scenes, but the operation steps are
cumbersome, and the algorithm’s complexity is very high [10]. Researchers combined the
classical OTSU algorithm with the grayscale histogram and proposed a new unsupervised
segmentation algorithm. The algorithm runs quickly, but the main application scenario is
the rough estimation of the target, and the segmentation accuracy is low [11]. In addition,
some researchers improve the OTSU algorithm by modifying the weight factor [12,13].
Compared with the foreground bimodal segmentation algorithm, these improved methods
maintain a lower time complexity and improve the segmentation accuracy to a certain
extent. However, it is only suitable for images with less background interference, and the
accuracy of target segmentation is low in images with more complex backgrounds. The
algorithms in [11–13] all belong to improved OTSU segmentation algorithms, which are
relatively common in complexity compared to the algorithm in [10]. Still, none of them
solve the problem of low accuracy when extracting targets from complex backgrounds.

After getting the target curve, the next step is to measure the length. There are
two ways to measure the length of irregular curves: direct measurement and indirect
measurement. Direct measurements generally begin with the refinement of the curve to
obtain a single-pixel skeleton. Then the line length is measured by measuring the size of the
single-pixel structure. Many researchers have investigated direct measurement methods.
Kim et al. proposed using the coordinate difference between the two endpoints of the crack
skeleton in the X or Y direction as the measured value when measuring the length of the
concrete fracture area. This method is suitable for a rough estimate of extent, but cannot
accurately measure fracture length [14]. Then, after obtaining the single-pixel skeleton of
the target curve, the researchers first received the total number of pixels on the structure
by counting or integrating, and then multiplied the length of a single pixel to calculate
the size of the curve [15–17]. This method is simple in logic and easy to implement, but
oversimplifies the problem, resulting in low calculation accuracy. To further improve the
accuracy, the researchers improved the method which was used in the literature [15–17] by
enhancing the integrand [18], introducing the idea of displacement [19,20], and classifying
the pixels [21,22]. Although the angle of improvement is different, these methods essentially
use “1” and “

√
2” to replace the length represented by a pixel and calculate the total distance

by accumulating the sizes of all pixels on the skeleton. These methods embody the idea
of classification and improve measurement accuracy to a certain extent. However, the
measurement accuracy still needs further improvement. In addition to directly measuring
the length of the curve through the single-pixel skeleton, researchers also use indirect
measurement to measure the length. Some researchers use image thinning to extract the
edges of the original curve and use half the length as a measurement [23,24]. Due to
the cumbersome steps in this method, the algorithm is complex and time-consuming.
The measurement methods proposed in the above literature have low accuracy or time-
consuming extended defects. A new measurement method with low complexity and high
accuracy is urgently needed.

To improve the speed and accuracy of curve segmentation and length measurement,
we first convert the “multimodal histogram” into a “quasi-bimodal histogram” to quickly
determine the threshold and segment the target curve. Then we refine the curve and
accurately calculate the length of the skeleton through the 8-neighborhood features of the
pixels on the structure. Finally, we calculate the length of the target curve through the size
transformation. The main contributions of this paper are as follows:

(1) We propose the QBTS algorithm based on a grayscale histogram, which can quickly
and accurately segment the target curve from the neon light design renderings with
background interference.

(2) We propose the SPSLM algorithm based on the 8-neighborhood model, which im-
proves the accuracy of irregular curve length measurement.
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(3) We constructed three new image datasets for performance testing of the two pro-
pose algorithms.

The rest of the paper is organized as follows. The steps of the proposed method are
described in Section 2. Section 3 discusses experiments on two original datasets in this
paper and analyzes the experimental results. Section 4 summarizes the work of this paper.

2. Proposed Method

Given a design rendering, we propose a curve segmentation and length measurement
method, as shown in Figure 1. The method includes three steps: “Image Preprocessing,”
“Threshold Segmentation,” and “Length Measurement.” We first obtain the grayscale image,
get the segmentation threshold, and measure the length according to the curve skeleton.
The method is described in detail below.
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2.1. Image Preprocessing

The object of the preprocessing is the original neon design rendering. The goal of
the preprocessing is to obtain a grayscale image for threshold segmentation, including the
three main steps of color space conversion, channel separation, and grayscale processing.

