Soft Wearable Robots: Development Status and Technical Challenges
Abstract
:1. Introduction
2. Overview of Exosuit
2.1. Upper Extremity Exosuits
2.1.1. Shoulder
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
Natividad et al. [12] | 2016 | Abduction | Pneumatic actuator | Three-axis accelerometer, pressure sensor | Position control | Healthcare |
Park et al. [15] | 2017 | Flexion/extension, adduction/abduction | Passive actuator | - | - | Physical enhancement |
O’Neill et al. [23] | 2017 | Abduction, horizontal flexion/extension | Pneumatic actuator | 6-axis load cell, encoder, pressure sensor | Open loop control | Healthcare |
Thompson et al. [13] | 2019 | Flexion | Pneumatic actuator with Bowden cable | Load cell, pressure gauge | Proportional-integral-differential (PID) controller | Physical enhancement |
Varghese et al. [24] | 2020 | Multi-DoF movements | Cable-driven module | Tendon-based sensing units | Feedback control | Healthcare |
O’Neill et al. [14] | 2021 | Abduction | Pneumatic actuator | External pressure sensor, torque sensor | Pressure control | Physical enhancement |
2.1.2. Elbow
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
Dinh et al. [34] | 2017 | Flexion/extension | Cable-driven module | Flex sensor, two load cells | Hierarchical control | Physical enhancement |
Gao et al. [32] | 2017 | Flexion | Pneumatic actuator | Pressure, bending and force sensors | - | Healthcare |
Chiaradia et al. [26] | 2018 | Flexion/extension | Cable-driven module | Stretch sensor, load cell | Gravity compensation control | Physical enhancement |
Thalman et al. [30] | 2018 | Flexion | Pneumatic actuator | Pressure sensor | Open-loop control | Physical enhancement |
Lotti et al. [35] | 2020 | Flexion | Cable-driven module | Load cell, encoder, EMG electrode | Model-based myoelectric control | Physical enhancement |
Ang et al. [31] | 2020 | Flexion | Pneumatic actuator | - | - | Physical enhancement |
Hosseini et al. [33] | 2020 | Flexion | Twisted string actuator | Force sensor, encoder, sEMG sensor | sEMG-based control | Physical enhancement |
Nassour et al. [18] | 2021 | Flexion | Pneumatic actuator | Pressure sensor | Switch operated by a person | Physical enhancement |
2.1.3. Wrist
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
EXOWRIST [38] | 2015 | Extension/flexion, ulnar/radial deviation | Pneumatic actuator | Linear flex sensor, pressure sensor | PID-based control | Healthcare |
Bartlett et al. [40] | 2015 | All DoFs | Pneumatic actuator | Pressure sensor | - | Healthcare |
Al-Fahaam et al. [41] | 2016 | All DoFs | Pneumatic actuator | Pressure sensor | Direct pressure control | Healthcare |
Zhu et al. [36] | 2017 | Flexion/extension | Pneumatic actuator | Inertial measurement unit (IMU), pressure sensor | - | Healthcare |
SWS [37] | 2019 | Flexion/extension, radial/ulnar deviation | Pneumatic actuator | Pressure sensor | - | Healthcare |
Exo-Wrist [42] | 2019 | Dart-throwing motion | Cable-driven module | Load cell | - | Healthcare |
Jeong et al. [20] | 2019 | Extension/flexion, ulnar/radial deviation | Shape memory alloy-based actuator | - | - | Healthcare |
Chiaradia et al. [19] | 2020 | Flexion | Cable-driven module | IMU, force sensor | Admittance controller | Physical enhancement |
2.1.4. Multi-Joints in the Upper Extremity
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
CRUX [44] | 2017 | Assistance for shoulder, elbow and wrist | Cable-driven module | IMU | Human-in-the-loop control or closed-loop | Healthcare |
Auxilio [48] | 2017 | Shoulder flexion/abduction, elbow flexion | Twisted string actuator | Motion sensor device | Mirror therapy | Healthcare |
Abe et al. [46] | 2019 | Shoulder flexion and elbow flexion | Pneumatic actuator | Pressure sensor | - | Physical enhancement |
Samper-Escudero et al. [21] | 2020 | Flexion of shoulder and elbow | Cable-driven module | Flexion sensor, encoder | Sliding mode controller | Physical enhancement |
PowerGrasp [47] | 2021 | Assistance for shoulder, elbow and wrist | Pneumatic actuator | IMU | Adaptive pose-dependent control | Physical enhancement |
Shi et al. [22] | 2022 | Flexion/extension for shoulder and elbow, adduction/abduction for shoulder | Cable-driven module | IMU, encoder, tension sensor | Torque estimation-based Control | Healthcare |
2.2. Lower Extremity Exosuit
2.2.1. Hip
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
Asbeck et al. [49] | 2015 | Extension | Spooled-webbing actuator | Load cell, encoder, footswitches | Position control | Military application |
Jin et al. [61] | 2017 | Flexion | Spooled-webbing actuator | Load cell, gyroscope | Tension force control | Physical enhancement |
John et al. [62] | 2017 | Multiple DoFs | Cable-driven module | Force sensor | Proportional feedback velocity controller | Physical enhancement |
Haufe et al. [63] | 2020 | Flexion | Passive actuator | - | - | Physical enhancement |
Yang et al. [64] | 2021 | Flexion | Passive actuator | Load cell | - | Physical enhancement |
Chen et al. [65] | 2021 | Flexion | Cable-driven module | IMU, load cell | Gait identification, admittance controller, position controller | Physical enhancement |
Kim et al. [51] | 2022 | Flexion | Cable-driven module | IMU, load cell | Force control based on Human-in-the-loop optimization | Physical enhancement |
