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Abstract: Anomaly detection is one of the biggest issues of security in the Industrial Internet of Things
(IIoT) due to the increase in cyber attack dangers for distributed devices and critical infrastructure
networks. To face these challenges, the Intrusion Detection System (IDS) is suggested as a robust
mechanism to protect and monitor malicious activities in IIoT networks. In this work, we suggest
a new mechanism to improve the efficiency and robustness of the IDS system using Distributional
Reinforcement Learning (DRL) and the Generative Adversarial Network (GAN). We aim to develop
realistic and equilibrated distribution for a given feature set using artificial data in order to overcome
the issue of data imbalance. We show how the GAN can efficiently assist the distributional RL-
based-IDS in enhancing the detection of minority attacks. To assess the taxonomy of our approach,
we verified the effectiveness of our algorithm by using the Distributed Smart Space Orchestration
System (DS20S) dataset. The performance of the normal DRL and DRL-GAN models in binary and
multiclass classifications was evaluated based on anomaly detection datasets. The proposed models
outperformed the normal DRL in the standard metrics of accuracy, precision, recall, and F1 score. We
demonstrated that the GAN introduced in the training process of DRL with the aim of improving the
detection of a specific class of data achieves the best results.

Keywords: Industrial Internet of Things; anomaly detection; DS20S; Generative Adversarial
Network; Distributional Reinforcement Learning; adversarial machine learning

1. Introduction

The Internet of Things (IoT) refers to a network of sensors and computing devices
with a shared purpose of solving issues and delivering new services. The IoT is a rapidly
progressing field of technological development for connecting devices or things. The IoT op-
erates through the deployment of hundreds of smart environments in living and industrial
settings established to deal with livelihood, fabrication, power consumption, and business
requirements [1]. An important element of the IoT environment is the sensor, which collects
data and then sends them to the central agency for further processing. The intelligent
devices interact with each other via the internet to interchange data. Through the use of
sensors, smart environments aim to achieve an improvement in the quality of life of human
beings while increasing the effectiveness of the environment. The Industrial Internet of
Things (IloT) indicates the use of classical concepts of the Internet of Things in industrial
environments. By enabling the use of sustainable and efficient technologies in an industrial
environment, IloT enhances the manufacturing process.

At present, the IIoT market is experiencing a rapidly growing as well as increasingly
accommodating market as part of the digital transformations of many industries. Large
companies from around the world are investing in this emerging market due to the robust
alliances and alignment of interests between IloT stakeholders. The emerging market has
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attracted large companies from around the world because of the emerging applications [2].
A critical challenge for IIoT systems is security, because of the growing number of different
departments and clients on IIoT systems. There are inherent vulnerabilities in IloT systems
arising from safety issues at different layers of IIoT [3]. The surveillance and analysis of
the traffic can assist in managing networks and identifying security issues. Many national
governments are investing in information and communications technology infrastructure
to solve traditional public management problems. The implementation of a smart city is
one of the most progressive and effective solutions. Transitioning from traditional public
services and resources to a smart city model has several benefits, including improved
service quality and reduced administrative expenses.

However, a strong network is required to manage government infrastructure in a
smart city. Among the major issues facing smart environments in the real world are
IoT security and complexity, as well as interoperability with other IoT technologies [4].
Therefore, several mechanisms have been suggested to find security issues in numerous
domains. The intrusion detection system (IDS), as an effective information safety control
system, has recently undergone an important development. Confidentiality, integrity,
and availability are three crucial security concepts for programs and services in IloT
environments [5]. The IDSs have been widely used to identify harmful network traffic
to defeat malicious behavior, especially when preventive approaches at the IoT endpoint
fail. With the increasing complexity and furtiveness of hackers on IoT networks, improved
intrusion detection methods are required to keep up with the changing threats [6-8].

Some kinds of unstructured data, including text, image, voice, video, etc. [9], cannot
be processed using traditional machine learning (ML) methods [10]. IoT systems generate
unstructured data that need to be processed by a powerful pattern recognition engine for
anomaly detection in order to find and classify anomalies. Deep learning (DL) algorithms
can be trained on a variety of data types [11]. In order to ensure that data are transferred se-
curely and reliably in IoT networks, deep learning algorithms may be successfully deployed
to discover anomalous behaviors in different IoT networks [12,13]. Adversarial machine
learning (AML) applications on anomalies and malware are focused on the performance
evaluation of detecting the new attacks [14]. The Generative Adversarial Network (GAN)
has been frequently used in anomaly detection to combat adversarial perturbations from
hackers [15]. Cybercriminals, for example, try to create typical data in order to trick the IDS
into classifying the data in a bogus category [16]. However, one of the benefits of a GAN is
that it can generate more training data in order to deal with unbalanced and missing data
sets [17]. The GAN was able to amplify and enhance known and unknown adversarial
disruptions in the context of anomaly detection, as well as strengthening the IDS against
attacks. It also has a huge capacity for learning adversarial attacks in real-time streaming
data, which aids the IDS in detecting malicious behavior [18].

