Classification of Wheelchair Related Shoulder Loading Activities from Wearable Sensor Data: A Machine Learning Approach
Abstract
:1. Introduction
1.1. Background
1.2. Aims and Contribution
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Experimental Trials
2.4. Video Annotation
2.5. Machine Learning and Deep Learning Techniques
2.6. Data Organization and Performance Measures
3. Results
4. Discussion
4.1. Future Research
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnet, U.; de Vries, W.H.; Eriks-Hoogland, I.; Wisianowsky, C.; van der Woude, L.H.V.; Veeger, D.; Berger, M. MRI evaluation of shoulder pathologies in wheelchair users with spinal cord injury and the relation to shoulder pain. J. Spinal Cord Med. 2021, 1–14. [Google Scholar] [CrossRef]
- Boninger, M. Repetitive strain injuries in manual wheelchair users. In Biomedical Aspects of Manual Wheelchair Propulsion; IOS Press: Amsterdam, The Netherlands, 1999; pp. 115–120. [Google Scholar]
- Boninger, M. Shoulder imaging abnormalities in individuals with paraplegia. J. Rehabil. Res. Dev. 2001, 38, 8. [Google Scholar]
- Boninger, M. Shoulder Magnetic Resonance Imaging Abnormalities, Wheelchair Propulsion, and Gender. Arch. Phys. Med. Rehabil. 2003, 84, 6. [Google Scholar] [CrossRef]
- Bossuyt, F.M. Shoulder pain in the Swiss spinal cord injury community: Prevalence and associated factors. Disabil. Rehabil. 2019, 40, 7. [Google Scholar] [CrossRef]
- Eriks-Hoogland, I.; Engisch, R.; Brinkhof, M.W.; van Drongelen, S. Acromioclavicular joint arthritis in persons with spinal cord injury compared to able-bodied persons. Top. Spinal Cord Inj. Rehabil. 2012, 18, 128–131. [Google Scholar] [CrossRef]
- Eriks-Hoogland, I.E.; Hoekstra, T.; de Groot, S.; Stucki, G.; Post, M.W.; van der Woude, L.H. Trajectories of musculoskeletal shoulder pain after spinal cord injury: Identification and predictors. J. Spinal Cord Med. 2014, 37, 288–298. [Google Scholar] [CrossRef]
- Gironda, R.J.; Clark, M.E.; Neugaard, B.; Nelson, A. Upper limb pain in a national sample of veterans with paraplegia. J. Spinal Cord Med. 2004, 27, 120–127. [Google Scholar] [CrossRef]
- Jahanian, O.; Van Straaten, M.G.; Goodwin, B.M.; Lennon, R.J.; Barlow, J.D.; Murthy, N.S.; Morrow, M.M. Shoulder magnetic resonance imaging findings in manual wheelchair users with spinal cord injury. J. Spinal Cord Med. 2022, 45, 564–574. [Google Scholar] [CrossRef]
- Jensen, M.P.; Hoffman, A.J.; Cardenas, D.D. Chronic pain in individuals with spinal cord injury: A survey and longitudinal study. Spinal Cord 2005, 43, 704–712. [Google Scholar] [CrossRef]
- Turner, J.A.; Cardenas, D.D.; Warms, C.A.; McClellan, C.B. Chronic pain associated with spinal cord injuries: A community survey. Arch. Phys. Med. Rehabil. 2001, 82, 501–509. [Google Scholar] [CrossRef]
- Eriks-Hoogland, I.E.; de Groot, S.; Post, M.W.; van der Woude, L.H. Correlation of shoulder range of motion limitations at discharge with limitations in activities and participation one year later in persons with spinal cord injury. J. Rehabil. Med. 2011, 43, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Requejo, P.; Mulroy, S.; Haubert, L.L.; Newsam, C.; Gronley, J.; Perry, J. Evidence-Based Strategies to Preserve Shoulder Function in Manual Wheelchair Users with Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2008, 13, 86–119. [Google Scholar] [CrossRef]
- Gutierrez, D. The relationship of shoulder pain intensity to quality of life, physical activity, and community participation in persons with paraplegia. J. Spinal Cord Med. 2007, 30, 251–255. [Google Scholar] [CrossRef]
- Figoni, S.F. Overuse shoulder problems after spinal cord injury: A conceptual model of risk and protective factors. Clin. Kinesiol. 2009, 63, 12. [Google Scholar]