Yang et al. [66] | 2022 | Abduction | Cable-driven module | IMU, load cell | High and low-level controller | Healthcare |
Tricomi et al. [67] | 2022 | Flexion | Cable-driven module | IMU | Adaptive oscillators-based control | Physical enhancement |
2.2.2. Knee
2.2.3. Ankle
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
Park et al. [87] | 2011 | Dorsiflexion, inversion and eversion | Pneumatic actuator | Strain sensor, IMU, pressure sensor | Feed-forward controller or feedback proportional controller | Healthcare |
Bae et al. [79] | 2018 | Plantarflexion and dorsiflexion | Cable-driven module | IMU, load cell | Hierarchical closed-loop controller | Healthcare |
ExoBoot [88] | 2018 | Plantarflexion | Pneumatic actuator | Pressure sensors, IMU | Open loop pressure controller | Physical enhancement |
Thalman et al. [89] | 2019 | Lateral/medial support, dorsiflexion, | Pneumatic actuator | Force sensitive resistor, fluidic pressure sensor | Bang-bang control | Healthcare |
Yandell et al. [90] | 2019 | Plantarflexion | Passive actuator | - | - | Physical enhancement |
Siviy et al. [83] | 2020 | Plantarflexion | Cable-driven module | IMU, encoder, load cell | Admittance controller | Healthcare |
Nuckols et al. [84] | 2021 | Plantarflexion | Cable-driven module | IMU, load cell | PI force control loop cascaded with current loop | Physical enhancement |
Schubert et al. [54] | 2021 | Plantarflexion and dorsiflexion | Pneumatic actuator with Bowden cable | Force sensing resistor, IMU | Bang-bang control | Healthcare |
2.2.4. Multi-Joints in the Lower Extremity
2.3. Back-Assist Exosuit
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
AB-Wear [109] | 2017 | Trunk extension | Pneumatic actuator | Load cell, pressure sensor | External operator | Physical enhancement |
Biomechanically assistive garment [103] | 2018 | Trunk extension | Passive actuator | - | - | Physical enhancement |
Govin et al. [110] | 2018 | Trunk extension | Pneumatic actuator | IMU | Control based on position of spine | Healthcare |
Yang et al. [111] | 2019 | Trunk extension | Cable-driven module | Load cell, IMU | Virtual impedance control strategy | Physical enhancement |
Yao et al. [113] | 2019 | Trunk extension | Twisted string actuator | Force sensor, IMU | Control according to motion intention and conditions | Physical enhancement |
Lamers et al. [104], HeroWear Apex [105] | 2021 | Trunk extension | Passive actuator | - | - | Physical enhancement |
Auxivo LiftSuit [106] | 2022 | Trunk extension | Passive actuator | - | - | Physical enhancement |
BASE emulator [107] | 2022 | Trunk extension | Passive actuator, moment arm | Load cell, surface EMG electrodes | - | Physical enhancement |
ABX [112] | 2022 | Flexion/extension, axial rotation, and lateral bending | Cable-driven module | Load cell, IMU | Two-tier control containing finite state machine and force controller | Physical enhancement |
3. Key Technologies
3.1. Material and Structure
3.2. Actuator and Power Transmission
3.3. Perception and Motion Control
3.4. Evaluation Methods
4. Applications and Challenges
- The inherent characteristic of flexible power transmission increases the nonlinearity of the system and makes it more susceptible to disturbances. Therefore, it presents a challenge for precise motion control.
- In order to achieve multi-joint assistance in multiple DoFs, numerous actuators and complex structural layouts will be required. This is not conducive to a lightweight and compact design.
- Due to the special human-in-the-loop form and the obvious differences between most prototypes, the results of current performance test methods seem one-sided and imperfect. We need to build a unified standard evaluation framework to comprehensively reflect the actual effect and application value of every soft wearable robot.
- It is difficult to possess all excellent performance features such as portability, comfort, high efficiency and be lightweight at the same time. New or improved forms for power assistance need to be further developed.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.; Kim, J.; Baker, L.; Long, A.; Karavas, N.; Menard, N.; Galiana, I.; Walsh, C.J. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. J. Neuroeng. Rehabil. 2018, 15, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Fernandez, A.; Lobo-Prat, J.; Font-Llagunes, J.M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J. Neuroeng. Rehabil. 2021, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Lowe, B.D.; Billotte, W.G.; Peterson, D.R. ASTM F48 Formation and Standards for Industrial Exoskeletons and Exosuits. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Aliman, N.; Ramli, R.; Haris, S.M. Design and development of lower limb exoskeletons: A survey. Robot. Auton. Syst. 2017, 95, 102–116. [Google Scholar] [CrossRef]
- Xiloyannis, M.; Alicea, R.; Georgarakis, A.-M.; Haufe, F.L.; Wolf, P.; Masia, L.; Riener, R. Soft Robotic Suits: State of the Art, Core Technologies, and Open Challenges. IEEE Trans. Robot. 2022, 38, 1343–1362. [Google Scholar] [CrossRef]
- Koch, M.A.; Font-Llagunes, J.M. Lower-Limb Exosuits for Rehabilitation or Assistance of Human Movement: A Systematic Review. Appl. Sci. 2021, 11, 8743. [Google Scholar] [CrossRef]
- Thalman, C.; Artemiadis, P. A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications. Wearable Technol. 2020, 1, e3. [Google Scholar] [CrossRef]