As a result, the use of a GAN-based IDS aims to improve the feasibility and efficiency
of the IDS in classifying normal and abnormal data, as well as reducing malicious supply
chain risk management in the IoT security field, with the goal of detecting malicious
activities on the network communication from unauthorized resources [19,20]. In addition,
reinforcement learning (RL) is considered one of the most used methods recently in machine
learning (ML) for solving complex high-dimensional datasets of intrusion detection. More
precisely, the agent tries to learn in the environment to make decisions; then, when it
estimates the reward, it can move to the next state. For example, the probability of each
event can be modeled with the Markov decision process (MDP), which is based on the
current event, to decide the next one. In a great deal of research, distributional RL performs
the important task of finding the uncertainty of decisions taken by the MDP [21]. Unlike
the traditional RL methods, where a value expectation function is trained, the distributional
RL mechanisms preserve a full distribution of expected future returns [22].
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In this paper, we combine the two approaches—the distributional RL and GAN—to
overcome their disadvantages and propose a new classical method that combines the
advantages of the two approaches and has enhanced performance over traditional methods.
In order to improve the capability of learning and the efficiency of the IDS, we develop
an improved framework for detecting anomalies in imbalanced data in the IIoT using the
GAN. Data created by the GAN look and feel like real data. In contrast to the existing works
in the literature, where the GAN agent is used either to create artificial attacks or for data
augmentation, we show how the GAN agent is efficiently used to assist the distributional
RL-based IDS to improve the detection of some minority attack types. To the best of our
knowledge, we are the first to propose an IDS system based on DRL and GAN agents to
work on the DS20S dataset. Our main contributions are summarized as follows:

*  We design and develop the RL and distributional RL as an intrinsic randomness process
to find all possible returns from the immediate rewards and stochastic dynamics policy.

*  We provide the GAN model for data balancing and data augmentation for the
minor profiles.

*  We build the proposed algorithm, which contains the returns of distributional RL
using the synthetic data generated by the GAN to empower anomaly detection.

*  We perform extensive experiments with the DS20S dataset to validate the effectiveness
of the DRL-GAN in binary and multi-class classification scenarios.

¢  We discuss the simulation results, which show that the proposed algorithm can
improve the performance evaluation rate.

The rest of the paper is organized as follows: Section 2 provides related works that
have focused on adversarial attacks in IoT environments. Section 3, describes the hybrid
framework (DRL-GAN) proposed for anomaly detection in IIoT and discusses the data-
collecting process for evaluating the model. Section 4 discusses the implementation results
and the performance evaluation of the proposed scheme with the existing approaches.
Finally, Section 5 articulates the conclusions of the paper and presents some future scopes.

2. Related Work

In this section, we describe literature research on the GAN based on adversarial
ML /DL attacks on intrusion detection frameworks. We show the drawbacks associated
with these contributions, which have motivated the suggested approach to avoid these
issues. Hu et al. [23] proposed an approach to generate adversarial malware examples that
apply a GAN-based algorithm called MalGAN for black-box attacks. They succeeded in
generating adversarial malware samples to evade deep learning-based malware detection.
Lin et al. [24] designed an IDSGAN framework for adversarial attack generation against the
IDS. In their proposed scheme, a Wasserstein GAN is used to improve the generator and
the discriminator, where the generator generates adversarial abnormal activities focusing
on the evasion black-box and attacks the IDS. The authors generated the adversarial attacks
in the KDDTest+ dataset, and the simulation results show the robustness of the IDSGAN. In
the context of a wireless, self-organized ad-hoc network of cyber-physical systems, Belenko
et al. [25] defined a machine-to-machine communication network used to connect cyber
devices. These are cyber-physical devices that can be programmed to perform operations
either by getting commands or remotely. In this way, an adequate and effective intrusion
detection system is required to prevent the misuse of these devices by strangers. In order
to cover this issue, an intrusion detection system is proposed in this study based on a GAN
for large-scale cyber-physical systems (CPS).

Ferdowsi et al. [26] suggested a distributed adversarial network to provide a wholly
decentralized IDS for the IoT area in order to detect anomalies, which is convenient for
hiding the user’s sensitive data. Clements et al. [27] evaluated the vulnerability of the
deep learning-based network intrusion detection system (DL-NIDS) to well-designed
attacks from the domain of adversarial machine learning. This vulnerability is present in
deep learning-based systems even when the model achieves a high degree of accuracy for
classifying between benign and malicious network traffics. Therefore, researchers must take
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steps to verify the security of deep learning models in security-critical applications to ensure
they do not impose additional risks. Yin et al. [28] proposed a GAN-based framework with
the botnet detection model that enhances the performance of the detection mechanism
for the most severe attacks while maintaining the key features of the original detection
model. Ibitoye et al. [29] proved the impact of adversarial samples on deep learning based
on IDS in the IoT network using feed-forward neural networks (FNN) and compared the
results from several adversarial attacks with a self-normalizing neural network (SNN).
The author showed that the DL-based IDS classifier utilizing FNN was negatively affected
by the adversarial samples.

Shahriar et al. [30] developed a new security framework based on an IDS model using
artificial neural networks and trained on data generated by a GAN. The use of the GAN in
this work aims to overcome the issue of imbalance and missing sample data on emerging
CPS technologies; the use of a standalone IDS is modeled and compared to the proposed
GAN-IDS (G-IDS) through the NSL-KDD99 dataset, which showed that the proposed IDS
outperforms existing trained IDS in the literature. Usama et al. [31] proposed an adversarial
ML /DL attack using a GAN that can evade a black-box-based IDS and proposed defense
procedures while ensuring the preservation of the function by modifying only the non-
functional behavior of the adversary network traffic characteristics. The obtained results
confirmed that the proposed scheme can be used to strengthen the IDS and make it more
powerful against adversary disturbances. Pacheco and Sun [32] evaluated the efficiency of
adversarial ML /DL attacks on the UNSW-NB15 and Bot-IoT datasets. They demonstrated
the performance evaluation of adversarial attack algorithms including the Jacobian-based
saliency map attack (JSMA), fast gradient sign (FGSM) method, and Carlini Wagner (CW)
attack against ML classifiers such as the support vector machine (SVM), decision tree (DT),
and random forest (RF). The experimental results indicate that the attacks were capable of
successfully impairing the overall performance of the respective SVM, DT, and RF classifiers
used on datasets.

