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Abstract: Skeleton-based action recognition can achieve a relatively high performance by transform-
ing the human skeleton structure in an image into a graph and applying action recognition based on
structural changes in the body. Among the many graph convolutional network (GCN) approaches
used in skeleton-based action recognition, semantic-guided neural networks (SGNs) are fast action
recognition algorithms that hierarchically learn spatial and temporal features by applying a GCN.
However, because an SGN focuses on global feature learning rather than local feature learning owing
to the structural characteristics, there is a limit to an action recognition in which the dependency
between neighbouring nodes is important. To solve these problems and simultaneously achieve a
real-time action recognition in low-end devices, in this study, a single head attention (SHA) that can
overcome the limitations of an SGN is proposed, and a new SGN-SHA model that combines SHA
with an SGN is presented. In experiments on various action recognition benchmark datasets, the
proposed SGN-SHA model significantly reduced the computational complexity while exhibiting a
performance similar to that of an existing SGN and other state-of-the-art methods.

Keywords: action recognition; semantic-guided neural networks; single head attention; graph
convolutional networks; skeletal structure

1. Introduction

In the fields of computer vision and machine learning, human behaviour recogni-
tion aims to recognise human intention and provide appropriate services that match this
intention. Therefore, behaviour recognition is being applied to various fields, such as
human–machine interfaces (HMI), surveillance systems, games, augmented reality, and
virtual reality.

Human behaviours can be largely divided into independent behaviours and interac-
tions. An independent behaviour means that different body parts move continuously, and
an interaction means that two or more objects provide and receive actions [1]. Independent
behaviours can be further divided into actions and activities. An action refers to a behaviour
that occurs during a relatively short period of 20–30 frames. Example actions include ‘run-
ning’, ‘walking’, and ‘bending’. An activity is a collection of actions in which actions occur
continuously for a relatively long time and various actions are simultaneously combined.
Example activities include ‘opening a car door and driving’ and ‘taking a smartphone out
of a pocket and making a call’. By contrast, an interaction refers to an action exchanged
between a human being and an object (human or object), such as ‘shaking hands’, ‘fighting’
and ‘hugging’.

The purpose of this study is to recognise real-time human actions occurring within a
short time. We therefore focus on action recognition rather than activity recognition.

Action recognition includes sensor- and vision-based methods using a camera. The
sensor-based method incurs an additional cost of purchasing the sensors and a reluctance
to wear the sensors. Therefore, vision-based action recognition has primarily been studied.
Vision-based action recognition can be further divided into a method using only the RGB
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of video frames, a method using only the human skeleton (pose) of a video, and a method
using a video frame and a skeleton together. As an advantage of video-frame-based action
recognition [1,2], the model structure is simple because only visual information is used.
However, the performance may degrade because it reacts sensitively to background noise
(e.g., camera angles, body sizes, and complex backgrounds) or changes in illuminance.
Conversely, skeletal-based action recognition [3,4] involves structural changes in the body
by converting the skeletal structure into features. This approach can achieve a high per-
formance because it is less affected by various real-world noises. However, it has the
disadvantage of requiring a separate model for extracting the skeleton data. When RGB
video frames and skeletons are used together, ambiguous actions (e.g., ‘playing tennis’ and
‘playing badminton’) with the same pose can be distinguished using RGBe information.
However, it is difficult to combine two sets of cross-modal information, and when indi-
vidual features are applied to each recognition module, there is a limit to real-time action
recognition. Therefore, this study introduces a skeleton-based action recognition algorithm
with a fast learning speed that can recognise actions in real time.

In skeleton-based action recognition, a method of extracting spatiotemporal features
from skeleton sequences and combining them with a graph convolution network (GCN)
has been widely used. Among them, semantic-guided neural networks (SGNs) [5] are
fast and promising action recognition algorithms that hierarchically learn the spatial and
temporal features using a GCN. However, because an SGN focuses on global feature
learning rather than local feature learning owing to the structural characteristics, there
is a limit to action recognition in which the dependency between neighbouring nodes is
important. In addition, although an SGN is a lightweight model, it still has a problem in that
it has a considerable computational complexity for real-time action recognition. Therefore,
in this study, although an SGN was used as a base network for action recognition, the graph
structure was replaced with a single-head attention (SHA) structure to enable real-time
action recognition in low-end devices. In this way, the action recognition performance can
be improved, and the number of parameters and the computational complexity can be
dramatically reduced.