- Peng, Z.; Huang, J. Soft Rehabilitation and Nursing-Care Robots: A Review and Future Outlook. Appl. Sci. 2019, 9, 3102. [Google Scholar] [CrossRef] [Green Version]
- Khomami, A.M.; Najafi, F. A survey on soft lower limb cable-driven wearable robots without rigid links and joints. Robot. Auton. Syst. 2021, 144, 103846. [Google Scholar] [CrossRef]
- Vatan, H.M.F.; Nefti-Meziani, S.; Davis, S.; Saffari, Z.; El-Hussieny, H. A review: A Comprehensive Review of Soft and Rigid Wearable Rehabilitation and Assistive Devices with a Focus on the Shoulder Joint. J. Intell. Robot. Syst. 2021, 102, 9. [Google Scholar] [CrossRef]
- Vidal, A.F.P.; Morales, J.Y.R.; Torres, G.O.; de Vázquez, F.J.S.; Rojas, A.C.; Mendoza, J.A.B.; Cerda, J.C.R. Soft Exoskeletons: Development, Requirements, and Challenges of the Last Decade. Actuators 2021, 10, 166. [Google Scholar] [CrossRef]
- Natividad, R.F.; Yeow, C.H. Development of a soft robotic shoulder assistive device for shoulder abduction. In Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 989–993. [Google Scholar]
- Thompson, N.; Sinha, A.; Krishnan, G. Characterizing Architectures of Soft Pneumatic Actuators for a Cable-Driven Shoulder Exoskeleton. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 570–576. [Google Scholar]
- O’Neill, C.T.; McCann, C.M.; Hohimer, C.J.; Bertoldi, K.; Walsh, C.J. Unfolding textile-based pneumatic actuators for wearable applications. Soft Robot. 2021, 9, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Cho, K.J. Development and evaluation of a soft wearable weight support device for reducing muscle fatigue on shoulder. PLoS ONE 2017, 12, e0173730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiloyannis, M.; Chiaradia, D.; Frisoli, A.; Masia, L. Physiological and kinematic effects of a soft exosuit on arm movements. J. Neuroeng. Rehabil. 2019, 16, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinh, B.K.; Xiloyannis, M.; Cappello, L.; Antuvan, C.W.; Yen, S.-C.; Masia, L. Adaptive backlash compensation in upper limb soft wearable exoskeletons. Robot. Auton. Syst. 2017, 92, 173–186. [Google Scholar] [CrossRef]
- Nassour, J.; Zhao, G.; Grimmer, M. Soft pneumatic elbow exoskeleton reduces the muscle activity, metabolic cost and fatigue during holding and carrying of loads. Sci. Rep. 2021, 11, 12556. [Google Scholar] [CrossRef] [PubMed]
- Chiaradia, D.; Tiseni, L.; Xiloyannis, M.; Solazzi, M.; Masia, L.; Frisoli, A. An Assistive Soft Wrist Exosuit for Flexion Movements With an Ergonomic Reinforced Glove. Front. Robot. AI 2020, 7, 595862. [Google Scholar] [CrossRef]
- Jeong, J.; Yasir, I.B.; Han, J.; Park, C.H.; Bok, S.-K.; Kyung, K.-U. Design of Shape Memory Alloy-Based Soft Wearable Robot for Assisting Wrist Motion. Appl. Sci. 2019, 9, 4025. [Google Scholar] [CrossRef] [Green Version]
- Samper-Escudero, J.L.; Gimenez-Fernandez, A.; Sanchez-Uran, M.A.; Ferre, M. A Cable-Driven Exosuit for Upper Limb Flexion Based on Fibres Compliance. IEEE Access 2020, 8, 153297–153310. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, W.; Lin, W.; He, L.; Wang, X.; Li, P.; Gao, Y. Human Joint Torque Estimation Based on Mechanomyography for Upper Extremity Exosuit. Electronics 2022, 11, 1335. [Google Scholar] [CrossRef]
- O’Neill, C.T.; Phipps, N.S.; Cappello, L.; Paganoni, S.; Walsh, C.J. A Soft Wearable Robot for the Shoulder: Design, Characterization, and Preliminary Testing. In Proceedings of the International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1672–1678. [Google Scholar]
- Varghese, R.J.; Lo, B.P.L.; Yang, G.-Z. Design and Prototyping of a Bio-Inspired Kinematic Sensing Suit for the Shoulder Joint: Precursor to a Multi-DoF Shoulder Exosuit. IEEE Robot. Autom. Lett. 2020, 5, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Little, K.; Antuvan, C.W.; Xiloyannis, M.; de Noronha, B.A.P.S.; Kim, Y.G.; Masia, L.; Accoto, D. IMU-based assistance modulation in upper limb soft wearable exosuits. In Proceedings of the 16th IEEE International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 1197–1202. [Google Scholar]
- Chiaradia, D.; Xiloyannis, M.; Antuvan, C.W.; Frisoli, A.; Masia, L. Design and embedded control of a soft elbow exosuit. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; pp. 565–571. [Google Scholar]
- Cappello, L.; Binh, D.K.; Yen, S.-C.; Masia, L. Design and preliminary characterization of a soft wearable exoskeleton for upper limb. In Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 623–630. [Google Scholar]
- Canesi, M.; Xiloyannis, M.; Ajoudani, A.; Bicchi, A.; Masia, L. Modular One-to-many Clutchable Actuator for a Soft Elbow Exosuit. In Proceedings of the International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1679–1685. [Google Scholar]
- Xiloyannis, M.; Annese, E.; Canesi, M.; Kodiyan, A.; Bicchi, A.; Micera, S.; Ajoudani, A.; Masia, L. Design and validation of a modular one-to-many actuator for a soft wearable exosuit. Front. Neurorobot. 2019, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Thalman, C.M.; Lam, Q.P.; Nguyen, P.H.; Sridar, S.; Polygerinos, P. A Novel Soft Elbow Exosuit to Supplement Bicep Lifting Capacity. In Proceedings of the 25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6965–6971. [Google Scholar]
- Ang, B.W.K.; Yeow, C.-H. Design and Modeling of a High Force Soft Actuator for Assisted Elbow Flexion. IEEE Robot. Autom. Lett. 2020, 5, 3731–3736. [Google Scholar] [CrossRef]