Ullah and Mahmoud [33] proposed a framework for anomaly detection in IoT net-
works utilizing conditional GANs (cGANSs) for the data unbalance and the binary class
(bcGAN) for data enhancement. The performance evaluation of the model was tested uti-
lizing a feed-forward neural network (FFN) on network-based anomaly detection datasets.
Lee et al. [34] proposed a comparative study of the GAN-based anomaly detection (AD)
methods including the MAD- GAN, the TAnoGAN, and the CUSUM chart. Zhao et al. [35]
suggested an enhanced adversarial attack model based on the Wasserstein GAN named
attackGAN. By adding the feedback from the IDS, the model can effectively perform an
evasion attack and at the same time ensures the functionality of network traffic. The full set
of their experiments was performed on the NSL-KDD dataset. Zhang et al. [36] designed
a TIKI-TAKA framework to defend against adversary attacks on a DL-based Network
IDS (NIDS) using multilayer perceptron (MLP), convolutional neural network (CNN),
and CNN with long short term memory (LSTM) layers, named the C-LSTM-based network
IDS, defending against adversarial malicious behaviors. Furthermore, they suggested in-
corporating the defense mechanisms of voting assembling, assembling adversarial training,
and query detection to increase resistance to attacks. Jiang et al. [37] developed a fea-
ture grouping and multi-model fusion detector (FGMD) framework capable of defending
against adversarial attacks by applying feature pooling and multi-model merging. Weinger
et al. [38] discussed the problem of performance degradation in the federated learning (FL)
setting in the context of class imbalance and device heterogeneity. The authors examined
how data augmentation can be enforced to improve detection performance for IoT anomaly
detection by conducting a thorough evaluation using different IoT datasets: TON-IoT and
DS20S datasets.
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The contribution of our paper can be compared to existing approaches that demon-
strate the use of a GAN for IoT security, as described in Table 1. However, none of these
approaches addresses the issue of imbalanced and limited data. Unlike the works stated
before, we suggest a thorough framework to combine training data that might enhance the
effectiveness of IDS in detecting cyber attacks using a GAN. Although we tested our system
using a Distributional Reinforcement Learning-based IDS and a recent intrusion detection
dataset, it may be used with any IDS and a variety of industrial and network datasets.
Table 1. Summary of the most relevant adversarial attacks based on IDS models in the literature.
Article Year Approach Dataset Performance Metrics Main Contribution
Hu et al. [23] 2017 MalGAN Standardized TPR A GAN-based algorithm (MalGAN) to generate adversarial
malware malware examples to attack black-box malware.
. ) DR, and Evasion Increase Adversarial malicious traffic records generation against the
Linetal. [24] 2018 IDSGAN NSL-KDD Rate (EIR) IDS using Wasserstein GAN.
Belenko A generative adversarial ANN to detect anomalies in
etal. [25] 2018 ANN fan Goodfellow ) large-scale networks of cyber-physical systems (CPS).
Ferdowsi 2019 SBHAR AC,PR,and FPR  AC, PR, and FPR A dist‘ribu’Fed GAN-based IDS model to detect anomalous
et al. [26] behaviors in IoT.
Clements 2019 DL-NIDS Kitsun FPR, and FNR Vulnerabilit.y of DL—'NIDS to yvell—designed attacks in the field
etal. [27] of adversarial machine learning.
Yin et al. [28] 2019 Bot-GAN ISCX botnet AC, PR, FPR, and FM A framework based on GAN to enhance botnet detection
models (Bot-GAN).
Ibit AC, PR, FPR, FM, MC Analyzing adversarial attacks against Feed-Forward Neural
etal o[};z] 2019 FNN, SNN Bot-IoT coefficient, and Cohen Networks (FNNs) and the Self-Normalizing Neural
' Coppa Score Network (SNN).
Shahriar A GAN-based intrusion detection system (G-IDS) for
2020 G-IDS NSL-KDD PR, RC, and FM detection attacks in cyber-physical systems
etal. [30] X
(CPS) technologies.
Usama An adversarial ML attack using generative adversarial
2020 GAN KDD Cup 99 AC, PR, RC, and FM networks (GANSs) to evade the vulnerability of ML
etal. [31] . .
algorithms in network IDS.
Pacheco et MLP, SVM, UNSW-NB15 Evaluation of the effectiveness of adversarial deep learning
Sun [32] 2021 RE DT and Bot-IoT AC, RC, FM, ROC, and AUC attacks against contemporary datasets.
KDD'99, . o .
Ullah et 2021 GAN NSL-KDD AC, PR, RC, TNR, ENR, A framework for detecting anomalies in IoT networks using
Mahmoud [33] c . FPR,and FM conditional GANs (cGANSs).
BoT-IoT
) MAD-GAN, Anomaly detection for time series using MAD-GAN and
Lee et al. [34] 2021 TANOGAN SWaT data AC, PR, RC, FPR, and FM the TANGGAN.
Zhao et al. [35] 2021 attackGAN NSL-KDD DR An 1mpro_ved adversarial attack model based on a Generated
Adversarial Network.
Zhang . CSE-CIC- A framework for defending against adversarial attacks on
et al. [36] 2022 Tiki-Taka IDS2018 AC, PR, RC, and FM deep learning-based NIDS.
Jiangetal [37] 2022 FGMD IoTID, MedBlo ~ AC, PR, RC, FPR, and FM An FGMD (Feature Grouping and Multi-Model Fusion
Detector) framework against adversarial attacks.
Weinger TON-IoT and Improving detection performance for IoT anomaly detection
etal. [38] 2022 FL DS20s AC, PR, RC, and FM (AD) using Federated Learning (FL).
Our Enhance the detection of anomalies and resolve the imbalance
contribution 2022 DRL-GAN DS20S AC, PR, RC, FPR, and FM data problems in IIoT using DRL-GAN.

