Investigating Stroke Effects on Respiratory Parameters Using a Wearable Device: A Pilot Study on Hemiplegic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wearable Device
2.2. Reference Device
2.3. Experimental Protocol
- Eupnea trial: self-paced eupnea, 10 s apnea, approximately 60 s of self-paced eupnea, and 10 s apnea;
- Tachypnea trial: self-paced breathing, 10 s apnea, approximately 40 s of self-paced tachypnea, and 10 s apnea.
2.4. Data Analysis
2.4.1. Preprocessing
2.4.2. Frequency-Based Method
2.4.3. Time-Based Method
- Mean of Differences (MOD): difference between the estimated p by the mocap and the one estimated by the WD;
- Limits of Agreement (LOA): MOD ± (1.96 · SD (p));
- LOA amplitude (LOA amp): 2 · (1.96 · SD (p)).
3. Results
3.1. Frequency-Based Method
3.2. Time-Based Method
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OEP | Opto-electronic plethysmography |
FBG | Fiber Bragg grating |
WD | wearable device |
PCB | Printed circuit board |
mocap | motion capture system |
Rc | Rib cage |
AB | Abdomen |
BMI | Body mass index |
PSD | Power spectral density |
MAE | Mean absolute error |
bpm | Breaths-per-minute |
BA | Bland-Altman |
MOD | Mean of differneces |
LOA | Limits of agreement |
References
- Tulchinsky, T.H.; Varavikova, E.A. Measuring, Monitoring, and Evaluating the Health of a Population. New Public Health 2014, 91–147. [Google Scholar] [CrossRef]
- Surveillance and Monitoring of Health-Related Indicators. Available online: http://www.emro.who.int/about-who/public-health-functions/surveillance-and-monitoring-of-health-related-indicators.html (accessed on 1 August 2022).
- Viglino, D.; L’her, E.; Maltais, F.; Maignan, M.; Lellouche, F. Evaluation of a new respiratory monitoring tool “Early Warning ScoreO2” for patients admitted at the emergency department with dyspnea. Resuscitation 2020, 148, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Polsky, M.B.; Moraveji, N. Early identification and treatment of COPD exacerbation using remote respiratory monitoring. Respir. Med. Case Rep. 2021, 34, 101475. [Google Scholar] [CrossRef] [PubMed]
- Bardoczky, G.; Engelman, E.; Levarlet, M.; Simon, P. Ventilatory effects of pneumoperitoneum monitored with continuous spirometry. Anaesthesia 1993, 48, 309–311. [Google Scholar] [CrossRef]
- Hnizdo, E.; Glindmeyer, H.; Petsonk, E. Workplace spirometry monitoring for respiratory disease prevention: A methods review [State of the art]. Int. J. Tuberc. Lung Dis. 2010, 14, 796–805. [Google Scholar]
- García-Río, F.; Calle, M.; Burgos, F.; Casan, P.; Del Campo, F.; Galdiz, J.B.; Giner, J.; González-Mangado, N.; Ortega, F.; Maestu, L.P. Spirometry. Arch. Bronconeumol. (Engl. Ed.) 2013, 49, 388–401. [Google Scholar] [CrossRef]
- Yuminaka, Y.; Mori, T.; Watanabe, K.; Hasegawa, M.; Shirakura, K. Non-contact vital sensing systems using a motion capture device: Medical and healthcare applications. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2016; Volume 698, pp. 171–176. [Google Scholar]
- Tamiya, H.; Mitani, A.; Isago, H.; Ishimori, T.; Saito, M.; Jo, T.; Tanaka, G.; Yanagimoto, S.; Nagase, T. Measurement of chest wall motion using a motion capture system with the one-pitch phase analysis method. Sci. Rep. 2021, 11, 21497. [Google Scholar] [CrossRef]
- Aliverti, A.; Dellaca, R.; Pelosi, P.; Chiumello, D.; Pedotti, A.; Gattinoni, L. Optoelectronic plethysmography in intensive care patients. Am. J. Respir. Crit. Care Med. 2000, 161, 1546–1552. [Google Scholar] [CrossRef]
- Parreira, V.F.; Vieira, D.S.; Myrrha, M.A.; Pessoa, I.M.; Lage, S.M.; Britto, R.R. Optoelectronic plethysmography: A review of the literature. Braz. J. Phys. Ther. 2012, 16, 439–453. [Google Scholar] [CrossRef]