- Gao, X.F.; Sun, Y.; Hao, L.N.; Xiang, C.Q.; Cheng, H.T. A New Type of Soft Pneumatic Elbow. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 2681–2686. [Google Scholar]
- Hosseini, M.; Meattini, R.; San-Millan, A.; Palli, G.; Melchiorri, C.; Paik, J. A sEMG-Driven Soft ExoSuit Based on Twisted String Actuators for Elbow Assistive Applications. IEEE Robot. Autom. Lett. 2020, 5, 4094–4101. [Google Scholar] [CrossRef]
- Dinh, B.K.; Xiloyannis, M.; Antuvan, C.W.; Cappello, L.; Masia, L. Hierarchical Cascade Controller for Assistance Modulation in a Soft Wearable Arm Exoskeleton. IEEE Robot. Autom. Lett. 2017, 2, 1786–1793. [Google Scholar] [CrossRef]
- Lotti, N.; Xiloyannis, M.; Durandau, G.; Galofaro, E.; Sanguineti, V.; Masia, L.; Sartori, M. Adaptive Model-Based Myoelectric Control for a Soft Wearable Arm Exosuit: A New Generation of Wearable Robot Control. IEEE Robot. Autom. Mag. 2020, 27, 43–53. [Google Scholar] [CrossRef]
- Zhu, M.; Adams, W.; Polygerinos, P. Carpal Tunnel Syndrome Soft Relief Device for Typing Applications. In Proceedings of the 2017 Design of Medical Devices Conference, Minneapolis, MN, USA, 10–13 April 2017. [Google Scholar]
- Ang, B.W.K.; Yeow, C.H. Design and Characterization of a 3D Printed Soft Robotic Wrist Sleeve with 2 DoF for Stroke Rehabilitation. In Proceedings of the 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, 14–18 April 2019; pp. 577–582. [Google Scholar]
- Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. Design and development of an exoskeletal wrist prototype via pneumatic artificial muscles. Meccanica 2015, 50, 2709–2730. [Google Scholar] [CrossRef]
- Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. Motion Control of a Novel Robotic Wrist Exoskeleton via Pneumatic Muscle Actuators. In Proceedings of the 20th IEEE Conference on Emerging Technologies and Factory Automation (ETFA), University of Luxembourg, Interdisciplinary Centre Security Reliability & Trust, Luxembourg, 8–11 September 2015. [Google Scholar]
- Bartlett, N.W.; Lyau, V.; Raiford, W.A.; Holland, D.; Gafford, J.B.; Ellis, T.D.; Walsh, C.J. A Soft Robotic Orthosis for Wrist Rehabilitation. J. Med. Devices 2015, 9, 030918. [Google Scholar] [CrossRef]
- Al-Fahaam, H.; Davis, S.; Nefti-Meziani, S. Wrist Rehabilitation Exoskeleton Robot based on Pneumatic Soft Actuators. In Proceedings of the International Conference for Students on Applied Engineering (ICSAE), Newcastle upon Tyne, UK, 20–21 October 2016; pp. 491–496. [Google Scholar]
- Choi, H.; Kang, B.B.; Jung, B.-K.; Cho, K.-J. Exo-Wrist: A Soft Tendon-Driven Wrist-Wearable Robot With Active Anchor for Dart-Throwing Motion in Hemiplegic Patients. IEEE Robot. Autom. Lett. 2019, 4, 4499–4506. [Google Scholar] [CrossRef]
- Jeong, J.; Hyeon, K.; Han, J.; Park, C.H.; Ahn, S.-Y.; Bok, S.-K.; Kyung, K.-U. Wrist Assisting Soft Wearable Robot With Stretchable Coolant Vessel Integrated SMA Muscle. IEEE ASME Trans. Mechatron. 2022, 27, 1046–1058. [Google Scholar] [CrossRef]
- Lessard, S.; Pansodtee, P.; Robbins, A.; Baltaxe-Admony, L.B.; Trombadore, J.M.; Teodorescu, M.; Agogino, A.; Kurniawan, S. CRUX: A compliant robotic upper-extremity eXosuit for lightweight, portable, multi-joint muscular augmentation. In Proceedings of the International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1633–1638. [Google Scholar]
- Elor, A.; Lessard, S.; Teodorescu, M.; Kurniawan, S. Project Butterfly Synergizing Immersive Virtual Reality with Actuated Soft Exosuit for Upper-Extremity Rehabilitation. In Proceedings of the 26th IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1448–1456. [Google Scholar]
- Abe, T.; Koizumi, S.; Nabae, H.; Endo, G.; Suzumori, K.; Sato, N.; Adachi, M.; Takamizawa, F. Fabrication of “18 Weave” Muscles and Their Application to Soft Power Support Suit for Upper Limbs Using Thin McKibben Muscle. IEEE Robot. Autom. Lett. 2019, 4, 2532–2538. [Google Scholar] [CrossRef]
- Kuschan, J.; Krüger, J. Fatigue recognition in overhead assembly based on a soft robotic exosuit for worker assistance. CIRP Ann. 2021, 70, 9–12. [Google Scholar] [CrossRef]
- Gaponov, I.; Popov, D.; Lee, S.J.; Ryu, J.-H. Auxilio: A portable cable-driven exosuit for upper extremity assistance. Int. J. Control. Autom. Syst. 2017, 15, 73–84. [Google Scholar] [CrossRef]
- Asbeck, A.T.; Schmidt, K.; Walsh, C.J. Soft exosuit for hip assistance. Robot. Auton. Syst. 2015, 73, 102–110. [Google Scholar] [CrossRef]
- Panizzolo, F.A.; Freisinger, G.M.; Karavas, N.; Eckert-Erdheim, A.M.; Siviy, C.; Long, A.; Zifchock, R.A.; LaFiandra, M.E.; Walsh, C.J. Metabolic cost adaptations during training with a soft exosuit assisting the hip joint. Sci. Rep. 2019, 9, 9779. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Quinlivan, B.T.; Deprey, L.A.; Revi, D.A.; Eckert-Erdheim, A.; Murphy, P.; Orzel, D.; Walsh, C.J. Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit. Sci. Rep. 2022, 12, 11004. [Google Scholar] [CrossRef] [PubMed]
- Malcolm, P.; Lee, S.; Crea, S.; Siviy, C.; Saucedo, F.; Galiana, I.; Panizzolo, F.A.; Holt, K.G.; Walsh, C.J. Varying negative work assistance at the ankle with a soft exosuit during loaded walking. J. Neuroeng. Rehabil. 2017, 14, 62. [Google Scholar] [CrossRef] [Green Version]
- Haufe, F.L.; Kober, A.M.; Wolf, P.; Riener, R.; Xiloyannis, M. Learning to walk with a wearable robot in 880 simple steps: A pilot study on motor adaptation. J. Neuroeng. Rehabil. 2021, 18, 157. [Google Scholar] [CrossRef]