- Janssen, T.; Van Oers, C.; Van der Woude, L.; Hollander, A.P. Physical strain in daily life of wheelchair users with spinal cord injuries. Med. Sci. Sport. Exerc. 1994, 26, 661–670. [Google Scholar] [CrossRef]
- Van Drongelen, S.; Van der Woude, L.H.; Janssen, T.W.; Angenot, E.L.; Chadwick, E.K.; Veeger, D.H. Mechanical load on the upper extremity during wheelchair activities. Arch. Phys. Med. Rehabil. 2005, 86, 1214–1220. [Google Scholar] [CrossRef]
- Veeger, H.E.J.; Rozendaal, L.A.; Van der Helm, F.C.T. Load on the shoulder in low intensity wheelchair propulsion. Clin. Biomech. 2002, 17, 211–218. [Google Scholar] [CrossRef]
- Lemay, V.; Routhier, F.; Noreau, L.; Phang, S.H.; Ginis, K.A. Relationships between wheelchair skills, wheelchair mobility and level of injury in individuals with spinal cord injury. Spinal Cord 2012, 50, 37–41. [Google Scholar] [CrossRef]
- Hoozemans, M.J.; Van Der Beek, A.J.; Fringsdresen, M.H.; Van Dijk, F.J.; Van Der Woude, L.H. Pushing and pulling in relation to musculoskeletal disorders: A review of risk factors. Ergonomics 1998, 41, 757–781. [Google Scholar] [CrossRef]
- Winkel, J.; Mathiassen, S.E. Assessment of physical work load in epidemiologic studies: Concepts, issues and operational considerations. Ergonomics 1994, 37, 979–988. [Google Scholar] [CrossRef]
- Cook, J.L.; Purdam, C.R. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br. J. Sport. Med. 2009, 43, 409–416. [Google Scholar] [CrossRef]
- Hurd, W.J.; Morrow, M.M.; Kaufman, K.R.; An, K.N. Wheelchair propulsion demands during outdoor community ambulation. J. Electromyogr. Kinesiol. 2009, 19, 942–947. [Google Scholar] [CrossRef] [Green Version]
- Mercer, J.L.; Boninger, M.; Koontz, A.; Ren, D.; Dyson-Hudson, T.; Cooper, R. Shoulder joint kinetics and pathology in manual wheelchair users. Clin. Biomech. 2006, 21, 781–789. [Google Scholar] [CrossRef]
- Morrow, M.M.; Hurd, W.J.; Kaufman, K.R.; An, K.N. Shoulder demands in manual wheelchair users across a spectrum of activities. J. Electromyogr. Kinesiol. 2010, 20, 61–67. [Google Scholar] [CrossRef]
- Van Drongelen, S.; Boninger, M.L.; Impink, B.G.; Khalaf, T. Ultrasound imaging of acute biceps tendon changes after wheelchair sports. Arch. Phys. Med. Rehabil. 2007, 88, 381–385. [Google Scholar] [CrossRef]
- Van Drongelen, S.; de Groot, S.; Veeger, H.E.; Angenot, E.L.; Dallmeijer, A.J.; Post, M.W.; van der Woude, L.H. Upper extremity musculoskeletal pain during and after rehabilitation in wheelchair-using persons with a spinal cord injury. Spinal Cord 2006, 44, 152–159. [Google Scholar] [CrossRef]
- Van Drongelen, S.; van der Woude, L.H.; Janssen, T.W.; Angenot, E.L.; Chadwick, E.K.; Veeger, D.H. Glenohumeral contact forces and muscle forces evaluated in wheelchair-related activities of daily living in able-bodied subjects versus subjects with paraplegia and tetraplegia. Arch. Phys. Med. Rehabil. 2005, 86, 1434–1440. [Google Scholar] [CrossRef]
- Beirens, B.J.H.; Bossuyt, F.M.; Arnet, U.; van der Woude, L.H.V.; de Vries, W.H.K. Shoulder Pain Is Associated with Rate of Rise and Jerk of the Applied Forces During Wheelchair Propulsion in Individuals with Paraplegic Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2021, 102, 856–864. [Google Scholar] [CrossRef]
- Bossuyt, F.M.; Boninger, M.L.; Cools, A.; Hogaboom, N.; Eriks-Hoogland, I.; Arnet, U. Changes in supraspinatus and biceps tendon thickness: Influence of fatiguing propulsion in wheelchair users with spinal cord injury. Spinal Cord 2020, 58, 324–333. [Google Scholar] [CrossRef]
- Hogaboom, N.S.; Worobey, L.A.; Boninger, M.L. Transfer Technique Is Associated with Shoulder Pain and Pathology in People with Spinal Cord Injury: A Cross-Sectional Investigation. Arch. Phys. Med. Rehabil. 2016, 97, 1770–1776. [Google Scholar] [CrossRef]