The contributions of this paper are as follows:
(1) By converting the joint-level module for spatial feature extraction of the skeleton

joints into a single SHA instead of a GCN, we can create spatial features emphasizing
important joints.

(2) To embed the spatial characteristics of the joints, in contrast to a GCN, an SHA
composed of a query, key, and value can emphasise the characteristics between joints.

(3) The proposed joint-level module reduces the loss of the input features and empha-
sizes the embedded features by combining the residual network with the SHA output.

(4) Through various experiments, we proved that the proposed SGN-SHA model
can reduce the number of parameters by half, and the number of operations by 2.6-fold
compared to the base SGN without lowering the accuracy compared to other models.

The remainder of this paper is organised as follows. In Section 2, we present a
review of related studies on the three different approaches to action recognition. Section 3
provides details of the proposed SGN-SHA method. Section 4 provides a comprehensive
evaluation of the proposed method, based on various experiments conducted. Finally,
some concluding remarks are presented in Section 5.

2. Related Studies

As described above, studies related to computer-vision-based action recognition can
be divided into three categories according to the input data types: an approach using the
RGB of the video frames, an approach using skeleton sequences, and an approach using the
RGB and skeleton sequences together. This section introduces details of previous related
studies for each category.
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2.1. RGB of Video Frame-Based Action Recognition

Baradel et al. [2] presented a human action recognition method that does not require
joint poses during testing, and modelled the action using two attention processes. These
two methods allow the recognition of human action in unstructured spatio-temporal collec-
tions of glimpses through distributed iterative tracking/recognition and a soft assignment
between the glimpse points and trackers.

Although most RGB video frame-based action recognition methods use spatio-temporal
information, the time information cannot be obtained under a static state. Girish et al. [6]
decomposed spatial actions in still images into smaller semantic components and proposed
a CNN model that can understand the importance of each component. Wang et al. [7]
proposed an action recognition method based on the spatio-temporal, channel, and motion
excitation modules in the RGB of the video frames. To achieve a high fidelity, this algorithm
uses (1) a one-channel 3D convolution to characterise the spatiotemporal representations,
(2) explicit modelling of the interdependencies between channels in terms of time, and (3)
a stimulation of motion-sensitive channels. Feichtenhofer [8] proposed an extended 3D
architecture network that progressively extends a small 2D image classification architecture
along multiple network axes in space, time, width, and depth. This method proved that the
accuracy of complex actions can be increased through the use of a simple stepwise network
expansion instead of a complex network.

Unlike existing methods that partially recognise an action by dividing the video
frames, Liu et al. [9] proposed an action recognition approach using full video frames. For
computational efficiency, this method first clusters all frames along the time dimension
based on the similarity associated with the classification task, and then aggregates the
frames in the cluster into fewer representations. Therefore, this method enables a fast action
recognition by using temporally localised clustering with a fast Hamming distance in the
feature space. Wang et al. [10] proposed a transformer-based encoder-decoder framework
called OadTR to solve the spatiotemporal problem of action recognition. Encoders associ-
ated with task tokens in video frames aim to capture global interactions and relationships
between historical observations. The decoder extracts auxiliary information by aggregating
the expected future clip representations. Thus, the OadTR can recognise current actions by
encoding past information and simultaneously predicting future contexts.

The RGB of video frame-based action recognition has an advantage in that it utilises
the RGB information of the video frame as-is and does not require additional information,
such as the skeleton. However, noise in the wild (e.g., the camera angle or an obscured
pose) and the complex background generated during image acquisition are the main factors
lowering the accuracy of the action recognition.

2.2. Skeleton-Based Action Recognition

Yan et al. [4] proposed a spatial-temporal graph convolutional network (ST-GCN),
which can improve the performance of an action recognition by automatically learning
the spatial and temporal patterns from skeleton sequences extracted from video frames.
An ST-GCN has a greater expressive power and generalisation capability for spatiotem-
poral skeleton features. Thakkar and Narayanan [11] divided a skeleton graph into four
subgraphs and proposed an action recognition model using a part-based GCN. They also
showed that this model has an improved recognition performance compared to a model
using a full skeleton graph. Li et al. [5] proposed an actional-structure GCN that adds
actional- and structural-link structures to the ST-GCN for representing richer joint relation-
ships. An action link is composed of an encoder–decoder structure, through which the
relationships between joints connected nearby and between joints at a longer distance can
be found. However, ST-GCN-based methods have a disadvantage in that they require a
large number of operations compared with their accuracy.