- Schubert, T.; Wollesen, B.; Weidner, R. Development and Preliminary Evaluation of a Lower Body Exosuit to Support Ankle Dorsiflexion. Appl. Sci. 2021, 11, 5007. [Google Scholar] [CrossRef]
- Lee, H.D.; Park, H.; Hong, D.H.; Kang, T.H. Development of a Series Elastic Tendon Actuator (SETA) Based on Gait Analysis for a Knee Assistive Exosuit. Actuators 2022, 11, 166. [Google Scholar] [CrossRef]
- Di Natali, C.; Poliero, T.; Sposito, M.; Graf, E.; Bauer, C.; Pauli, C.; Bottenberg, E.; De Eyto, A.; O’Sullivan, L.; Hidalgo, A.F.; et al. Design and evaluation of a soft assistive lower limb exoskeleton. Robotica 2019, 37, 2014–2034. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Galiana, I.; Siviy, C.; Panizzolo, F.A.; Walsh, C. IMU-based iterative control for hip extension assistance with a soft exosuit. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Royal Inst Technol, Ctr Autonomous Syst, Stockholm, Sweden, 16–21 May 2016; pp. 3501–3508. [Google Scholar]
- Ding, Y.; Panizzolo, F.A.; Siviy, C.; Malcolm, P.; Galiana, I.; Holt, K.G.; Walsh, C.J. Effect of timing of hip extension assistance during loaded walking with a soft exosuit. J. Neuroeng. Rehabil. 2016, 13, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Ding, Y.; Bujanda, I.G.; Karavas, N.; Zhou, Y.M.; Walsh, C.J. Improved assistive profile tracking of soft exosuits for walking and jogging with off-board actuation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1699–1706. [Google Scholar]
- Lee, G.; Kim, J.; Panizzolo, F.A.; Zhou, Y.M.; Baker, L.M.; Galiana, I.; Malcolm, P.; Walsh, C.J. Reducing the metabolic cost of running with a tethered soft exosuit. Sci. Robot. 2017, 2, eaan6708. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Iwamoto, N.; Hashimoto, K.; Yamamoto, M. Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- John, S.W.; Murakami, K.; Komatsu, M.; Adachi, S. Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip assistance. In Proceedings of the International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 387–393. [Google Scholar]
- Haufe, F.L.; Wolf, P.; Riener, R.; Grimmer, M. Biomechanical effects of passive hip springs during walking. J. Biomech. 2020, 98, 109432. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Park, J.; Kim, J.; Park, S.; Lee, G. Reducing the energy cost of running using a lightweight, low-profile elastic exosuit. J. Neuroeng. Rehabil. 2021, 18, 129. [Google Scholar] [CrossRef]
- Chen, L.; Chen, C.; Wang, Z.; Ye, X.; Liu, Y.; Wu, X. A Novel Lightweight Wearable Soft Exosuit for Reducing the Metabolic Rate and Muscle Fatigue. Biosensors 2021, 11, 215. [Google Scholar] [CrossRef]
- Yang, H.D.; Cooper, M.; Eckert-Erdheim, A.; Orzel, D.; Walsh, C.J. A soft exosuit assisting hip abduction for knee adduction moment reduction during walking. IEEE Robot. Autom. Lett. 2022, 7, 7439–7446. [Google Scholar] [CrossRef]
- Tricomi, E.; Lotti, N.; Missiroli, F.; Zhang, X.; Xiloyannis, M.; Muller, T.; Crea, S.; Papp, E.; Krzywinski, J.; Vitiello, N.; et al. Underactuated Soft Hip Exosuit Based on Adaptive Oscillators to Assist Human Locomotion. IEEE Robot. Autom. Lett. 2022, 7, 936–943. [Google Scholar] [CrossRef]
- Jin, S.; Guo, S.; Kazunobu, H.; Xiong, X.; Yamamoto, M. Influence of a Soft Robotic Suit on Metabolic Cost in Long-Distance Level and Inclined Walking. Appl. Bionics Biomech. 2018, 2018, 9573951. [Google Scholar] [CrossRef]
- Murakami, K.; John, S.W.; Komatsu, M.; Adachi, S. External control of walking direction, using cross-wire mobile assist suit. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1046–1051. [Google Scholar]
- Zhao, S.; Yang, Y.; Gao, Y.; Zhang, Z.; Zheng, T.; Zhu, Y. Development of a soft knee exosuit with twisted string actuators for stair climbing assistance. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 2541–2546. [Google Scholar]
- Park, E.J.; Akbas, T.; Eckert-Erdheim, A.; Sloot, L.H.; Nuckols, R.W.; Orzel, D.; Schumm, L.; Ellis, T.D.; Awad, L.N.; Walsh, C.J. A hinge-free, non-restrictive, lightweight tethered exosuit for knee extension assistance during walking. IEEE Trans. Med Robot. Bionics 2020, 2, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.D.; Park, H.; Seongho, B.; Kang, T.H. Development of a soft exosuit system for walking assistance during stair ascent and descent. Int. J. Control. Autom. Syst. 2020, 18, 2678–2686. [Google Scholar] [CrossRef]
- Sridar, S.; Poddar, S.; Tong, Y.; Polygerinos, P.; Zhang, W. Towards untethered soft pneumatic exosuits using low-volume inflatable actuator composites and a portable pneumatic source. IEEE Robot. Autom. Lett. 2020, 5, 4062–4069. [Google Scholar] [CrossRef]
- Fang, J.; Yuan, J.; Wang, M.; Xiao, L.; Yang, J.; Lin, Z.; Xu, P.; Hou, L. Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee Assistive Devices. Soft Robot. 2020, 7, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Veale, A.J.; Staman, K.; van der Kooij, H. Soft, Wearable, and Pleated Pneumatic Interference Actuator Provides Knee Extension Torque for Sit-to-Stand. Soft Robot. 2021, 8, 28–43. [Google Scholar] [CrossRef]
- Sridar, S.; Nguyen, P.H.; Zhu, M.; Lam, Q.P.; Polygerinos, P. Development of a soft-inflatable exosuit for knee rehabilitation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3722–3727. [Google Scholar]