2.1.1. Image Color Space Conversion

On the one hand, the color space description should conform to the visual perception
characteristics of the human eye, and on the other hand, it should be convenient for image
processing. The design renderings are usually in RGB color space, but the color space is
a non-uniform color space [25]. The color of pixels in this color space are far from the
perception of human eyes, so it is not suitable for color image segmentation. However,
the HSV color space is a uniform color space that reflects the human visual perception of
color. Its V component has nothing to do with the color information of the image, and
the H and S components are closely related to the way people perceive color. Therefore,
images are converted from RGB color space to HSV color space by linear or non-linear
transformations [26].

We can convert the (R, G, B) coordinates of a point in RGB color space to (H, S, V)
coordinates in HSV color space using the following formula:

H =


arccos

{
[(R − G)+ R − B

2 ]

[(R − G)2+(R − B)(G − B)]
1
2

}
B ≤ G

2π − arccos

{
[(R − G)+ R − B

2 ]

[(R − G)2+(R − B)(G − B)]
1
2

}
B>G

(1)
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S =
max(R, G, B)−min(R, G, B)

max(R, G, B)
(2)

V =
max(R, G, B)

255
(3)

Images before and after the conversion of a design drawing are shown in Figure 2.
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Figure 2. A rendering of a neon design before and after color space conversion: (a) The design
rendering under the RGB color model; (b) The design rendering under the HSV color model.

2.1.2. HSV Image Channel Separation and Grayscale Processing

Channel separation is the separating of a multi-channel composite image into multiple
single-channel photos. Each single-channel image represents a feature of the multi-channel
composite image. The HSV image consists of three single-channel images of H, S, and
V, representing the three characteristics of the image’s Hue, Saturation, and Value. In
the neon design renderings, the target line representing the neon light strip is brighter
than the background noise, so we can select the V-channel image, representing the feature
of “brightness,” to remove the background noise. The three single-channel images after
channel separation are shown in Figure 3.
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Figure 3. Three single-channel images: (a) The H channel image; (b) The S channel image; (c) The V
channel image.

Although the V-channel image obtained by channel separation can be used as a
grayscale image, the image quality is low. To obtain a high-quality grayscale image, the
common method is to use RGB as an intermediate and use the following equation to
perform grayscale processing.

Gray(x, y)= 0.299R(x, y)+0.587G(x, y)+0.114B(x, y) (4)

where Gray(x, y) represents the grayscale value of the pixel, whose coordinates are (x, y)
on the image after grayscale processing, and R(x, y), G(x, y), and B(x, y) represent the
pixel’s R, G, and B channel components. The result of the grayscale processing is shown in
Figure 4.



Sensors 2022, 22, 5761 5 of 19

Sensors 2022, 22, x FOR PEER REVIEW 5 of 20 
 

 

Gray൫x, y൯ = 0.299R൫x, y൯ + 0.587G൫x, y൯ + 0.114B൫x, y൯ (4)

Where Gray൫x, y൯ represents the grayscale value of the pixel, whose coordinates are ൫x, y൯ on the image after grayscale processing, and R൫x, y൯, G൫x, y൯, and B൫x, y൯ repre-
sent the pixel’s R, G, and B channel components. The result of the grayscale processing is 
shown in Figure 4. 

 
Figure 4. Grayscale image of the V-channel. 

2.2. Curve Extraction 
Due to the variety of background interference in the neon light design, the grayscale 

histogram presents multimodal characteristics. Since the brightness of the target curve is 
higher than the background noise, the peaks of the target curve are always located at the 
far right of the histogram, and we can regard the remaining peaks as “background peaks.” 
The entire histogram presents a “quasi-bimodal” feature.  

This paper proposes a QBTS algorithm based on the “quasi-bimodal” feature of the 
grayscale histogram. The algorithm mainly includes obtaining the grayscale distribution 
chart and the segmentation threshold. We first obtain the grayscale histogram of the gray-
scale image and use the sliding smoothing filter to convolve it to get the grayscale distri-
bution map, and then obtain the segmentation threshold by analyzing the characteristics 
of the peaks and troughs in the grayscale distribution chart. The specific implementation 
steps are shown in Figure 5. 