3. Proposed Approach
3.1. System Model and Problem Formulation

In this paper, we describe our suggested model in detail . The main idea of the
anomaly detection process is to resolve the problem of imbalanced data and improve the
identification of each type of attack by applying machine learning methods.

Figure 1 represents the anomaly detection’s architecture. It consists of two learning
steps, which are outlined below. In this study, we offered to construct a robust IDS using
a DRL-GAN approach. Our proposed DRL-GAN is an enhanced model with improved
accuracy and minimal false alarms while using datasets with full features and increasing
computational complexity.
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Figure 1. Process flow of anomaly detection based on DRL-GAN.

3.2. Data Preparation Module

The selection of an appropriate dataset for assessing the anomaly detection system is
crucial, which is why the data was selected before the simulation of the proposed approach
was performed.

3.2.1. Overview of Dataset

We have used the Distributed Smart Space Orchestration System (DS20S) bench-
mark dataset gathered from Kaggle [39] as an open-source dataset provided by Pahl and
Aubet [40]. A synthetic data set was collected from an IoT environment created virtually
using DS20S. This data set contains traces captured from various IoT simulation sites
using different types of services, including light controllers, thermometers, movement
sensor values, washing machines, battery and temperature status, and the manipulation
of smart doors and smartphones. The dataset typically contains 357,952 data points with
347,935 and 10,017 normal and abnormal data points, respectively. The DS20S dataset
contains 13 features, described in Table 2, which can be classified into eight classes. These
classes include normal data and seven types of attacks classified as Denial of Service, scan,
malicious control, malicious operation, spying, data probing, and incorrect setup attacks.
All of these classes in this data set are briefly described below:

- Normal: Normal data that are completely correct and accurate.

- Denial of Service: An attacker sends too many packets, flooding the target, and
making the service unavailable to the server or other device.

- Scan: The system may be scanned to collect data through hardware, which can lead
to data corruption.

- Malicious control: A software vulnerability could allow an attacker to obtain a valid
session key or manage to capture network traffic. In this way, a malicious person can
take control of the entire system.

- Malicious operation: These attacks are generally caused by malicious software. Mal-
ware refers to decoy activities that interfere with the original operation. This malicious
operation can adversely affect the performance of the device.

- Spaying: An attacker exploits a vulnerability in the system to break into the system us-
ing a backdoor channel and discover important information. In any case, manipulating
the data can be a major obstacle to the entire system.

- Data probing: In these types of attacks, malicious nodes create a different type of data
instead of the original data.

- Incorrect setup: The incorrect system settings can cause data disruption.
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The record distribution of training and testing sets in the DS20S dataset is presented

in Table 3.

Table 2. DS20S dataset features.

Feature Type

Accessed node type Nominal
Accessed node address Nominal
Destination services address Nominal
Destination services type Nominal
Destination location Nominal
Source ID Nominal
Source address Nominal
Source type Nominal
Source location Nominal
Normality Nominal
Operation Nominal

Value Continuous
Timestamp Discrete

Table 3. Class distribution of DS20S dataset.

Attack Type Training Set Testing Set Total
Normal 260,951 86,984 347,935

DoS 4335 1445 5780

Scan 1160 387 1547
Malicious control (MC) 667 222 889
Malicious operation (MO) 604 201 805
Spying 399 133 532

Data probing (DP) 257 86 342
Wrong setup (WS) 92 31 122

3.2.2. Data Preprocessing

To make computation easier, the extensive network traffic data from the DS20S dataset

were pre-processed to transform the features into appropriate formats. In this investigation,
the data preprocessing included the following.

(A)

(B)

Collecting the data input is the first important step in building the model’s fea-
ture selection. This process aims to identify a subset of suitable features that will
lead the learning models to higher accuracy and robust detection. In the DS20S
analysis, we discovered some missing values of the type of continuous numerical
“Accessed Node Type” included 148 values of “NaN” corresponding to abnormal
values, and the categorical nominal value “Value” contained some data that were
unaffected, such as “False”, “True”, “Twenty”, and “none” transformed into “0.0”,
“1.0”7,20.0”, and “0.0”, respectively. Likewise, the feature “Timestamp” with the
continuous numerical value was not considered in this study. Furthermore, the fea-
ture “Timestamp” with an ongoing numerical value was not considered in this
study as it was removed from the train and test set of the DS20S dataset to retain
only 12 features.

Data encoding refers to the process of transforming categorical “Nominal” data
into vectors in such a way as to simplify the treatment task of the inputs and outputs
of deep learning approaches. Since there are several paths to encode categorical
values to learn the model, the most recommended schemes are label encoding, One
Hot encoding, bin-counting, feature hashing, dummy coding, and effect coding
techniques [41]. The DS20S dataset includes nominal and categorical data. How-
ever, label encoding has been recommended to perform the conversion as it has
the advantage of unifying the number of features; as a result, the dimension of the
dataset does not increase.
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(@) Data normalization has the benefit of making some machine learning algorithms
faster. This phase is only recommended if the features have different value ranges.
The purpose of this step is to change the values of the numerical columns of the
dataset to a common scale without warping the differences in the value ranges.