- Sridar, S.; Qiao, Z.; Muthukrishnan, N.; Zhang, W.; Polygerinos, P. A Soft-Inflatable Exosuit for Knee Rehabilitation: Assisting Swing Phase During Walking. Front. Robot. AI 2018, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; De Rossi, S.M.M.; O’Donnell, K.; Hendron, K.L.; Awad, L.N.; Dos Santos, T.R.T.; De Araujo, V.L.; Ding, Y.; Holt, K.G.; Ellis, T.D.; et al. A soft exosuit for patients with stroke Feasibility study with a mobile off-board actuation unit. In Proceedings of the 14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics (ICORR), Nanyang Technology University, Singapore, 11–14 August 2015; pp. 131–138. [Google Scholar]
- Bae, J.; Siviy, C.; Rouleau, M.; Nicolas, M.; O’Donnell, K.; Galiana, I.; Athanassiu, M.; Ryan, D.; Bibeau, C.; Sloot, L.; et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2820–2827. [Google Scholar]
- Awad, L.N.; Bae, J.; O’Donnell, K.; De Rossi, S.M.M.; Hendron, K.; Sloot, L.H.; Kudzia, P.; Allen, S.; Holt, K.G.; Ellis, T.D.; et al. A soft robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 2017, 9, eaai9084. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; Awad, L.N.; Long, A.; O’Donnell, K.; Hendron, K.; Holt, K.G.; Ellis, T.D.; Walsh, C.J. Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke. J. Exp. Biol. 2018, 221, jeb168815. [Google Scholar] [CrossRef] [Green Version]
- Yandell, M.B.; Quinlivan, B.T.; Popov, D.; Walsh, C.; Zelik, K.E. Physical interface dynamics alter how robotic exosuits augment human movement: Implications for optimizing wearable assistive devices. J. Neuroeng. Rehabil. 2017, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Siviy, C.; Bae, J.; Baker, L.; Porciuncula, F.; Baker, T.; Ellis, T.D.; Awad, L.N.; Walsh, C.J. Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking. IEEE Robot. Autom. Lett. 2020, 5, 828–835. [Google Scholar] [CrossRef]
- Nuckols, R.W.; Lee, S.; Swaminathan, K.; Orzel, D.; Howe, R.D.; Walsh, C.J. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Sci. Robot. 2021, 6, eabj1362. [Google Scholar] [CrossRef] [PubMed]
- Awad, L.N.; Kudzia, P.; Revi, D.A.; Ellis, T.D.; Walsh, C.J. Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation. IEEE Open J. Eng. Med. Biol. 2020, 1, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Hohl, K.; Giffhorn, M.; Awad, L.N.; Walsh, C.J.; Jayaraman, A. Soft robotic exosuit augmented high intensity gait training on stroke survivors: A pilot study. J. Neuroeng. Rehabil. 2022, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.L.; Chen, B.R.; Young, D.; Stirling, L.; Wood, R.J.; Goldfield, E.; Nagpal, R. Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4488–4495. [Google Scholar]
- Chung, J.; Heimgartner, R.; Neill, C.T.O.; Phipps, N.S.; Walsh, C.J. ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 509–516. [Google Scholar]
- Thalman, C.M.; Hsu, J.; Snyder, L.; Polygerinos, P. Design of a soft ankle-foot orthosis exosuit for foot drop assistance. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8436–8442. [Google Scholar]
- Yandell, M.B.; Tacca, J.R.; Zelik, K.E. Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 712–723. [Google Scholar] [CrossRef]
- Wehner, M.; Quinlivan, B.; Aubin, P.M.; Martinez-Villalpando, E.; Baumann, M.; Stirling, L.; Holt, K.; Wood, R.; Walsh, C. A Lightweight Soft Exosuit for Gait Assistance. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 3362–3369. [Google Scholar]
- Quinlivan, B.T.; Lee, S.; Malcolm, P.; Rossi, D.M.; Grimmer, M.; Siviy, C.; Karavas, N.; Wagner, D.; Asbeck, A.; Galiana, I.; et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci. Robot. 2017, 2, eaah4416. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Duarte, J.E.; Grimmer, M.; Sancho-Puchades, A.; Wei, H.; Easthope, C.S.; Riener, R. The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers. Front. Neurorobot. 2017, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Di Natali, C.; Sadeghi, A.; Mondini, A.; Bottenberg, E.; Hartigan, B.; De Eyto, A.; O’Sullivan, L.; Rocon, E.; Stadler, K.; Mazzolai, B.; et al. Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton. Front. Neurorobot. 2020, 14, 31. [Google Scholar] [CrossRef]
- Asbeck, A.T.; Dyer, R.J.; Larusson, A.F.; Walsh, C.J. Biologically-inspired soft exosuit. In Proceedings of the 13th IEEE International Conference on Rehabilitation Robotics (ICORR), Univ Washington Campus, Seattle, WA, USA, 24–26 June 2013. [Google Scholar]
- Asbeck, A.T.; De Rossi, S.M.M.; Holt, K.G.; Walsh, C.J. A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 2015, 34, 744–762. [Google Scholar] [CrossRef]
- Asbeck, A.T.; Schmidt, K.; Galiana, I.; Wagner, D.; Walsh, C.J. Multi-joint soft exosuit for gait assistance. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 6197–6204. [Google Scholar]
- Panizzolo, F.A.; Galiana, I.; Asbeck, A.T.; Siviy, C.; Schmidt, K.; Holt, K.G.; Walsh, C.J. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J. Neuroeng. Rehabil. 2016, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Crea, S.; Malcolm, P.; Galiana, I.; Asbeck, A.; Walsh, C. Controlling negative and positive power at the ankle with a soft exosuit. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Royal Institute Technology, Centre Autonomous Systems, Stockholm, Sweden, 16–21 May 2016; pp. 3509–3515. [Google Scholar]