To solve this problem, Cheng et al. [12] proposed a shift-graph convolution network.
This method consists of a spatio-temporal shift graph operation and a light point-wise
convolution instead of a heavy general graph convolution, through which, the action recog-
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nition performance is improved. Zhang et al. [1] proposed an efficient SGN. High-level
joint semantics (e.g., type of joints) or frame indices (number of frames) have been used to
enhance the feature representation capability. Cai et al. [13] proposed an action recognition
framework for jointly using a human pose skeleton and lightweight joint-centric informa-
tion in a dual-stream GCN called a JOLO-GCN. Compared with single-skeleton-based
methods, this hybrid approach has been proven to effectively improve the performance
while maintaining a low computational and memory overhead. Mazzia et al. [14] proposed
an action transformer, which is a simpler yet self-attentional architecture that combines
convolutional, recurrent, and attentive layers. This method enables real-time pose-based
action recognition using a 2D pose representation and a low-latency solution within small
temporal windows, reducing the number of operations required for an action recognition.

Although GCN-based motion recognition shows an excellent performance in skeleton-
based action recognition, it has the disadvantage of increasing the computational complex-
ity and the number of parameters, as with other approaches, when a spatio-temporal video
sequence becomes excessively long.

2.3. Video Frame and Skeleton Based Action Recognition

Zhu et al. [15] detected human bounding boxes in video frames and recognised human
actions by fusing RGB with a skeleton. This method adds a branch for human pose estima-
tion and a 2D CNN for pose-based action recognition. This allows the method to benefit
from the multitask training of action recognition and pose estimation and the predictive
fusion of RGB images and poses. Das et al. [16] proposed a video pose network (VPN).
A VPN comprises two key elements: spatial embedding and state networks. Utilising
both networks and video pose features, the action recognition framework can better learn
the spatio-temporal features. Joze et al. [17] presented a simple multimodal transfer neu-
ral network module for utilising the information obtained from various modalities (e.g.,
RGB, sound, skeleton, and depth). This method fuses multimodal information and utilises
squeeze and excitation operations in the network. The action recognition performance is
improved by recalibrating the characteristics of each channel of the CNN stream. Davood-
ikakhki and Yin [18] proposed an algorithm that captures only the human part from the
RGB of video frames and combines the extracted skeleton data, allowing the ResNet model
to focus solely on human action during the learning process. When combined in this man-
ner, the shortcomings of an action recognition can be overcome. Zhu et al. [19] proposed
a multimodal feature fusion network that combines the features of skeleton sequences
and RGB frames. A two-step fusion framework is introduced into the network to better
explore the correspondence between two contrasting RGB and skeleton features. In this
way, complementary information is maintained, while at the same time, the complexity is
significantly reduced.

This multimodal feature fusion method can improve the action recognition perfor-
mance by fusing the skeleton sequence and RGB features of the video frames. However,
apart from the network used for extracting the features from the RGB of the video frames,
this approach requires a separate network for extracting the skeletons. In addition, this
approach combines two heterogeneous features and requires a downstream network for
action recognition. Therefore, it sacrifices the efficiency for the high network complexity.

3. Proposed Method

In this section, we introduce a light and fast action-recognition algorithm based on
a skeleton and a combination of the proposed SHA and SGN. In a base SGN, the input
skeleton sequence is divided into joint-level (position, 3D coordinates, and velocity) and
frame-level (joint type and frame index) modules, and is used for action recognition.
Because it is composed of two heavy modules, considerable computational complexity and
model parameters are required. By replacing the joint-level module with an SHA, which
requires fewer operations, real-time action recognition in low-end devices is possible while
maintaining the level of accuracy.
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3.1. Overall Architecture of SGN-SHA

In an SGN [1], the base algorithm of our study, the spatiotemporal information of the
skeleton sequence is embedded by arranging three modules sequentially, i.e., dynamic
representation (DR), joint-level, and frame-level modules, as shown in Figure 1. The role of
the DR is to encode/embed the position and velocity in the same high-dimensional space
and fuse them. The joint-level module is used to exploit the correlation of the joints in the
same frame. Finally, a frame-level module is used to exploit the correlation between frames.
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dynamic representation, joint-level, and frame-level modules. The joint-level module can signifi-
cantly reduce the numbers of operations and parameters by applying the proposed SHA instead of
multiple GCNs.