3.3. Distributional Reinforcement Learning

The core of our proposed model is the distributional reinforcement learning-based
IDS engine in which we rely on RL modeling from our previous work [42], and we briefly
established the concept of reinforcement learning (RL) based on a Markov decision process
(MDP). We briefly define the quintuple concepts of RL-based IDS by (S, A, R, Ps, )
as follows:

- S represents the set of states captured by the IDS; we assume S = {s, s1, 52 }, where s
denotes “normal”, s; “Detection”, and s, “NoDetection” .

- A indicates the set of possible actions that can be taken by the IDS, which can be
specified as low, medium, high, and critical as a reaction of the IDS according to the degree
of risk of an attack [43].

- Ris the objective function to be optimized in the system, which allows us to represent
the returns of the IDS and to perform an action immediately with the location of reward
R(s,a) received in the state s and the action a.

R(s,a) = Y _ Pu(s|s’,a)R(s/,a) 1)

s'eS

- D, is the transition of state probability, modeled as a matrix of transition probabilities
p(silsj,a) observed at time t fora € A wherei,j =1,2,3and V = {1(valid), 2(invalid) }

3
Pa(5t+1 = S]'|Stl = si,a) = Zl’éi’]’ﬁgj), i=1,2,3 (2)
=1

where i,j € V, B7 j represents the transition probability from the state s; observed at
t to the state s; observed at t + 1 in a 3 X 3 matrix B, with Z}Ll Bi i = 1, wherein

0<a<lwitha € [%, 1], « € [0, %], respectively, describing the valid or invalid decision
of predicted data.
- 7 isthe discount factor in 0 < 7 < 1.

In each s, the agent realizes an action a, observes the reward r of this action as well as
the next state as s’ , and updates the estimated value function of Q™ satisfying the Bellman
equation [44]:

Q7(s,a) = Eqv[R(s,a) + 7 max (Q(s',a"))] ®)

This is done to give more predictions of actions by modeling all possible returns in a
dynamic way while trying to learn from their mean.

Let the random variable Z(s,a) = Y ;> , YR(s,a) be the return obtained by calculating
the sum of discounted rewards observed by the agent by starting from state s, performing
action a following the policy 7r. Thus, for a given 7, the estimated value function is

Q™(s,a) = E[Z7(s,a)] 4)

The formulation of the distributional Bellman equation for a given 7 is represented as

Z(s5,8)  Eqyo [(R(s,0) + ymax Z7(s', ') )
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where the equation iterates Z <— 7*Z and converges to Z*, and D means the distributional
equivalence. However, to define the distributional Bellman optimality operator based on (5),
for a given optimal policy 7, we have

TZ(5,0) 2 By [(R(s,0) +7Z(5', 7°(5)))] (6)
where s’ ~ p(.|s,a) and * = argmax, ., E[Z(s',a")]

3.4. Generator Adversarial Networks(GAN)

The GAN is a deep neural network model composed of two classes of machine learn-
ing models: generator G and discriminator D networks [45]. However, the generator G
learns to generate falsified data as a random noise signal from a probability distribution
p(z), which follows a normal distribution z ~ N'(0, 1), and tricks the discriminator into ac-
cepting them as original input data. Afterwards, the discriminator D learns to differentiate
between cheating data generated from G and the attacks found from the original data X.
In addition, to train the stability of both G and D, we used gradient descent. By endorsing
the formulation of the Wasserstein GAN (WGAN) and the notation of gradient penalty
(GP) [46], the learning process of the WGAN is modeled by a min—-max game between two
players G and C, formulated as

L = Egp,[D(2)] = Exp, [D(%)] + Egup [A(||[V:D(£)][2 — 1)%, @)

Let us denote p(A) = A(||V:D(%)||2 — 1)? as the gradient penalty and £ = gx + (1 —
q)%, q~U(0,1). The algorithm replaces the state-action value Q(s,a) by its distribution
and uses WGAN-GP to learn the distribution over returns of the target of traffic data
X. The generator G receives the current sensed data state s, and in each updated round,
we sample a minibatch (s, a,r, s’ );":1 from X and use it to update the networks. The IDS
implements the Bellman optimality operator T according to (7) and gets the samples of the
real distribution, which can be calculated as

X(t) = r(t) + 9P min G(z(t),s(t + 1)) 8)

where the target generator network is G.
The loss functions of the generator C and critic G networks, respectively, are expressed as

Le = Eenp [F(G" (2(8),5(), T(1))] = Exp, [F(X(8), T(1))] + p(1) ©)
Lo = Eewp, [f(G"V(2(t),s(1), (1)) (10)

3.5. Monitoring and Validation Aspect

This phase consists of deciding whether and how to use the GAN in the training
process of the DRL-IDS system. The aim is to enhance the performance of the DRL agent
in detecting attacks in terms of accuracy, precision, and F1 score. The impact of the GAN
agent depends on the input data used to train the agent. For this, it is vital to define the type
of data to feed the discriminator during the training. Thus, in the following, we consider
three scenarios in which the GAN is trained on different classes of the DS20S dataset.
The obtained results are analyzed using the confusion matrices and classification report to
determine the impact of the GAN. We must mention that the GAN is used based on the
results of a simple DRL-IDS trained on the training set of the DS20S dataset. Afterwards,
the GAN which is already trained to generate a specific data class, is introduced in the
training of the DRL agent to enhance the detection of this type of attack. The whole process
of our proposed scheme is summarized in Algorithm 1.
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Algorithm 1: The DRL-GAN algorithm

Input: G and C parameters respectively 0 and 0g; X; A, &, B1, B2 initialization of
Replay memory M space;

Result: Recognition of Anomaly classification detection

while 6 has not converged do

- The IDS agent inputs at the time-step ¢, the s = sy and samples T ~ U[0, 1].