- Klemt, C.; Prinold, J.A.; Morgans, S.; Smith, S.H.L.; Nolte, D.; Reilly, P.; Bull, A.M. Analysis of shoulder compressive and shear forces during functional activities of daily life. Clin. Biomech. 2018, 54, 34–41. [Google Scholar] [CrossRef]
- Mulroy, S.J.; Hatchett, P.; Eberly, V.J.; Lighthall Haubert, L.; Conners, S.; Requejo, P.S. Shoulder Strength and Physical Activity Predictors of Shoulder Pain in People with Paraplegia from Spinal Injury: Prospective Cohort Study. Phys. Ther. 2015, 95, 1027–1038. [Google Scholar] [CrossRef] [Green Version]
- Vegter, R.J.; Hartog, J.; de Groot, S.; Lamoth, C.J.; Bekker, M.J.; van der Scheer, J.W.; van der Woude, L.H.; Veeger, D.H. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. J. Neuroeng. Rehabil. 2015, 12, 26. [Google Scholar] [CrossRef]
- Arnet, U.; van Drongelen, S.; Scheel-Sailer, A.; van der Woude, L.H.; Veeger, D.H. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia. J. Rehabil. Med. 2012, 44, 222–228. [Google Scholar] [CrossRef]
- Arnet, U.; van Drongelen, S.; van der Woude, L.H.; Veeger, D.H. Shoulder load during handcycling at different incline and speed conditions. Clin. Biomech. 2012, 27, 1–6. [Google Scholar] [CrossRef]
- Ding, D.; Hiremath, S.V.; Chung, Y.; Cooper, R. Detection of Wheelchair User Activities Using Wearable Sensors. In Proceedings of the Universal Access in Human-Computer Interaction. Context Diversity, Orlando, FL, USA, 9–14 July 2011; pp. 145–152. [Google Scholar]
- Hellmers, S.; Peng, L.; Lau, S.; Diekmann, R.; Elgert, L.; Bauer, J.M.; Hein, A.; Fudickar, S.J. Activity Scores of Older Adults based on Inertial Measurement Unit Data in Everyday Life. In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies—Volume 5: HEALTHINF; SciTePress: Setúbal, Portugal, 2020; pp. 579–585. ISBN 978-989-758-398-8. [Google Scholar] [CrossRef]
- Luinge, H.J.; Veltink, P.H. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med. Biol. Eng. Comput. 2005, 43, 9. [Google Scholar] [CrossRef]
- Lateef, R.A.; Abbas, A.R. Human Activity Recognition using Smartwatch and Smartphone: A Review on Methods, Applications, and Challenges. Iraqi J. Sci. 2022, 63, 363–379. [Google Scholar] [CrossRef]
- Straczkiewicz, M.; James, P.; Onnela, J.P. A systematic review of smartphone-based human activity recognition methods for health research. NPJ Digit. Med. 2021, 4, 148. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Sensors 2022, 22, 1476. [Google Scholar] [CrossRef]
- Garcia-Masso, X.; Serra-Ano, P.; Gonzalez, L.M.; Ye-Lin, Y.; Prats-Boluda, G.; Garcia-Casado, J. Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers. Spinal Cord 2015, 53, 772–777. [Google Scholar] [CrossRef]
- Hiremath, S.V.; Ding, D.; Farringdon, J.; Vyas, N.; Cooper, R.A. Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury. Spinal Cord 2013, 51, 705–709. [Google Scholar] [CrossRef]
- Hiremath, S.V.; Intille, S.S.; Kelleher, A.; Cooper, R.A.; Ding, D. Detection of physical activities using a physical activity monitor system for wheelchair users. Med. Eng. Phys. 2015, 37, 68–76. [Google Scholar] [CrossRef]
- Popp, W.L.; Brogioli, M.; Leuenberger, K.; Albisser, U.; Frotzler, A.; Curt, A.; Gassert, R.; Starkey, M.L. A novel algorithm for detecting active propulsion in wheelchair users following spinal cord injury. Med. Eng. Phy.s 2016, 38, 267–274. [Google Scholar] [CrossRef]