- Grimmer, M.; Quinlivan, B.T.; Lee, S.; Malcolm, P.; Rossi, D.M.; Siviy, C.; Walsh, C.J. Comparison of the human-exosuit interaction using ankle moment and ankle positive power inspired walking assistance. J. Biomech. 2019, 83, 76–84. [Google Scholar] [CrossRef]
- Haufe, F.L.; Schmidt, K.; Duarte, J.E.; Wolf, P.; Riener, R.; Xiloyannis, M. Activity-based training with the Myosuit: A safety and feasibility study across diverse gait disorders. J. Neuroeng. Rehabil. 2020, 17, 135. [Google Scholar] [CrossRef] [PubMed]
- Graf, E.S.; Bauer, C.M.; Power, V.; de Eyto, A.; Bottenberg, E.; Poliero, T.; Sposito, M.; Scherly, D.; Henke, R.; Pauli, C.; et al. Basic functionality of a prototype wearable assistive soft exoskeleton for people with gait impairments. In Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 26–29 June 2018; pp. 202–207. [Google Scholar]
- Lamers, E.P.; Yang, A.J.; Zelik, K.E. Feasibility of a Biomechanically-Assistive Garment to Reduce Low Back Loading During Leaning and Lifting. IEEE Trans. Biomed. Eng. 2018, 65, 1674–1680. [Google Scholar] [CrossRef] [PubMed]
- Lamers, E.P.; Zelik, K.E. Design, modeling, and demonstration of a new dual-mode back-assist exosuit with extension mechanism. Wearable Technol. 2021, 2, e1. [Google Scholar] [CrossRef]
- Gorsic, M.; Song, Y.; Dai, B.; Novak, D. Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks. J. Biomech. 2021, 126, 110620. [Google Scholar] [CrossRef]
- Gorsic, M.; Song, Y.; Dai, B.; Novak, V.D. Short-term effects of the Auxivo LiftSuit during lifting and static leaning. Appl. Ergon. 2022, 102, 103765. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Shinde, A.B.; Singh, R.; Vashista, V. Passive Exosuit Emulator for Material Handling Applications. IEEE Robot. Autom. Lett. 2022, 7, 7605–7611. [Google Scholar] [CrossRef]
- Inose, H.; Mohri, S.; Yamada, Y.; Nakamura, T.; Yokoyama, K.; Kikutani, I. Development of a Lightweight Power-assist Suit Using Pneumatic Artificial Muscles and Balloon-amplification Mechanism. In Proceedings of the 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phukhet, Thailand, 13–15 November 2016. [Google Scholar]
- Inose, H.; Mohri, S.; Arakawa, H.; Okui, M.; Koide, K.; Yamada, Y.; Kikutani, I.; Nakamura, T. Semi-endoskeleton-type waist assist AB-wear suit equipped with compressive force reduction mechanism. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6014–6019. [Google Scholar]
- Govin, D.; Saenz, L.; Athanasaki, G.; Snyder, L.; Polygerinos, P. Design and Development of a Soft Robotic Back Orthosis. In Proceedings of the 2018 Design of Medical Devices Conference, Minneapolis, MN, USA, 9–12 April 2018. [Google Scholar]
- Yang, X.L.; Huang, Z.H.; Hu, H.; Yu, S.Y.; Zhang, S.N.; Zhou, X.L.; Carriero, A.; Yue, G.; Su, H. Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance. IEEE Robot. Autom. Lett. 2019, 4, 4547–4554. [Google Scholar] [CrossRef] [Green Version]
- Li, J.M.; Molinaro, D.D.; King, A.S.; Mazumdar, A.; Young, A.J. Design and Validation of a Cable-Driven Asymmetric Back Exosuit. IEEE Trans. Robot. 2022, 38, 1489–1502. [Google Scholar] [CrossRef]
- Yao, Z.J.; Linnenberg, C.; Weidner, R.; Wulfsberg, J. Development of A Soft Power Suit for Lower Back Assistance. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 5103–5109. [Google Scholar]
- Kermavnar, T.; O’Sullivan, K.J.; de Eyto, A.; O’Sullivan, L.W. The effect of simulated circumferential soft exoskeleton compression at the knee on discomfort and pain. Ergonomics 2020, 63, 618–628. [Google Scholar] [CrossRef]
- Bartenbach, V.; Schmidt, K.; Naef, M.; Wyss, D.; Riener, R. Concept of a soft exosuit for the support of leg function in rehabilitation. In Proceedings of the 14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics (ICORR), Nanyang Technology University, Singapore, 11–14 August 2015; pp. 125–130. [Google Scholar]
- Palli, G.; Natale, C.; May, C.; Melchiorri, C.; Wurtz, T. Modeling and Control of the Twisted String Actuation System. IEEE-ASME Trans. Mechatron. 2013, 18, 664–673. [Google Scholar] [CrossRef]
- Gaponov, I.; Popov, D.; Ryu, J.H. Twisted String Actuation Systems: A Study of the Mathematical Model and a Comparison of Twisted Strings. IEEE ASME Trans. Mechatron. 2014, 19, 1331–1342. [Google Scholar] [CrossRef]
- Jani, J.M.; Leary, M.; Subic, A. Designing shape memory alloy linear actuators: A review. J. Intell. Mater. Syst. Struct. 2016, 28, 1699–1718. [Google Scholar] [CrossRef]
- Poliero, T.; Di Natali, C.; Sposito, M.; Ortiz, J.; Graf, E.; Pauli, C.; Bottenberg, E.; De Eyto, A.; Caldwell, D.G. Soft Wearable Device for Lower Limb Assistance: Assessment of an Optimized Energy Efficient Actuation Prototype. In Proceedings of the 1st IEEE-RAS International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; pp. 559–564. [Google Scholar]
- Lessard, S.; Pansodtee, P.; Robbins, A.; Trombadore, J.M.; Kurniawan, S.; Teodorescu, M. A Soft Exosuit for Flexible Upper-Extremity Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1604–1617. [Google Scholar] [CrossRef] [PubMed]
- Irshaidat, M.; Soufian, M.; Al-Ibadi, A.; Nefti-Meziani, S. A Novel Elbow Pneumatic Muscle Actuator for Exoskeleton Arm in Post-Stroke Rehabilitation. In Proceedings of the 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, 14–18 April 2019; pp. 630–635. [Google Scholar]