- The IDS agent obtains the action values E[G(a(t),s(t), T(t))] and selects the

action a = ay

- The IDS agent gets reward R from the environment (s, a,7,s’) stored in M

- The random variable g~U(0, 1)

for tyi, = 1...T training time slot do

fori=1...ndo

forj=1...mdo

- Sample a batch from original data de = (s,a,1,9)

£ — G0 (x(j), 5(7), ()

- Sample batch of 1 noise z(1),z(?), ..., z(" ~ p(z)

- Sample a batch from reconstructed data

X§ = qx(j) + (1= 9)G" D (z(t),s(t), T(t))

2+ X©

- Update] the critic model by increasing its stochastic gradient

Or +—Adam(Vo, 1Y [ Lc,0r, a B1,B2)

end

- Sample batch of 1 noise z(1),z(?), ..., z("M ~ p(z)

- Update the generator model by decreasing its stochastic gradient

6 «—Adam(—Vg. & Y1 Lg, 0, @, B1, B2)

end

- Generate n examples and add them to the data set;

- Train the IDS on the data set with the state validation in the monitoring phase;

- Update the performance measurement;

- Add the results to the new data set constructed;

- The IDS agent clears the bufferM;

end

end

4. Results and Discussion

In this section, we present and analyze the results of the simulation performed to
validate the effectiveness of the DRL-GAN model for anomaly detection in the Industrial
IoT. The performance of the DRL-GAN model is compared with the normal DRL in binary
and multi-class classification scenarios. Multiple GAN agents are considered in this study,
where each of them is trained in a different class of the dataset. This is done to identify
which scenarios the GAN can ameliorate the performance of the DRL-GAN.

4.1. Performance Metrics
Many performance metrics are accounted for when assessing the effectiveness of the
offered method.

- Accuracy: The accuracy represents the percentage of normal and abnormal data that
the IDS correctly predicted. Accuracy is expressed by

Tp+1Tn
Tp+Tn+ Fp+ Fn

Accuracy(AC) = (11)
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- Precision: The precision describes the ratio of normal recordings that are correctly
detected by the IDS to all recordings that the IDS has recognized as normal. Precision is
defined by

Precision(PR) = _Tr_ (12)
- Tp+Fp
- Recall: The recall is the percentage of positive recording predicted correctly by the IDS.
The recall is calculated as T
p
Recall(RC) = —— 13
ccal l(RC) Tp+Fn (13)

- Fl-score: The Fl-score is calculated as the harmonic mean of the precision and recall

metrics. The Fl-score is determined by

Fl'SCO”E(FM) = Hp—{—z’IF-‘z—i—F‘;’l (14:)

4.2. Performance Evaluation

We evaluate the performance of our proposed methods using the GAN agent in the
training process to enhance the DRL-based IDS for detecting attacks. We suggested training
the DRL agent on different data classes to analyze its impact. Firstly, we designed a DRL
agent to detect attacks in IoT networks while the GAN agent is composed of the generator
and discriminator. This latter is used only to train the generator and is introduced in the
learning process of the DRL agent.

Figure 2 plots the cumulative reward of the DRL agent at each episode of the training
process. The DRL agent was fed with a dataset sample at each episode to learn to identify
different classes of the DS20S dataset. Different learning rates were used to identify the
most adequate for our study that provided stable learning for the agent. We can say that
the learning rate of 0.0001 achieved the best convergence, as shown by the blue curve in
Figure 2. The convergence of the DRL agent is achieved when its learning curve becomes
flat and stops increasing. Only the results of the DRL trained using an LR of 0.0001 are
used in the following.

1 , ' A 7N WY &Y
AAVI WY
0.8}
g 0.6
[
5
o 047
J\, ——Ir=1e3
' | Ir = 1e4| |
‘\A J Ir=1e5
0 | 1 1
0 1000 2000 3000 4000

Episodes

Figure 2. Training rewards of the DRL agent.

Table 4 shows the results of the binary classification of the DRL agent before and after
introducing the GAN agent in the training process. The GAN agent takes as input the attack
samples and generates data to be used in the training of the DRL agent. The improved
performance of the DRL agent is demonstrated by the second column of the accuracy.
The impact of the GAN could be more clear and more significant when considering a
multi-class classification. Matrices of confusion in Figure 3 support the results of Table 4
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and show clearly how the GAN can enhance the IDS system. Before introducing the GAN,
320 attacks were classified as normal, presenting a huge amount of attacks not detected by
the system. We can cope with this either by improving the DRL agent or enhancing the
training process. We suggested introducing the GAN to generate additional data that help
to improve the detection of some attacks. As shown in Figure 3, after applying the GAN,
the number of not detected attacks was reduced by 100, demonstrating the importance of
using the DRL.

Table 4. Binaryclassification.

Proposed Schemes Accuracy Precision F1 Scorel
Normal DRL 98.854557 98.994024 98.904968
DRL with GAN 99.050120 99.171315 99.091281

Confusion matrix Confusion matrix

100000 100000

910 80000 800 80000

Normal Normal

60000 60000

Tue label
Tue label

40000 40000

Atack 20 2632 Ktack 20 2732
20000 20000

& o & g
& L & &

Predicted label Predicted |abel
accuracy=0.9885; misclass=0.0115 accuracy=0.9905; misclass=0.0095

(a) (b)
Figure 3. ConfusionMatrices of binary classification. (a) Normal DRL. (b) DRL with GAN.