- Dellaca, R.L.; Ventura, M.L.; Zannin, E.; Natile, M.; Pedotti, A.; Tagliabue, P. Measurement of total and compartmental lung volume changes in newborns by optoelectronic plethysmography. Pediatr. Res. 2010, 67, 11–16. [Google Scholar] [CrossRef]
- Punj, R.; Kumar, R. Technological aspects of WBANs for health monitoring: A comprehensive review. Wirel. Netw. 2019, 25, 1125–1157. [Google Scholar] [CrossRef]
- Malwade, S.; Abdul, S.S.; Uddin, M.; Nursetyo, A.A.; Fernandez-Luque, L.; Zhu, X.K.; Cilliers, L.; Wong, C.P.; Bamidis, P.; Li, Y.C.J. Mobile and wearable technologies in healthcare for the ageing population. Comput. Methods Programs Biomed. 2018, 161, 233–237. [Google Scholar] [CrossRef] [PubMed]
- da Costa, T.D.; Vara, M.; Cristino, C.S.; Zanella, T.Z.; Neto, G.N.N.; Nohama, P. Breathing monitoring and pattern recognition with wearable sensors. In Wearable Devices-the Big Wave of Innovation; IntechOpen: London, UK, 2019. [Google Scholar]
- Massaroni, C.; Nicolò, A.; Lo Presti, D.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-based methods for measuring respiratory rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef] [PubMed]
- Oletic, D.; Arsenali, B.; Bilas, V. Low-power wearable respiratory sound sensing. Sensors 2014, 14, 6535–6566. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; An, S.; Tang, Q.; Guo, H.; Hu, C. Wearable triboelectric sensors for biomedical monitoring and human-machine interface. Iscience 2021, 24, 102027. [Google Scholar] [CrossRef]
- Presti, D.L.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.; Longo, U.G.; Formica, D.; Oddo, C.M.; Schena, E. Wearable system based on flexible FBG for respiratory and cardiac monitoring. IEEE Sens. J. 2019, 19, 7391–7398. [Google Scholar] [CrossRef]
- De jonckheere, J.; Narbonneau, F.; D’angelo, L.; Witt, J.; Paquet, B.; Kinet, D.; Kreber, K.; Logier, R. FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications. In Proceedings of the 12th IEEE International Conference on e-Health Networking, Applications and Services, Lyon, France, 1–3 July 2010; pp. 277–282. [Google Scholar]
- Elsarnagawy, T. A simultaneous and validated wearable FBG heartbeat and respiration rate monitoring system. Sens. Lett. 2015, 13, 48–51. [Google Scholar] [CrossRef]
- Wehrle, G.; Nohama, P.; Kalinowski, H.J.; Torres, P.I.; Valente, L.C.G. A fibre optic Bragg grating strain sensor for monitoring ventilatory movements. Meas. Sci. Technol. 2001, 12, 805. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, J.; Wu, H.; Wang, W.; Wang, B.; Liu, H. Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems. Sensors 2012, 12, 13167–13184. [Google Scholar] [CrossRef]
- Brüllmann, G.; Fritsch, K.; Thurnheer, R.; Bloch, K.E. Respiratory monitoring by inductive plethysmography in unrestrained subjects using position sensor-adjusted calibration. Respiration 2010, 79, 112–120. [Google Scholar] [CrossRef]
- Wu, D.; Wang, L.; Zhang, Y.T.; Huang, B.Y.; Wang, B.; Lin, S.J.; Xu, X.W. A wearable respiration monitoring system based on digital respiratory inductive plethysmography. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 4844–4847. [Google Scholar]
- Wijesiriwardana, R. Inductive fiber-meshed strain and displacement transducers for respiratory measuring systems and motion capturing systems. IEEE Sens. J. 2006, 6, 571–579. [Google Scholar] [CrossRef]
- Merritt, C.R.; Nagle, H.T.; Grant, E. Textile-based capacitive sensors for respiration monitoring. IEEE Sens. J. 2008, 9, 71–78. [Google Scholar] [CrossRef]
- Teichmann, D.; Kuhn, A.; Leonhardt, S.; Walter, M. The MAIN shirt: A textile-integrated magnetic induction sensor array. Sensors 2014, 14, 1039–1056. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.K.; Kumagai, S.; Sasaki, M. A wearable capacitive sensor for monitoring human respiratory rate. Jpn. J. Appl. Phys. 2013, 52, 04CL05. [Google Scholar] [CrossRef]