 
Figure 5. Implementation steps of the QBTS algorithm. 

2.2.1. Get Grayscale Distribution Chart by Sliding Filter Method 
Perform a histogram analysis in Figure 4, and obtain its grayscale histogram as 

shown in Figure 6. The x-axis represents the grayscale value, and the y-axis represents the 
total number of pixels corresponding to each grayscale value in the grayscale image. As-
suming that Nሾ1×256] is the histogram vector of the grayscale image, ሾ1×256] is the size of 

Figure 4. Grayscale image of the V-channel.

2.2. Curve Extraction

Due to the variety of background interference in the neon light design, the grayscale
histogram presents multimodal characteristics. Since the brightness of the target curve is
higher than the background noise, the peaks of the target curve are always located at the
far right of the histogram, and we can regard the remaining peaks as “background peaks.”
The entire histogram presents a “quasi-bimodal” feature.

This paper proposes a QBTS algorithm based on the “quasi-bimodal” feature of the
grayscale histogram. The algorithm mainly includes obtaining the grayscale distribution
chart and the segmentation threshold. We first obtain the grayscale histogram of the
grayscale image and use the sliding smoothing filter to convolve it to get the grayscale dis-
tribution map, and then obtain the segmentation threshold by analyzing the characteristics
of the peaks and troughs in the grayscale distribution chart. The specific implementation
steps are shown in Figure 5.
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2.2.1. Get Grayscale Distribution Chart by Sliding Filter Method

Perform a histogram analysis in Figure 4, and obtain its grayscale histogram as shown
in Figure 6. The x-axis represents the grayscale value, and the y-axis represents the total
number of pixels corresponding to each grayscale value in the grayscale image. Assuming
that N[1×256] is the histogram vector of the grayscale image, [1× 256] is the size of the
histogram vector, and ni represents the number of pixels whose grayscale value is i, then

N[1×256] = [n0, n1, n2, n3, . . . . . . n254, n255] (5)
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The grayscale histogram has many spikes, so it is filtered by sliding average, and
a suitable convolution kernel is selected for linear convolution to make the grayscale
histogram smoother. The convolution kernels chosen in this paper are

H[1×20] =

[
1

20
,

1
20

,
1

20
. . . . . .

1
20

]
(6)

The smoothed new histogram vector is

N′[1×256] =
[
n′0, n′1, n′2, n′3, . . . . . . n′254, n′255

]
(7)

The elements n′i in the new histogram vector satisfy the following formula:

n′i =


19
∑

k=0
ni+k·H[1×20][k], 0 ≤ i ≤ 236

255−i
∑

k=0
ni+k·H[1×20][k] +

i+237
∑

k=0
nk·H[1×20][255− i + k] 237 ≤ i ≤ 255

(8)

The grayscale distribution after the smoothing process is shown in Figure 7.
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2.2.2. Get the Segmentation Threshold by the Quasi-Bimodal Characteristics of the Gray
Distribution Chart

After obtaining the grayscale distribution of the V (Value) channel image, the seg-
mentation threshold is obtained according to the basic idea of the bimodal method. First,
mark the “target peak” and the “background peak” in the grayscale distribution chart,
and then select the trough between the two peaks as the threshold. Since the “value” of
the target curve is the highest, the rightmost peak in the grayscale distribution graph is
marked as the “target peak.” Then the mountain with the most prominent peak among
the remaining peaks is chosen as the “background peak.” When there is more than one
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trough between the “target peak” and the “background peak,” the trough that is closest to
the “target peak” and whose amplitude is less than the average of all the troughs is marked
as the threshold value.

According to the above steps, mark the “target peak,” “background peak,” and “thresh-
old value” in the grayscale distribution diagram, as shown in Figure 8. As can be seen
from Figure 8, the “target peak,” “background peak,” and “threshold” are “245”, “97,” and
“208,” respectively.
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2.3. Length Measurement
2.3.1. Curve Refinement

The image refinement of the binary image obtained by threshold segmentation can
obtain the single-pixel skeleton of the target curve. We use the improved Zhang-Suen
refinement algorithm to refine the target curve [27]. On the one hand, the algorithm
has simple logic and a fast running speed. On the other hand, it also overcomes the
disadvantage of missing some pixels in the traditional Zhang-Suen algorithm, resulting in
partially refined textures that are not single pixels.