Although the base SGN shows an excellent action recognition accuracy with a rela-
tively low number of operations compared to other state-of-the-art (SoTA) methods, there is
a problem in that it requires unnecessary operations and parameters owing to the structural
problem of a GCN in the joint-level module. The embedding feature of the DR module
shown in Figure 1 must be converted into a graph form in the joint-level module (see
Figure 2a). Therefore, the node features of each joint may be incorrectly matched during
the graph transformation process. In addition, because the adjacency matrix must be
maintained for each frame and the node features must be applied with the adjacency matrix
to three consecutive GCN layers, resulting in an increase in the amount of memory and
number of operations. Therefore, in this study, a new joint-level module based on SHA (see
Figure 2b) is proposed to maintain the accuracy while significantly reducing the numbers
of operations and parameters of an SGN.
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Figure 2. Illustration of the joint-level module of (a) original SGN based on a GCN and (b) the
proposed SHA. (a) The output of the DR and the joint type vector are concatenated to create a joint-
level feature through three consecutive GCNs. (b) A joint-level feature is created that emphasizes
important joints through four one-layer FCs and a residual network.

Figure 1 shows our proposed SGN-SHA, which was developed according to the
following sequential procedure:

3.2. Dynamic Representation Module

First, we denote all joints as a set S =
{

Xk
t

∣∣∣t = 1, 2, . . . , T; k = 1, 2, . . . , J
}

for the

skeleton sequence, where Xk
t denotes a joint of type k at time t, and a joint is represented

as a 3D position (x, y, z). In addition, T represents the number of frames in the skeleton
sequence, and J represents the total number of joints in the human body in a single frame.

In the DR module, the joint position and velocity information are transformed sep-
arately using a fully connected (FC) layer. The joint velocity uses the difference in the
distance between joint Xk

t of the T frame and the joint of the T-1 frame. The output features
are then concatenated as a feature representation with a dimension of T × J × C1, where
C1 is the dimension of the joint representation. The output of the DR module is combined
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with the joint type (e.g., head and foot) and input into the SHA to model the correlation of
joints in the same frame.

3.3. Single Head Attention of Joint-Level Module

The purpose of the joint-level module is to exploit the correlations between joints in
the same frame. The joint-level module of the base SGN consisted of two FCs and three
consecutive GCNs, as shown in Figure 2a. Therefore, the learning parameters and adjacency
matrices for an individual GCN are required, and a large number of operations is required
for the GCN operation. The proposed SHA, as shown in Figure 2b, which is inspired by
the attention mechanism of the transformer [20], can represent a new dimension of the
output that reflects not only the global features of the skeleton but also the local features
that consider the dependencies between adjacent joints.

The attention head, the core idea of a transformer, calculates the attention between
input tokens (features) using three matrices: query (Q), key (K), and value (V). Transformers
use multi-head attention (MHA) such that p heads can learn a different attention from
the input and combine them to obtain a strong attention representation [20]. However, it
has been proven that only some of the multiheads affect the attention performance of the
transformer, and some heads pay attention to unnecessary parts [21]. Therefore, instead
of the complex joint-level modules of the base SGN model, we replaced the transformer
MHA with SHA. Even if we use only SHA instead of MHA, we can create spatial features
emphasising important joints and secure a smaller number of parameters and a lower
computational complexity than the base SGN.

First, the input vector I ∈ RT×J×C1 summed with the output of the DR and joint type
is embedded as Q and K through a separate FC.

Q = FCq(I) ∈ RT×J×C2 (1)

K = FCk(I) ∈ RT×J×C2 (2)

The attention is calculated using the scaled dot product of Q and transposed K. The
softmax operation result is again produced with V to generate the final attention.

Attention (Q, K) = softmax

(
QKT
√

C′

)
V ∈ RT×J×J (3)

Unlike a pure transformer, the input vector is also replaced with V ∈ RT×J×C1 and
multiplied by the attention as-is without going through a separate FC. The attention is
entered into the FC and transformed into dimensions of T× J × C3 to create new features
that consider such attention.

The FC output conducts a sum operation with the same-sized output of a residual
network composed of a single layer. Residual connections between layers are used to
reduce the loss of the input features and emphasise the embedded features. The final
T× J × C3 dimensional joint feature representation is obtained by sequentially applying
the sum operation with the leaky ReLU, FC, and residual networks. The final output of the
joint-level module is fed to the frame-level module to exploit the correlations across frames.