- Min, S.D.; Yun, Y.; Shin, H. Simplified structural textile respiration sensor based on capacitive pressure sensing method. IEEE Sens. J. 2014, 14, 3245–3251. [Google Scholar]
- Massaroni, C.; Di Tocco, J.; Presti, D.L.; Longo, U.G.; Miccinilli, S.; Sterzi, S.; Formica, D.; Saccomandi, P.; Schena, E. Smart textile based on piezoresistive sensing elements for respiratory monitoring. IEEE Sens. J. 2019, 19, 7718–7725. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Zhai, H.; Jin, L.; Chen, K.; Yi, Y.; Gao, Y.; Xu, L.; Zheng, Y.; Yao, S.; et al. A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chem. Eng. J. 2021, 426, 130869. [Google Scholar] [CrossRef]
- Choi, S.; Jiang, Z. A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens. Actuators A Phys. 2006, 128, 317–326. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, R.; He, T.; Xu, F.; Sun, J. Interface-controlled conductive fibers for wearable strain sensors and stretchable conducting wires. ACS Appl. Mater. Interfaces 2018, 10, 14087–14096. [Google Scholar] [CrossRef]
- Massaroni, C.; Di Tocco, J.; Bravi, M.; Carnevale, A.; Presti, D.L.; Sabbadini, R.; Miccinilli, S.; Sterzi, S.; Formica, D.; Schena, E. Respiratory monitoring during physical activities with a multi-sensor smart garment and related algorithms. IEEE Sens. J. 2019, 20, 2173–2180. [Google Scholar] [CrossRef]
- Massaroni, C.; Venanzi, C.; Silvatti, A.P.; Lo Presti, D.; Saccomandi, P.; Formica, D.; Giurazza, F.; Caponero, M.A.; Schena, E. Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation. J. Biophotonics 2018, 11, e201700263. [Google Scholar] [CrossRef] [PubMed]
- Annoni, J.M.; Ackermann, D.; Kesselring, J. Respiratory function in chronic hemiplegia. Int. Disabil. Stud. 1990, 12, 78–80. [Google Scholar] [CrossRef]
- Davies, P.M. Right in the Middle: Selective Trunk Activity in the Treatment of Adult Hemiplegia; Springer Science & Business Media: Berlin, Germany, 1990. [Google Scholar]
- Voyvoda, N.; Yücel, C.; Karataş, G.; Oğuzülgen, İ.; Oktar, S. An evaluation of diaphragmatic movements in hemiplegic patients. Br. J. Radiol. 2012, 85, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Lanini, B.; Bianchi, R.; Romagnoli, I.; Coli, C.; Binazzi, B.; Gigliotti, F.; Pizzi, A.; Grippo, A.; Scano, G. Chest wall kinematics in patients with hemiplegia. Am. J. Respir. Crit. Care Med. 2003, 168, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Aliverti, A.; Dellacà, R.; Pelosi, P.; Chiumello, D.; Gattinoni, L.; Pedotti, A. Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann. Biomed. Eng. 2001, 29, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, R.; Gigliotti, F.; Romagnoli, I.; Lanini, B.; Castellani, C.; Binazzi, B.; Stendardi, L.; Grazzini, M.; Scano, G. Patterns of chest wall kinematics during volitional pursed-lip breathing in COPD at rest. Respir. Med. 2007, 101, 1412–1418. [Google Scholar] [CrossRef]
- Massaroni, C.; Silvatti, A.P.; Levai, I.K.; Dickinson, J.; Winter, S.; Schena, E.; Silvestri, S. Comparison of marker models for the analysis of the volume variation and thoracoabdominal motion pattern in untrained and trained participants. J. Biomech. 2018, 76, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Ferrigno, G.; Carnevali, P.; Aliverti, A.; Molteni, F.; Beulcke, G.; Pedotti, A. Three-dimensional optical analysis of chest wall motion. J. Appl. Physiol. 1994, 77, 1224–1231. [Google Scholar] [CrossRef]
- Massaroni, C.; Senesi, G.; Schena, E.; Silvestri, S. Analysis of breathing via optoelectronic systems: Comparison of four methods for computing breathing volumes and thoraco-abdominal motion pattern. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1678–1689. [Google Scholar] [CrossRef]