The classification report presented in Figure 4 demonstrates how the DRL-based IDS
system trained only using DS20S can fail in identifying the attacks since its precision is
about 0.74. This is due to unbalanced data resulting in an unstable learning process for the
agent. After using the GAN agent in the training, the recall of the IDS is increased from
0.89 to 0.93, which is a significant improvement that ameliorates the performance of the
system. However, the precision is improved by 0.03, which means that using the GAN
in the training process of the binary classification system can be investigated further for
better results.

precision recall fl-score support precision recall fl-score  support

Normal 1.8@ .99 ©.99 la445e Normal 1.8 @.99 1.@8 le443e
Attack 8.74 8.89 8.81 2952 Attack 7 8.93 ©.84 2952
accuracy 8.99 167382 accuracy @.99 187382
macro avg 8.87 B.94 B.98 1e7382 macro avg 8.89 @.96 8.92 187382
weighted avg 8.99 8.99 ©.99 1e7382 weighted avg 8.99 8.99 8.99 187382

(@) (b)
Figure 4. Binary classification report. (a) Normal DRL. (b) DRL with GAN.

However, the impact of the GAN agent can be shown clearly when considering the
multi-class classification. For this, we trained a DRL agent on the DS20S dataset using
different learning rates to identify the most adequate rate, similarly to the process conducted
for binary classification, as shown in Figure 2. The results of simple DRL without the GAN
agent are shown by the confusion matrix and the classification report, respectively, in
Figures 5a and 6a. Those results helped us to train the proposed GAN agent and to identify
its input. However, the results of the simple DRL show that data probing and incorrect
setup attacks are not well detected by the trained agent, as we can see in the second and
sixth rows. In addition, the classification report in Figure 6a shows that the precision of
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detecting data probing and incorrect setup attacks is about zero, which means that this
system cannot recognize these attacks. This is due to a lack of samples presenting these
attacks in the main dataset used for the training. Hence, the agent does not receive sufficient
data to learn their feature combination and identify them in the inference process. We
suggest introducing a GAN agent in the training process that generates artificial samples of
the exact data type to enhance the dataset and ameliorate the learning process of the DRL
agent. Three scenarios are considered in this study corresponding to the GAN;, GAN;,
and GAN3, where each one of these agents is trained on the DS20S dataset part. GAN] is
trained on the full dataset, GAN is trained only on incorrect setup samples, and GANj is
trained on data probing samples. Figure 7 shows the loss convergence of the considered
agents. Thus, the convergence of GAN; shown by Figure 7a seems to be the unequilibrated
learning process, while both GAN, and GANj trained on a specified dataset class show
perfect convergence of their losses. This will impact the results of DRL using the GAN
agent for the training process.

Confusion matrix Confusion matrix
Dos | 1543 48 0 0 0 0 n 0 100800 Dos/ 154 15 1B W 7 W u 1% 100000
ppl 13 0 L] 12 16 15 [ 0 opl 8 13 12 1 L] 16 1 10
80000 80000
mcl © 4 260 4 0 ] 5 0 mcl © 1 264 1 4 1 1 1
5 Mo{ © 6 0 260 0 0 0 0 8000 mo{ © 5 0 256 0 2 1 2 60000
2 2
y y
E sand 0 8 0 7 46 0 0 0 €  san{ 3 1 3 0 451 1 2 0
40000 40000
sying{ O 1 ] 1 ] 148 5 0 sying{ 0 1 2 ] 3 19 o 0
ws| 4 8 10 2 7 7 3 0 20000 ws| 6 4 3 6 3 9 5 5 20000
Normat{ 0 200 0 34 191 ] Normal{ 130 140 147 133 147 144
0 0
& F S & *\o‘) £ c‘({\'b\ & F E S &5 *\0‘) £ c‘({\'b\
o < o *
Predicted label Predicted label
accuracy=0.9896; misclass=0.0104 accuracy=0.9884; misclass=0.0116
(@) (b)
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mcd © 6 261 2 ] o 4 0 mcd © 4 260 4 ] o 5 0
5 Mo{ © 5 0 261 0 0 0 0 8000 mo{ © 4 0 262 0 0 0 0 60000
B B
Fl Fl
E sand 0 10 0 3 245 0 0 0 E sand 0 6 0 10 245 0 0 0
40000 40000
sying{ © 2 ] 2 ] 147 4 0 sying{ O 3 0 1 ] 148 3 0
ws| 0 ] ] ] ] o a 0 20000 wsi 7 5 8 6 5 7 3 0 20000
Normat{ 0 200 0 23 208 ] Normat{ 0 21 0 26 203 ]
0 0
& & & ® & O P > & & £ ® a &
o § <& B §
£ & £
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accuracy=0.9898; misclass=0.0102 accuracy=0.9902; misclass=0.0098
(©) (d)

Figure 5. Confusion matrices of multi-class classification. (a) Normal DRL. (b) DRL with GANj.
(c) DRL with GANj. (d) DRL with GAN3.
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Figure 6. Multiclass classification report. (a) Normal DRL. (b) DRL with GANj. (c) DRL with GAN,.
(d) DRL with GAN3;.
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Figure 7. Losses of the Generator and Discriminator: (a) GAN; trained on full dataset (b) GAN,
trained on WS class (¢) GAN3 trained on DP class.

Table 5 shows the multiclass inference results of the DRL agent for different scenarios
with and without a GAN agent in the training process. The aim of introducing the GAN is
to improve the performance of the DRL-based IDS system, which can be seen in the second
column of the accuracy. Where a simple DRL agent achieves an accuracy of 98.85, which is
reduced when using the GAN trained in the full dataset, this means that GAN; perturbs
the training process of the DRL agent since is not well trained, as discussed previously.
Generating a full artificial dataset does not help the DRL agent and deteriorates the quality
of the original dataset. On the other hand, GAN,, trained on the WS class of the DS20S
dataset, enhances the accuracy by a simple, small amount. This is because of the small
number of WS samples in the testing DS20S dataset. In contrast, DRL3, trained on the DP
dataset, significantly improves the performance of the simple DRL in terms of the accuracy
as well as the precision and the F1-score, respectively, in columns two, three, and four of
Table 5.