Through the proposed SHA, we prove in Section 4 that if the FC for the Q and K
matrices is trained to emphasise the important joints, the attention of the important joints
can then be obtained using only the SHA.

3.4. Frame-Level Module

The frame index is concatenated with the output features T× J × C3 of the joint-level
module and input into the spatial max-pooling, which compresses the spatial dimension.
It is then input into the temporal max pooling (TMP) which compresses the temporal
dimension after passing through two CNNs. The TMP aggregates the information of all
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frames and obtains the sequence-level feature representation with C3 dimensions. The Cout
feature vector applies the final classification through the last FC using softmax.

4. Experimental Results

In this section, we introduce datasets to be used for human action recognition ex-
periments, and through comparative experiments, we prove that the proposed method is
promising compared to other state-of-the-art (SoTA) methods on various datasets.

4.1. Dataset

We measured the accuracy of the skeletal dataset obtained in various environments to
prove that the proposed method exhibits a highly robust performance for various actions.

NTU-RGB+D 60 (NTU60) [22]: The NTU-RGB+D 60 dataset is a depth- and RGB-
based action recognition benchmark for human action recognition, containing more than
56,000 video samples and more than 4 million frames collected from 40 individual subjects.
It provides four types of action information, i.e., a depth map, 3D skeletal joint positions,
RGB frames, and infrared sequences. This dataset contains 60 different action classes,
including 40 daily actions, 11 mutual actions, and 9 health-related actions. It uses two
evaluation protocols, i.e., cross-subject (XSub) and cross-view (XView) protocols.

NTU-RGB+D 120 (NTU120) [23]: NTU RGB+D 120 is an extension of NTU 60, col-
lected from 106 individual subjects, and contains over 114,000 video samples and over
8 million frames. This dataset contains 120 different action classes that extend beyond
NTU60. It has two evaluation protocols, i.e., XSub and cross-setup (XSet) protocols.

NW-UCLA DB [24]: The NW-UCLA dataset contains RGB, depth, and human skeletal
data captured simultaneously using three Kinect cameras. The skeleton contains 20 joints
and 19 bone connections. This dataset contains 10 action categories of 10 people, including
‘pick up with one hand’, ‘pick up with two hands’, ‘drop trash’, ‘walk around’, ‘sit down’,
and ‘stand up’.

4.2. Implementation Details

All experiments were conducted on an RTX 2080Ti GPU with a Pytorch framework.
Training was applied equally for all datasets for up to 120 epochs. The batch size of the
dataset was also set to 64. All FCs consisted of a single layer, and batch normalisation,
Leaky ReLU, and an Adam optimiser were used with a weight decay of 0.0005. The initial
learning rate was 0.001 for the NTU dataset and 0.01 for the UCLA dataset, and LambdaLA
(lr_lambda = lambda, epoch = 0.93 ** epoch) provided by Pytorch was used as the learning
rate scheduler. The cross-entropy loss was used for classification training.

4.3. Performance Comparison on NTU60

In this section, we use the NTU60 dataset, which is widely applied in action recognition,
to prove that when SHA is combined with an SGN, the model can be lightweight while
maintaining the action recognition performance. Through an experiment, the performance
was compared using two evaluation protocols of NTU60, i.e., XSub and XView.

The SoTA methods used in the comparative experiment were (1) the base SGN [1],
(2) ST-GCN [4], (3) a shift graph convolutional network (Shift-GCN) [12], (4) an Info-
GCN for representation learning for the human skeleton [25], (5) disentangling and uni-
fying graph convolutions (MS-G3D) [26], (6) a decoupled spatial-temporal attention net-
work (DSTA-Net) [27], (7) 3S-aimCLR based on contrastive learning from extremely aug-
mented skeleton sequences [28], (8) rich activated GCN (RA-GCNv2) [29], and (9) the
proposed SGN-SHA.

As can be seen from the experimental results in Table 1, Info-GCN achieved the
highest accuracy for XSub and XView of NTU60. These results are 5.5% higher than
those of the proposed SGN-SHA in terms of XSub and 4.5% in terms of XView. However,
because Info-GCN requires 4.8-times more parameters and 29.5-times more computational
complexity than SGN-SHA, it can be seen that SGN-SHA is more feasible in terms of
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real-time processing. Although the difference in accuracy between SGN-SHA and other
methods, except Info-GCN, is not large, SGN-SHA is significantly superior in terms of the
number of parameters and computational complexity. In particular, compared to the base
network SGN, although SGN-SHA has a slightly lower accuracy than the SGN by 1.5% in
XSub and 1.9% in XView, it outperforms the SGN by approximately 2.15 in terms of the
number of parameters and 2.58 in terms of the computational complexity. Considering that
there was little difference from the SoTA methods in terms of the accuracy, as shown in
Table 1, the large reduction in the computational complexity of the proposed SGN-SHA is
significant because it enables real-time action recognition in low-end devices.