- Massaroni, C.; Cassetta, E.; Silvestri, S. A novel method to compute breathing volumes via motion capture systems: Design and experimental trials. J. Appl. Biomech. 2017, 33, 361–365. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Aliverti, A.; Pedotti, A. Opto-electronic plethysmography. In Mechanics of Breathing; Springer: Milano, Italy, 2002; pp. 47–59. [Google Scholar]
- Flesch, J.D.; Dine, C.J. Lung volumes: Measurement, clinical use, and coding. Chest 2012, 142, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Dias, M.; Folgado, D.; Nunes, M.; Namburi, P.; Anthony, B.; Carvalho, D.; Carvalho, M.; Edelman, E.; Gamboa, H. Respiratory Inductance Plethysmography to Assess Fatigability during Repetitive Work. Sensors 2022, 22, 4247. [Google Scholar] [CrossRef]
- Järvelä, K.; Takala, P.; Michard, F.; Vikatmaa, L. Clinical evaluation of a wearable sensor for mobile monitoring of respiratory rate on hospital wards. J. Clin. Monit. Comput. 2022, 36, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Lanini, B.; Masolini, M.; Bianchi, R.; Binazzi, B.; Romagnoli, I.; Gigliotti, F.; Scano, G. Chest wall kinematics during voluntary cough in neuromuscular patients. Respir. Physiol. Neurobiol. 2008, 161, 62–68. [Google Scholar] [CrossRef]
- Cesareo, A.; Biffi, E.; Cuesta-Frau, D.; D’Angelo, M.G.; Aliverti, A. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units. Med. Biol. Eng. Comput. 2020, 58, 785–804. [Google Scholar] [CrossRef]
- Konno, K.; Mead, J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J. Appl. Physiol. 1967, 22, 407–422. [Google Scholar] [CrossRef] [Green Version]
Patient ID | Age [year] | Height [m] | Mass [kg] | BMI [kg/m2] | Affected Side | Severity |
---|---|---|---|---|---|---|
1 | 62 | 1.70 | 77 | 26.6 | left | 32 |
2 | 46 | 1.61 | 50 | 19.3 | right | 33 |
3 | 64 | 1.74 | 99 | 32.7 | right | 43 |
4 | 33 | 1.68 | 54 | 19.1 | left | 55 |
5 | 55 | 1.68 | 49 | 17.4 | right | 50 |
6 | 43 | 1.65 | 75 | 27.6 | left | 34 |
Patient ID | Eupnea | Tachypnea | ||||
---|---|---|---|---|---|---|
tt | hh | aa | tt | hh | aa | |
1 | 0.00 | 1.00 | 0.00 | 0.00 | 2.01 | 0.00 |
2 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 2.01 |
3 | 0.01 | 0.01 | 0.01 | −0.01 | −0.01 | 5.99 |
4 | 0.00 | 0.00 | −1.00 | −0.01 | −0.01 | −0.01 |
5 | 0.00 | 1.02 | −1.01 | 0.00 | 0.00 | 0.00 |
6 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 |
Mean | 0.00 | 0.34 | −0.33 | 0.00 | 0.33 | 1.33 |
MAE | 0.00 | 0.34 | 0.34 | 0.01 | 0.34 | 1.34 |
Eupnea | Tachypnea | |||||
---|---|---|---|---|---|---|
tt | hh | aa | tt | hh | aa | |
[bpm] | ||||||
MOD | 0.23 | 0.07 | −0.04 | 0.03 | −0.57 | 0.05 |
LOA amp | 9.00 | 3.14 | 7.21 | 9.96 | 17.93 | 27.90 |
MAE | 0.50 | 0.55 | 0.96 | 2.64 | 3.14 | 3.24 |
[s] | ||||||
MOD | 0.37 | 0.36 | 0.16 | 0.18 | 0.16 | 0.14 |
LOA amp | 1.47 | 1.96 | 2.15 | 0.91 | 1.16 | 1.44 |
MAE | 0.42 | 0.49 | 0.46 | 0.23 | 0.25 | 0.27 |
[s] | ||||||
MOD | −0.41 | −0.37 | −0.18 | −0.18 | −0.15 | −0.14 |
LOA amp | 1.77 | 2.06 | 2.05 | 0.96 | 1.45 | 1.18 |
MAE | 0.42 | 0.49 | 0.46 | 0.44 | 0.26 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Tocco, J.; Lo Presti, D.; Zaltieri, M.; Bravi, M.; Morrone, M.; Sterzi, S.; Schena, E.; Massaroni, C. Investigating Stroke Effects on Respiratory Parameters Using a Wearable Device: A Pilot Study on Hemiplegic Patients. Sensors 2022, 22, 6708. https://doi.org/10.3390/s22176708
Di Tocco J, Lo Presti D, Zaltieri M, Bravi M, Morrone M, Sterzi S, Schena E, Massaroni C. Investigating Stroke Effects on Respiratory Parameters Using a Wearable Device: A Pilot Study on Hemiplegic Patients. Sensors. 2022; 22(17):6708. https://doi.org/10.3390/s22176708
Chicago/Turabian StyleDi Tocco, Joshua, Daniela Lo Presti, Martina Zaltieri, Marco Bravi, Michelangelo Morrone, Silvia Sterzi, Emiliano Schena, and Carlo Massaroni. 2022. "Investigating Stroke Effects on Respiratory Parameters Using a Wearable Device: A Pilot Study on Hemiplegic Patients" Sensors 22, no. 17: 6708. https://doi.org/10.3390/s22176708