Using this algorithm to refine Figure 9, we can obtain a single-pixel skeleton image, as
shown in Figure 10.

2.3.2. Skeleton Length Measurement

After obtaining the single-pixel skeleton of the target curve, the method of directly
counting the number of pixels as the skeleton length has a large error [15–17]. To improve
the measurement accuracy, this paper proposes a single-pixel skeleton length measurement
(SPSLM) algorithm based on the 8-neighborhood model. We can label the 8 pixels adja-
cent to the pixel p1 and use the schematic diagram shown in Figure 11 to represent the
8-neighborhood model of p1. The specific implementation steps are shown in Figure 12.
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B(p 1), N, and C are three parameters determined by the 8-neighborhood of p1, as
shown in Figure 12. B(p 1) represents the number of foreground pixels in the 8-neighborhood
of p1. N and C represent the number of foreground pixels among the 4 pixels directly
adjacent and diagonally adjacent to p1, respectively.

According to the 8-neighborhood model of p1 shown in Figure 11, B(p 1), N, and C
can be represented by the following equations.

B(p1)= p2+p3+p4+p5+p6+p7+p8+p9

N = p2+p4+p6+p8

C = p3+p5+p7+p9

(9)

Next, we discuss the connection between Lp1
and the three parameters of B(p 1), N,

and C. It is important to note that the following discussion of the distribution of pixels in
the 8-neighborhood of pixel p1 has removed the situation that meets the labeling conditions
of the improved Zhang-Suen refinement algorithm. Among them, A denotes the length of
a single pixel, B denotes the diagonal measurement of a single pixel, and Lp1

denotes the
actual length represented by the pixel p1.
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According to the different values of B(p 1), the 8-neighborhood model of p1 is classified
and discussed. The model diagrams are shown in Appendix A.

• If B(p1)= 1, as shown in Figure A1, then there are

{
N = 1, C = 0 : Lp1

= 1 ∗ A + 0 ∗ B

N = 0, C = 1 : Lp1
= 0 ∗ A + 1 ∗ B

⇒ Lp1
= N ∗ A + C ∗ B (10)

• If B(p1)= 2, as shown in Figure A2, then there are


N = 2, C = 0 : Lp1

= 2 ∗ A
2 +0 ∗ B

2

N = 1, C = 1 : Lp1
= 1 ∗ A

2 +1 ∗ B
2

N = 0, C = 2 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

⇒ Lp1
= N ∗ A

2
+C ∗ B

2
(11)

• If B(p1)= 3, as shown in Figure A3, then there are
N = 3, C = 0 : Lp1

= 2 ∗ A
2 +0 ∗ B

2

N = 2, C = 1 : Lp1
= 2 ∗ A

2 +0 ∗ B
2

N = 1, C = 2 : Lp1
= 1 ∗ A

2 +1 ∗ B
2

N = 0, C = 3 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

⇒


N > C : Lp1

= 2 ∗ A
2 +0 ∗ B

2

0 < N < C : Lp1
= 1 ∗ A

2 +1 ∗ B
2

N = 0 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

(12)

• If B(p1)= 4, as shown in Figure A4, then there are

N = 4, C = 0 : Lp1
= 2 ∗ A

2 +0 ∗ B
2

N = 3, C = 1 : Lp1
= 2 ∗ A

2 +0 ∗ B
2

N = 2, C = 2 : Lp1
= 1 ∗ A

2 +1 ∗ B
2

N = 1, C = 3 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

N = 0, C = 4 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

⇒


N > C : Lp1

= 2 ∗ A
2 +0 ∗ B

2

N = C : Lp1
= 1 ∗ A

2 +1 ∗ B
2

N < 0 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

(13)