Table 1. Accuracy, the numbers of parameters (Params, M: Million) and computation complexity
(Giga FLoating point Operation Per Second: GFLOPs) between SoTA methods and the proposed
approach on the NTU60 dataset.

Method
NTU60 Lightweight

XSub (%) XView (%) Params (M) GFLOPs

SGN [1] 89.0 94.5 0.69 0.16
ST-GCN [4] 81.5 88.3 3.10 16.3

Shift-GCN [12] 90.7 96.5 0.76 10.0
Info-GCN [25] 93.0 97.1 1.56 1.83
MS-G3D [26] 91.5 96.2 3.50 48.8

DSTA-Net [27] 91.5 96.4 3.40 55.6
3s-AimCLR [28] 86.9 92.8 2.51 1.86
RA-GCNv2 [29] 87.3 93.6 6.21 32.80

SGN-SHA 87.5 92.6 0.32 0.062

4.4. Performance Comparison on NTU120

In addition, experiments were conducted using the NTU120 dataset, which was
divided into two evaluation protocols: XSub and XSet. As shown in Table 2, SGN-SHA also
showed the smallest number of parameters and considerably fewer operations. Because
the Info-GCN used a complex network, it still showed the highest recognition rate even
when the number of classes increased from 60 to 120. Although the proposed SGN-SHA
achieved a lower accuracy than Info-GCN, compared to 3s-AimCLR, which is an SoTA
method, it is 1.6% lower in terms of XSub but 6.2% higher in terms of XSet. In particular,
compared with the base SGN, XSub was slightly lower at 0.7%, whereas XSet was rather
high at 5.6%. From the results in Table 2, we can confirm that even if the number of classes
increases, the performance of SGN-SHA does not significantly decrease, and it still has
fewer parameters and a lower computation complexity suitable for real-time processing.

Table 2. Accuracy, numbers of parameters, and computation complexity between SoTA methods and
the proposed method on the NTU120 dataset.

Method
NTU120 Lightweight

XSub (%) XSet (%) Params (M) GFLOPs

SGN [1] 79.2 81.5 0.69 0.16
MS-G3D [4] 86.9 88.4 3.50 48.8

Shift-GCN [12] 85.9 87.6 0.76 10.0
Info-GCN [25] 89.8 91.2 1.56 1.83
DSTA-Net [27] 86.6 89.0 3.40 55.6

3s-AimCLR [28] 80.1 80.9 2.51 1.86
RA-GCNv2 [29] 81.1 82.7 6.21 32.80

SGN-SHA 78.5 87.1 0.32 0.062
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4.5. Performance Comparison for the Number of Attention Heads

In this experiment, we compared the performance according to the number of attention
heads. To this end, we measured accuracy, number of parameters, and computational
complexity by increasing the number of attention heads for the NTU60-XView dataset.
As shown in the experimental results in Table 3, the accuracy increased as the number
of attention heads increased. When the attention head is 2, the accuracy increases by
1.7%, but on the contrary, the number of parameters increases by about 2.97 times and
the computational complexity increases by 4.68 times. In terms of accuracy, it can be
seen that as the attention head increases, the accuracy does not increase significantly and
converges. However, the number of parameters and computational complexity increase
exponentially. In particular, computation complexity, an important factor in low-end
embedded systems, increased up to 47 times when the number of heads increased from 1 to
5. From the experiments, we can confirm that the proposed SHA is a reasonable algorithm
for action recognition in low-end systems by requiring low computational complexity while
maintaining accuracy.

Table 3. Differences in accuracy, number of parameters, and computational complexity according to
the number of attention heads in the NTU60-XView dataset.