- Postma, K.; van den Berg-Emons, H.J.G.; Bussmann, J.B.J.; Sluis, T.A.R.; Bergen, M.P.; Stam, H.J. Validity of the detection of wheelchair propulsion as measured with an Activity Monitor in patients with spinal cord injury. Spinal Cord 2005, 43, 550–557. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Nanba, K.; Furusawa, K.; Yamamoto, H.; Tokuhiro, A.; Ukida, H. Measurement of wheelchair users’ activity level for developing a small device. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, 11–14 May 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Bourahmoune, K.; Ishac, K.; Amagasa, T. Intelligent Posture Training: Machine-Learning-Powered Human Sitting Posture Recognition Based on a Pressure-Sensing IoT Cushion. Sensors 2022, 22, 5337. [Google Scholar] [CrossRef]
- Hiremath, S.V.; Ding, D. Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Hiremath, S.V.; Ding, D. Evaluation of activity monitors in manual wheelchair users with paraplegia. J. Spinal Cord Med. 2011, 34, 110–117. [Google Scholar] [CrossRef]
- Hiremath, S.V.; Ding, D.; Farringdon, J.; Cooper, R.A. Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor. Arch. Phys. Med. Rehabil. 2012, 93, 1937–1943. [Google Scholar] [CrossRef]
- Hiremath, S.V.; Intille, S.S.; Kelleher, A.; Cooper, R.A.; Ding, D. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System. Arch. Phys. Med. Rehabil. 2016, 97, 1146–1153.e1. [Google Scholar] [CrossRef]
- Popp, W.L.; Richner, L.; Brogioli, M.; Wilms, B.; Spengler, C.M.; Curt, A.E.P.; Starkey, M.L.; Gassert, R. Estimation of Energy Expenditure in Wheelchair-Bound Spinal Cord Injured Individuals Using Inertial Measurement Units. Front. Neurol. 2018, 9, 478. [Google Scholar] [CrossRef]
- Popp, W.L.; Schneider, S.; Bar, J.; Bosch, P.; Spengler, C.M.; Gassert, R.; Curt, A. Wearable Sensors in Ambulatory Individuals with a Spinal Cord Injury: From Energy Expenditure Estimation to Activity Recommendations. Front. Neurol. 2019, 10, 1092. [Google Scholar] [CrossRef]
- Fortune, E.; Cloud-Biebl, B.A.; Madansingh, S.I.; Ngufor, C.G.; Van Straaten, M.G.; Goodwin, B.M.; Murphree, D.H.; Zhao, K.D.; Morrow, M.M. Estimation of manual wheelchair-based activities in the free-living environment using a neural network model with inertial body-worn sensors. J. Electromyogr. Kinesiol. 2022, 62, 102337. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Deep learning based human activity recognition (HAR) using wearable sensor data. Int. J. Inf. Manag. Data Insights 2021, 1, 100046. [Google Scholar] [CrossRef]
- de Vries, W.H.; Veeger, H.E.; Cutti, A.G.; Baten, C.; van der Helm, F.C. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems. J. Biomech. 2010, 43, 1983–1988. [Google Scholar] [CrossRef]
- Boninger, M.L.; Koontz, A.M.; Sisto, S.A.; Dyson-Hudson, T.A.; Chang, M.; Price, R.; Cooper, R.A. Pushrim biomechanics and injury prevention in spinal cord injury: Recommendations based on CULP-SCI investigations. J. Rehabil. Res. Dev. 2005, 42, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.A.; Roach, K.E.; Applegate, E.B.; Amar, T.; Benbow, C.S.; Genecco, T.D.; Gualano, J. Development of the Wheelchair User’s Shoulder Pain Index (WUSPI). Paraplegia 1995, 33, 290–293. [Google Scholar] [CrossRef]
- Van Drongelen, S.; Van der Woude, L.H.; Veeger, H.E. Load on the shoulder complex during wheelchair propulsion and weight relief lifting. Clin. Biomech. 2011, 26, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access 2019, 7, 133190–133202. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Islam, M.M.; Nooruddin, S.; Karray, F.; Muhammad, G. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects. Comput. Biol. Med. 2022, 149, 106060. [Google Scholar] [CrossRef]
SL-ADL | Abbreviation | Description | |
---|---|---|---|
1 | Weight Relief Lift | WRL | Weight relief lift, starts with placing hands on the rim of the wheel, then push up, hold, and release to sit. Activity stops when hands start moving away from the rim. |