• If B(p1)= 5, as shown in Figure A5, then there are
N = 4, C = 1 : Lp1

= 2 ∗ A
2 +0 ∗ B

2

N = 3, C = 2 : Lp1
= 2 ∗ A

2 +0 ∗ B
2

N = 2, C = 3 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

N = 1, C = 4 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

⇒
{

N > C : Lp1
= 2 ∗ A

2 +0 ∗ B
2

N < C : Lp1
= 0 ∗ A

2 +2 ∗ B
2

(14)

• If B(p1)= 6, as shown in Figure A6, then there are
N = 4, C = 2 : Lp1

= 2 ∗ A
2 +0 ∗ B

2

N = 3, C = 3 : Lp1
= 1 ∗ A

2 +1 ∗ B
2

N = 2, C = 4 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

⇒


N > C : Lp1

= 2 ∗ A
2 +0 ∗ B

2

N = C : Lp1
= 1 ∗ A

2 +1 ∗ B
2

N < 0 : Lp1
= 0 ∗ A

2 +2 ∗ B
2

(15)

• If B(p1)= 7, as shown in Figure A7, then there are

{
N = 4, C = 3 : Lp1

= 2 ∗ A
2 +0 ∗ B

2

N = 3, C = 4 : Lp1
= 0 ∗ A

2 +2 ∗ B
2
⇒

{
N > C : Lp1

= 2 ∗ A
2 +0 ∗ B

2

N < C : Lp1
= 0 ∗ A

2 +2 ∗ B
2

(16)

• If B(p1)= 8, as shown in Figure A8, then there are

N = 4, C = 4 : Lp1
= 0 ∗ A

2
+2 ∗ B

2
⇒ Lp1

= 0 ∗ A
2
+2 ∗ B

2
(17)
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Traverse the single-pixel skeleton image and assume that the number of pixels that
satisfy the condition of B(p1)= i is Ni and the pixel length of the target curve skeleton is
LTP, then there is the following formula:

LTP =
8

∑
i=1

Ni

∑
1

Lp1
(18)

2.3.3. Size Transformation

Assumption α represents the scale factor of the pixel size to the actual size in cm/pixel.
Set the length of a single-pixel A to “unit1”, then the proper length of the pixel skeleton
can be calculated by the following formula.

LTR= α × LTP= α ×
8

∑
i=1

Ni

∑
1

Lp1
(19)

3. Experiments and Results

This section shows the experimental results of the proposed QBTS algorithm and
SPSLM algorithm on the original datasets and compares them with the results of other
algorithms. Furthermore, all experiments were performed on an Intel Core i5-9400 2.9 GHz
desktop with 8 GB of RAM.

3.1. Performance Metrics

To evaluate the proposed method, we choose accuracy and running speed as evalua-
tion metrics. The segmentation accuracy of the QBTS algorithm is defined as AccS = Nsame

Ntotal
,

where Nsame represents the number of pixels with the same pixel value in the binary image
obtained after image segmentation by the QBTS algorithm and the binary image of the
standard segmented image, and Ntotal represents the total number of pixels. According to
the expression of AccS, its range is [0, 1]. The measurement accuracy of the SPSLM algo-
rithm is defined as AccM = LM

LR
, where LM represents the length measurement value of the

SPSLM algorithm, and LR represents the reference value obtained by manual measurement.
Since LR is a manual measurement value, there is also a particular error, so in some cases,
the value of AccM may be greater than 1. For the entire dataset, the closer AccM is to 1, the
higher the measurement accuracy of the SPSLM algorithm.

In addition, the running speed of an algorithm is usually measured in terms of running
time. The shorter the time it takes for the algorithm to complete the segmentation or length
measurement, the faster it is.

3.2. Dataset

We conduct experiments on three original datasets to analyze these two algorithms’
accuracy and running speed. Additionally, all images are less than 2000 × 2000 in size and
have different pixel dimensions.

Mini. This dataset contains 12 original neon design renderings, as shown in Figure 13.
In addition, the dataset also includes 12 standard target curves that were segmented
manually by multiple researchers. This dataset is used to test the segmentation accuracy of
the QBTS algorithm.
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Neon Rendering. This dataset contains 198 images, all sourced from the Internet.
These images are actual neon design renderings with patterned curves and backgrounds
with many types of noise inside. This dataset is used to test the running speed of the
QBTS algorithm.