Head Number
NTU60-XView

Accuracy (%) Params (M) GFLOPs

1 92.6 0.32 0.062
2 94.3 0.95 0.29
3 94.3 2.36 0.77
4 94.4 4.65 1.62
5 94.5 8.03 2.92

4.6. Performance Comparison on NW-UCLA Datasets

The NW-UCLA dataset consists of 10 action classes, and the overall action accuracy is
92.5% for the basic SGN and 92.6% for the SGN-SHA, which is 0.1% higher than that of the
base SGN. In this experiment, the accuracy of each detailed action class between the base
SGN and the proposed SGN-SHA was compared using a confusion matrix, as shown in
Figure 3. Although both methods showed a similar accuracy for detailed action classes,
they achieved the lowest accuracy in the ‘pick up with one hand’ class, with SGN at 75%
and SGN-SHA at 83%. In the case of the SGN, the accuracy was 100% in three classes: ‘pick
up with two hands’, ‘drop trash’, and ‘donning’. By contrast, SGN-SHA showed 100%
accuracy in the three classes of ‘pick up with two hands’, ‘stand up’, and ‘donning’, and
thus the results of the two methods were slightly different. However, overall, there were
no significant differences in the accuracy of each action class between the two methods,
and thus we can see that SGN-SHA has a similar performance as the base model despite
having fewer parameters and a lower computational complexity.
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5. Conclusions

In this study, we proposed a new type of SGN-SHA approach that transforms the GCN
of the base SGN into SHA to improve the action recognition. To solve the problem of a GCN,
the core of an SGN, which expresses global features better than local features owing to its
structural characteristics, we propose an SHA spatial feature expression method that can
simultaneously consider the global and local features of the joints. Using SHA, it is possible
to significantly reduce the number of parameters and computational complexity of the SGN.
Based on the experimental results, it was confirmed that the performance was maintained
despite a 50% reduction in the number of model parameters and a 2.6-fold reduction in the
computational complexity. In terms of the amount of computation, real-time operation is
possible in low-end devices.

As such, the advantage of a lightweight network using SGN-SHA is not only the
promising action recognition accuracy rate, but also faster speed and fewer operations. The
proposed action recognition algorithm can be deployed to robots, surveillance cameras,
AR, VR and other embedded devices where real-time recognition is important.

In future research, we plan to expand this study to the development of a real-time
action recognition model that can reduce the computational complexity while improving
the action recognition performance by fusing skeleton sequences and RGB video frames.

Author Contributions: S.-B.K. and C.J. programmed the algorithms, conducted the experiments, and
wrote the algorithm section; B.-I.K. reviewed and edited the paper; B.C.K. reviewed and edited the
paper, designed the algorithm, and supervised the experiment based on an analysis. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF), funded by the Ministry of Education (2022R1I1A3058128).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lillo, I.; Niebles, J.C.; Soto, A. Sparse Composition of Body Poses and Atomic Actions for Human Activity Recognition in RGB-D

Videos. Image Vis. Comput. 2017, 59, 63–75. [CrossRef]
2. Baradel, F.; Wolf, C.; Mille, J.; Taylor, G.W. Glimpse Clouds: Human Activity Recognition from Unstructured Feature Points. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–22 June 2018; pp. 469–478.

3. Yan, S.; Xiong, Y.; Lin, D. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. In Proceedings
of the 2018 Association for the Advancement of Artificial Intelligence (AAAI), New Orleans, LA, USA, 2–7 February 2018;
pp. 7444–7452.

4. Li, M.; Chen, S.; Chen, X.; Zhang, Y.; Wang, Y.; Tian, Q. Actional-Structural Graph Convolutional Networks for Skeleton-based
Action Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 3595–3603.

5. Zhang, P.; Lan, C.; Zeng, W.; Xing, J.; Xue, J.; Zheng, N. Semantics-Guided Neural Networks for Efficient Skeleton-Based Human
Action Recognition. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Virtual, 14–19 June 2020; pp. 1112–1121.

6. Girish, D.; Singh, V.; Ralescu, A. Understanding action recognition in still images. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), Virtual, 14–19 June 2020; pp. 4321–4327.

7. Wang, Z.; She, Q.; Smolic, A. ACTION-Net: Multipath Excitation for Action Recognition. In Proceedings of the 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 13214–13223.

8. Feichtenhofer, C. X3D: Expanding Architectures for Efficient Video Recognition. In Proceedings of the 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Virtual, 14–19 June 2020; pp. 203–213.