2 | Dribbling | Dribbling | Intermitted wheelchair propulsion in restricted space (maximal 3 m distance covered), maximal 3 pushes including turns and backward propulsion. Starts with first rotation of the wheel, ends when wheel stops rotating. |
3 | Wheelchair propulsion | WCprop | Continuous wheelchair propulsion on the treadmill at 0.56 and 1.11 m/s at 0%, and 0.56 m/s at 6% inclination. |
4 | Manual material handling | MMH | Pick and place a weight of 2 kg to four individual shelves from a cupboard. Starts from rest, as the hand starts moving to pick up the weight for the first time, until release of the weight after completing the sequence. |
5 | Deskwork | Desk | Sitting at desk, typing on a key board, using the mouse and mobile phone. |
6 | Stationary | Stat | Sitting still in wheelchair, some movement of the hands allowed (adjusting hair, repositioning hands, gestures while chatting, etc.). |
7 | Transfer | Transfer | Transfer from wheelchair to couch or vice versa. Transfer starts when reaching out with the hands to the next object to transfer to, until sitting on that object. Repositioning before and after transfer is considered WRL. |
8 | Arm Cranking | ArmCrank | Arm crank ergometer work at 60 rpm. |
Layer | Function | Parameters |
---|---|---|
1. Sequence input | Read data as sequences | Neither normalization nor centering or scaling was applied |
2. Gated recurrent unit (GRU) | Recurrent network with gated units that solves vanishing/exploding gradient problems, as introduced by Cho et al. 2014 [64] | 100 hidden units |
3. Bidirectional Long Short Term Memory layer (biLSTM) | Special mode of recurrent neural networks to learn long-term dependencies, developed by Hochreiter and Schmidhuber 1997 [65] | 200 units |
4. Fully connected layer | Takes the output of the multiplies the output of the biLSTM with a weight matrix and adds a bias vector | Output size 8 classes |
5. Softmax layer | Applies a softmax function to the input, usually followed by a classification layer for classification problems | Default values used |
6. Classification layer | A classification layer computes the cross-entropy loss for classification and weighted classification tasks with mutually exclusive classes | Default values used |
Sensor Combination | Accuracy | Sensitivity | Precision | Specificity |
---|---|---|---|---|
1: 5 IMUs + 2 EMG | 98.4 (1.31) | 89.8 (9.62) | 90.2 (10.40) | 99.1 (1.04) |
2: 5 IMUs | 98.5 (1.23) | 90.1 (10.32) | 91.9 (8.63) | 99.1 (1.10) |
3: 1 IMU on upper arm | 97.2 (2.19) | 79.1 (19.30) | 82.4 (18.20) | 98.3 (1.64) |
4: 1 IMU on forearm | 97.6 (2.25) | 82.2 (18.36) | 86.1 (16.11) | 98.5 (1.75) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Vries, W.H.K.; Amrein, S.; Arnet, U.; Mayrhuber, L.; Ehrmann, C.; Veeger, H.E.J. Classification of Wheelchair Related Shoulder Loading Activities from Wearable Sensor Data: A Machine Learning Approach. Sensors 2022, 22, 7404. https://doi.org/10.3390/s22197404
de Vries WHK, Amrein S, Arnet U, Mayrhuber L, Ehrmann C, Veeger HEJ. Classification of Wheelchair Related Shoulder Loading Activities from Wearable Sensor Data: A Machine Learning Approach. Sensors. 2022; 22(19):7404. https://doi.org/10.3390/s22197404
Chicago/Turabian Stylede Vries, Wiebe H. K., Sabrina Amrein, Ursina Arnet, Laura Mayrhuber, Cristina Ehrmann, and H. E. J. Veeger. 2022. "Classification of Wheelchair Related Shoulder Loading Activities from Wearable Sensor Data: A Machine Learning Approach" Sensors 22, no. 19: 7404. https://doi.org/10.3390/s22197404
APA Stylede Vries, W. H. K., Amrein, S., Arnet, U., Mayrhuber, L., Ehrmann, C., & Veeger, H. E. J. (2022). Classification of Wheelchair Related Shoulder Loading Activities from Wearable Sensor Data: A Machine Learning Approach. Sensors, 22(19), 7404. https://doi.org/10.3390/s22197404