Neon Curve. This dataset contains 139 images of neon pattern curves without noise
interference and 139 corresponding single-pixel skeleton images. Hunan Kangxuan Tech-
nology Co., Ltd. provides the original images and the corresponding curve length value.
The single-pixel skeleton image is obtained by refining the original picture through the
improved Zhang-Suen algorithm. This dataset is used to test the measurement accuracy
and running speed of the SPSLM algorithm.

3.3. Experimental Results
3.3.1. Performance Analysis of the QBTS Algorithm

• Accuracy of Segmentation

To test the segmentation accuracy of the QBTS algorithm, we compared it with the
OTSU algorithm and the bimodal method. We used three threshold segmentation algo-
rithms to segment the images of the mini dataset, and the experimental results are shown
in Figure 14. Each image segmentation result consists of four images. From left to right are
the original image, the binary image of the standard target curve, and the binary image
obtained by dividing the QBTS algorithm, the OTSU algorithm, and the bimodal method,
respectively. It can be seen intuitively from Figure 14 that the similarity between the binary
image segmented by the QBTS algorithm and the standard binary image is the highest. The
images segmented by the other two algorithms still have varying degrees of noise inter-
ference, and even the target curve cannot be seen in some segmented images. The results
show that the segmentation result of the QBTS algorithm is better, and it can accurately
remove noise interference and segment the target curve.

To conduct a more accurate quantitative analysis of the segmentation accuracy of
the QBTS algorithm, we calculated the segmentation accuracy of the three algorithms
according to the definition of AccS, as shown in Figure 15. The ordinate in the figure is the
segmentation accuracy of the three algorithms.
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The results show that the average segmentation accuracy of the QBTS algorithm is
97.9%, much higher than the 89.6% and 64.4% of the other two algorithms. At the same time,
the distribution of the segmentation accuracy of the algorithm is also more concentrated,
indicating that the QBTS algorithm has higher robustness. At the same time, we also
noticed that the segmented images obtained using the QBTS algorithm are not entirely
accurate. There are two main reasons for this: on the one hand, the QBTS algorithm belongs
to the global threshold segmentation algorithm and can’t segment all the boundaries of the
target curve very finely and accurately. On the other hand, researchers manually segment
the reference images of the dataset, and in this process, errors will inevitably occur and
affect the experimental results.

• Running Speed of QBTS Algorithm

In addition to testing segmentation accuracy, this paper also conducts experiments on
the running speed of the QBTS algorithm on the Neon rendering dataset. Figure 16 shows
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the time required for each of the three algorithms to segment images in the dataset Neon
rendering. To compare the segmentation speed more intuitively, we calculated the ratio of
the time required by the QBTS algorithm and the OTSU algorithm for segmentation to the
time needed for the Bimodal algorithm, as shown in Figure 17.
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We can see from Figure 16 that the time consumed by the QBTS algorithm to segment
images is generally shorter than the other two algorithms. In addition, the figure has some
discrete points outside the 1.5IQR range. The main reason is that the time complexity of
the QBTS algorithm is O(mn), where m× n represents the size of the image. The running
time is closely related to the image size, so some images with larger sizes will take longer
to process. We can see from Figure 17 that the average values of the split time ratios of
the OTSU algorithm, the QBTS algorithm, and the Bimodal algorithm are 0.98 and 0.47,
respectively. It shows that for the same image, the segmentation time of the QBTS algorithm
is shorter, the segmentation speed is faster, and the segmentation speed has increased by
about 50%.

To compare the performance of these three image segmentation algorithms more
intuitively and clearly, we summarize and extract the key data from Figures 15–17, as
shown in Table 1. It can be seen from Table 1 that the performance of the QBTS algorithm
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is much better than that of the OTSU algorithm and the Bimodal algorithm in terms of
average segmentation accuracy and segmentation speed.

Table 1. Summary and comparison of average accuracy and running speed of three threshold
segmentation algorithms.

Method Average Accuracy (%) Time / Time Bimodal

QBTS 97.9 0.47
OTSU 89.6 0.98

Bimodal 64.4 1

According to the above experimental results, the QBTS algorithm proposed in this
paper performs better when segmenting the target curve from the neon sign design drawing
with complex background noise interference. Compared with the OTSU and Bimodal
algorithms, it has better segmentation accuracy, robustness, and faster segmentation speed.