Table 5. Performance evaluation of multi-class classification for different scenarios.

Proposed Schemes Accuracy Precision F1 Score
Normal DRL 98.955132 99.565517 99.222398
DRL with GAN; 98.836863 99.312751 99.026353
DRL with GAN, 98.978414 99.585785 99.234788

DRL with GAN3 99.024045 99.620359 99.269372
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Figure 5 represents the confusion matrices of multiclass classification using a DRL
agent trained in different ways. As discussed above, Figure 5a shows the results of a
simple DRL agent trained on the original DS20S dataset without introducing the GAN
agent. These results can be considered good for the proposed DRL-based IDS, although two
attacks—namely, data probing and the incorrect setup—are not detected efficiently. This
issue raises the need for using the GAN agent to enhance the dataset for training by
generating an artificial dataset similar to the original. The GAN is trained to learn to
generate artificial data similar to the input data of the discriminator. The efficient training
of the GAN is shown by the loss convergence of both the generator and discriminator.
The agent GAN; trained on the full dataset is not capable of improving the IDS system
accuracy, since unstable artificial data were generated, which perturbed the learning of the
agent and reduced its performance in testing, as shown in Table 5, second row. Afterwards,
we focused on training the GAN agent on a specific class of the dataset targeting the
generation of samples of the attacks missed by the DRL agent. In Figure 5¢, we focused on
improving the performance of DRL in detecting the incorrect setup by using the DRL, in
the training process. This, as demonstrated in the confusion matrix in Figure 5c, helped
the DRL agent to detect all attacks of type WS. In the same direction, we used the DRL3 to
improve the ability of the DRL agent to detect the DP attacks.

In Figure 6, we present the classification report of the DRL agent for multi-class
classification where the performance of each class is provided separately. This helps to
provide a clear insight into the impact of the GAN on the performance of DRL agents.
The same scenarios as described above were considered in the same direction as the results
in Figure 5, where the sample DRL agent results are presented by Figure 6. From this latter
figure, we can easily identify that the two classes DP and WS are not identified by the DRL
agent due to their low precisions, which are equal to 0.07 and 0.01, respectively. This is
due to the unbalanced data due to the lack of some class data, resulting in an unstable
learning process. Consequently, we suggested the use of the GAN agent in the training
process of DRL to generate some artificial data, which help in performing stable learning.
We can see from Figure 6b that the performance of the DRL deteriorated due to the use
of the GAN trained on the full dataset. This is because a GAN fed by the whole data set
including all the classes generates artificial data of the “Normal” class due to the important
portion of this class in the training dataset. Thus, for the efficient use of the GAN agent,
we proposed DRL; trained only on the WS class of data, aiming to help the DRL agent
to detect this class in the test dataset, as shown in Figure 6¢, where the recall of the WS
attack improves from 0.07 to 1. Moreover, the agent GAN;3 trained on DP class data aims to
improve the capability of DRL in detecting this class, as is shown by Figure 6d, where the
recall of the DP class improves from 0.22 to 1, knowing that the recall presents the ratio
of correct classification. By this, we can consider that a GAN trained on a single class of
data can ameliorate the performance of DRL in detecting the specific data by generating
artificial data of the target class to help in the training process. Table 6 shows the time
spent for the training and inference of different proposed models. We can see from the
table that the DRL incorporated with the GAN spends more time in the training process
compared to the normal DRL, which is due to data augmentation introduced by the GAN.
However, the same time duration was spent on the inference for the proposed model with
and without the GAN agent.

Table 6. Computational time for training and prediction of different scenarios.

Approaches Training Time (s) Predicting Time (s)
Normal DRL 1101.45 0.52

DRL with GAN; 1355.13 0.54

DRL with GAN, 1367.70 0.53

DRL with GAN3 1361.48 0.54
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5. Conclusions

This paper presents the design and development of Distributional Reinforcement
Learning and Generative Adversarial Network-based anomaly detection models for In-
dustrial IoT, namely DRL-GAN for an imbalanced dataset. The proposed model was
evaluated using the DS20S dataset in two model scenarios. Two models were used to
assess the capability of DRL to detect all attacks, whereas the GAN model was used to
generate the data augmentation. The normal DRL and DRL-GAN demonstrated their
adaptability by achieving accurate identification. The performance of the normal DRL was
compared to DRL-GAN, and it was found that the latter provides the best results on almost
all evaluation criteria for multiclass and binary classifications. The consistent performance
of the DRL-GAN model on the DS20S data set proves the robustness of the proposed
infrastructure for anomaly detection in the Industrial IoT. The proposed model composed
of both distributional RL and a GAN agent suffers from the high computational resources
required for the training process. In future work, we plan to further investigate anomaly
detection in IoT networks through various optimizing techniques to enhance the learning
ability of the DRL-GAN model and make it more efficient with smaller data samples.
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Notation

The following notation of parameters are used in this manuscript:

G Generator network
C Critic network
0c, 0r Parameters of generator or discriminator

«,B1,B2 Parameters of Adam optimizer

State captured by the agent at time-slot ¢
Possible actions taken by the agent at time-slot ¢
Reward returned to the agent at time-slot ¢
Transaction of state probability matrix
Discount factor, where 0 < v < 1

Bellman operator

Original Data

Replay memory data set

Random noise vector

Coefficient of penalty
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