- Wilkening, A.; Stoppler, H.; Ivlev, O. Adaptive Assistive Control of a Soft Elbow Trainer with Self-Alignment using Pneumatic Bending Joint. In Proceedings of the 14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics (ICORR), Nanyang Technology University, Singapore, 11–14 August 2015; pp. 729–734. [Google Scholar]
- Wu, Q.; Chen, B.; Wu, H. Neural-network-enhanced torque estimation control of a soft wearable exoskeleton for elbow assistance. Mechatronics 2019, 63, 102279. [Google Scholar] [CrossRef]
- Missiroli, F.; Lotti, N.; Xiloyannis, M.; Sloot, L.H.; Riener, R.; Masia, L. Relationship Between Muscular Activity and Assistance Magnitude for a Myoelectric Model Based Controlled Exosuit. Front. Robot. AI 2020, 7, 595844. [Google Scholar] [CrossRef] [PubMed]
- Lotti, N.; Xiloyannis, M.; Missiroli, F.; Bokranz, C.; Chiaradia, D.; Frisoli, A.; Riener, R.; Masia, L. Myoelectric or Force Control? A Comparative Study on a Soft Arm Exosuit. IEEE Trans. Robot. 2022, 38, 1363–1379. [Google Scholar] [CrossRef]
- Ding, Y.; Galiana, I.; Asbeck, A.; Quinlivan, B.; De Rossi, S.M.M.; Walsh, C. Multi-joint actuation platform for lower extremity soft exosuits. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1327–1334. [Google Scholar]
- Ding, Y.; Kim, M.; Kuindersma, S.; Walsh, C.J. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Sci. Robot. 2018, 3, eaar5438. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Xiong, A. Advances and Disturbances in sEMG-Based Intentions and Movements Recognition: A Review. IEEE Sens. J. 2021, 21, 13019–13028. [Google Scholar] [CrossRef]
- Porciuncula, F.; Baker, T.C.; Revi, D.A.; Bae, J.; Sloutsky, R.; Ellis, T.D.; Walsh, C.J.; Awad, L.N. Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A Consideration-of-Concept Trial. Front. Neurorobot. 2021, 15, 689577. [Google Scholar] [CrossRef]
- Crowell, H.P.; Park, J.-H.; Haynes, C.A.; Neugebauer, J.M.; Boynton, A.C. Design, Evaluation, and Research Challenges Relevant to Exoskeletons and Exosuits: A 26-Year Perspective From the U.S. Army Research Laboratory. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 199–212. [Google Scholar] [CrossRef]
- Di Natali, C.; Chini, G.; Totaro, M.; Lora-Millán, J.S.; Rocon, E.; Beccai, L.; Caldwell, D.G.; Visentin, G.; Ortiz, J. Quasi-Passive Resistive Exosuit for Space Activities: Proof of Concept. Appl. Sci. 2021, 11, 3576. [Google Scholar] [CrossRef]
- Porter, A.P.; Marchesini, B.; Potryasilova, I.; Rossetto, E.; Newman, D.J. Soft Exoskeleton Knee Prototype for Advanced Space Suits and Planetary Exploration. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020. [Google Scholar]
- Zelik, K.E.; Nurse, C.A.; Schall, M.C., Jr.; Sesek, R.F.; Marino, M.C.; Gallagher, S. An ergonomic assessment tool for evaluating the effect of back exoskeletons on injury risk. Appl. Ergon. 2022, 99, 103619. [Google Scholar] [CrossRef] [PubMed]
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
Hitexosuit [70] | 2019 | Extension | Twisted string actuator | IMU | Control based on gait period detection | Climbing stairs |
Park et al. [71] | 2020 | Extension | Cable-driven module | IMU, load cell | Gait event detection, hyperextension protection, admittance controller | Healthcare |
Lee et al. [72] | 2020 | Flexion/extension | Cable-driven module | IMU, insole sensor | Admittance controller | Climbing stairs |
Sridar et al. [73] | 2020 | Extension | Pneumatic actuator | Pressure sensor, insole sensor | - | Physical enhancement |
Fang et al. [74] | 2020 | Flexion/extension | Pneumatic actuator | Pressure sensor | On/off control algorithm | Healthcare |
SLAK [75] | 2021 | Extension | Pneumatic actuator | Pressure sensor | Closed-loop control | Assistance for sit-to-stand |
Exosuit/Study | Year | Movements | Actuation | Sensors | Control | Function |
---|---|---|---|---|---|---|
Wehner et al. [91] | 2013 | Assistance for hip, knee and ankle | Pneumatic actuator | Footswitch, pressure gauge | Timing based control scheme | Physical enhancement |
Quinlivan et al. [92] | 2017 | Hip flexion, ankle plantarflexion | Cable-driven module, passive element | Load cell, gyroscope | Biologically inspired control | Physical enhancement |
Myosuit [93] | 2017 | Flexion/extension for hip and knee | Cable-driven module, passive actuator | Load cell, encoder, IMU | Posture based anti-gravity control | Physical enhancement |
Lee et al. [1] | 2018 | Hip flexion and extension, ankle plantarflexion | Cable-driven module, passive element | Load cell, IMU | Force-based position control | Military application |
Beta 1 prototype of XoSoft [56] | 2019 | Flexion of hip and knee | Quasi-passive actuation | Shoe insole | Control based on gait segmentation | Healthcare |
Gamma prototype of XoSoft [94] | 2020 | Assistance for hip, knee and ankle | Pneumatic quasi-passive actuation | Insole sensor, IMUs, pressure sensor | Gait cycle segmentation, finite state machine | Healthcare |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Dong, W.; Lin, W.; Gao, Y. Soft Wearable Robots: Development Status and Technical Challenges. Sensors 2022, 22, 7584. https://doi.org/10.3390/s22197584
Shi Y, Dong W, Lin W, Gao Y. Soft Wearable Robots: Development Status and Technical Challenges. Sensors. 2022; 22(19):7584. https://doi.org/10.3390/s22197584
Chicago/Turabian StyleShi, Yongjun, Wei Dong, Weiqi Lin, and Yongzhuo Gao. 2022. "Soft Wearable Robots: Development Status and Technical Challenges" Sensors 22, no. 19: 7584. https://doi.org/10.3390/s22197584