3.3.2. Performance Analysis of the SPSLM Algorithm

• Accuracy of Measurement

Figure 18 shows the length measurement accuracy of the SPSLM algorithm and
the other four methods. The SPSLM algorithm in the figure is a single-pixel skeleton
length measurement algorithm based on the 8-neighborhood model proposed in this paper.
Method 1, Method 2, Method 3, and Method 4 are methods for measuring curve lengths
used in [13–15], [16–20], [12], and [21,22], respectively.
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We can see from Figure 18 that the average measurement accuracy of the SPSLM
algorithm proposed in this paper is 99.1%, and the average measurement accuracy of
the other four methods is 88.3%, 92.5%, 19.9%, and 88.1%, respectively; it shows that
the accuracy of the SPSLM algorithm is higher. At the same time, we can also see that
some values are greater than 100%. This phenomenon is also consistent with our analysis
of AccM.

• Running Speed of SPSLM Algorithm

After the accuracy test, we ran the SPSLM algorithm’s speed test on the Neon Curve
dataset. Figure 19 shows the running speed of the length measurement algorithms. The
results show that the average measurement time of Method 3 is 0.001s, which is much
shorter than other methods. Because Method 3 mainly estimates the length through the
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area range, it has the advantage of low time complexity, but the measurement accuracy is
also very low. The average measurement time of Method 4 is 6.90s, much higher than the
other four methods. The method includes canny edge detection, image refinement, and
skeleton length measurement. The processing process is cumbersome and time-consuming.
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Figure 20 shows the running speeds of SPSLM, Method 1, and Method 2 separately.
Their average measurement times were 0.615s, 0.565s, and 0.577s, respectively, which were
the same and had similar distributions. Because the measurement principle of these three
methods is first to perform image refinement to obtain a single-pixel skeleton and then
measure the length of the structure, their time complexity is the same, so the measurement
speed is the same.
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To compare the performance of these five length measurement methods more intu-
itively and clearly, we summarize and extract the pivotal data from Figures 18–20, as shown
in Table 2. As can be seen from Table 2, in terms of measurement accuracy, the average
accuracy of the SPSLM algorithm is much higher than that of other algorithms. In terms
of measurement speed, on the premise of ensuring the necessary accuracy, the average
running speed of the SPSLM algorithm is comparable to Method 1 and Method 2, and both
are much faster than Method 4.
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Table 2. Summary and comparison of average accuracy and running time of five length measure-
ment algorithms.

Method Average Accuracy (%) Average Running Time (S)

SPSLM 99.1 0.615
Method 1 88.3 0.565
Method 2 92.5 0.577
Method 3 19.9 0.001
Method 4 88.1 6.90

Based on the above analysis of the running speed and the measurement accuracy, the
SPSLM algorithm dramatically improves the measurement accuracy while maintaining
a low algorithm complexity, and its overall performance is better than the other length
measurement methods.

4. Conclusions

This paper used digital image processing techniques to measure the length of irregular
curves in neon design renderings. Firstly, a new QBTS algorithm was proposed to segment
and extract the target curve. Then, a single-pixel skeleton length measurement algorithm
based on the 8-neighborhood model was proposed to measure the length of the skeleton of
the target curve. Finally, we conducted tests on the three original datasets of this paper,
respectively. The results showed that the average segmentation accuracy of the QBTS
algorithm was 97.9%, and the segmentation speed was more than 50% higher than the
other two algorithms. The average measurement accuracy of the length measurement
algorithm was 99.1%, higher than the four existing length measurement algorithms, and
the measurement speed was comparable.

The above results demonstrate that the two algorithms proposed in this paper can be
used for the problem of “accurately segmenting irregular target curves from images with
background interference and measuring their length accurately”, and can be applied in
engineering practice. Subsequent research will further improve the segmentation accuracy
and applicability of the threshold segmentation algorithm, laying a solid foundation for
future applications in more areas of target curve segmentation.
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Appendix A

In this appendix, we show the 8-neighborhood model diagrams of p1 corresponding
to different values of B(p1).
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