9. Liu, X.; Pintea, S.L.; Nejadasl, F.K.; Booij, O.; van Gemert, J.C. No frame left behind: Full Video Action Recognition. In
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021;
pp. 14892–14901.

http://doi.org/10.1016/j.imavis.2016.11.004


Sensors 2022, 22, 9249 13 of 13

10. Wang, X.; Zhang, S.; Qing, Z.; Shao, Y.; Zuo, Z.; Gao, C.; Sang, N. OadTR: Online Action Detection with Transformers. In
Proceedings of the 2021 IEEE International Conference on Computer Vision (ICCV), Virtual, 11–17 October 2021; pp. 7565–7575.

11. Thakkar, K.; Narayanan, P.J. Part-based Graph Convolutional Network for Action Recognition. In Proceedings of the 29th British
Machine Vision Conference (BMVC), Newcastle, UK, 3–6 September 2018; pp. 1–13.

12. Cheng, K.; Zhang, Y.; He, X.; Chen, W.; Cheng, J.; Lu, H. Skeleton-Based Action Recognition with Shift Graph Convolutional
Network. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 14–19
June 2020; pp. 183–192.

13. Cai, J.; Jiang, N.; Han, X.; Jia, K.; Lu, J. JOLO-GCN: Mining Joint-Centered Light-Weight Information for Skeleton-Based Action
Recognition. In Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Virtual, 5–9
January 2021; pp. 2735–2744.

14. Mazzia, V.; Angarano, S.; Salvetti, F.; Angelini, F.; Chiaberge, M. Action Transformer: A Self-Attention Model for Short-Time
Pose-Based Human Action Recognition. Pattern Recognit. 2022, 124, 108487. [CrossRef]

15. Zhu, J.; Zou, W.; Xu, L.; Hu, Y.; Zhu, Z.; Chang, M.; Huang, J.; Huang, G.; Du, D. Action Machine: Rethinking Action Recognition
in Trimmed Videos. Available online: https://arxiv.org/abs/1812.05770 (accessed on 14 December 2018).

16. Das, S.; Sharma, S.; Dai, R.; Bremond, F.; Thonnat, M. VPN: Learning Video-Pose Embedding for Activities of Daily Living. In
Proceedings of the 16th European Conference on Computer Vision (ECCV), Virtual, 23–28 August 2020; pp. 72–90.

17. Joze, H.R.V.; Shaban, A.; Iuzzolino, M.L.; Koishida, K. MMTM: Multimodal Transfer Module for CNN Fusion. In Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 14–19 June 2020; pp. 13289–13299.

18. Davoodikakhki, M.; Yin, K. Hierarchical Action Classification with Network Pruning. In Proceedings of the 2020 International
Symposium on Visual Computing (ISVC), Virtual, 5–7 October 2020; pp. 291–305.

19. Zhu, X.; Zhu, Y.; Wang, H.; Wen, H.; Yan, Y.; Liu, P. Skeleton Sequence and RGB Frame Based Multi-Modality Feature Fusion
Network for Action Recognition. ACM Trans. Multimed. Comput. Commun. Appl. 2022, 18, 1–24. [CrossRef]

20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
In Proceedings of the 2017 Annual Conference on Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA,
4–9 December 2017; pp. 1–15.

21. Michel, P.; Levy, O.; Neubig, G. Are Sixteen Heads Really Better than One? In Proceedings of the 2019 Annual Conference on
Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019; pp. 1–11.

22. Shahroudy, A.; Liu, J.; Ng, T.-T.; Wang, G. NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis. In Proceedings
of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July
2016; pp. 1010–1019.

23. Liu, J.; Shahroudy, A.; Perez, M.; Wang, G.; Duan, L.-Y.; Kot, A.C. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human
Activity Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2684–2701. [CrossRef] [PubMed]

24. Wang, J.; Nie, X.; Xia, Y.; Wu, Y.; Zhu, S.-C. Cross-view Action Modeling, Learning and Recognition. In Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 2649–2656.

25. Chi, H.-g.; Ha, M.H.; Chi, S.; Lee, S.W.; Huang, Q.; Ramani, K. InfoGCN: Representation Learning for Human Skeleton-Based
Action Recognition. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 19–24 June 2022; pp. 20186–20196.

26. Liu, Z.; Zhang, H.; Chen, Z.; Wang, Z.; Ouyang, W. Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual,
14–19 June 2020; pp. 143–152.

27. Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action-Gesture Recog-
nition. In Proceedings of the 2020 Asian Conference on Computer Vision (ACCV), Virtual, 30 November–4 December 2020;
pp. 38–53.

28. Guo, T.; Liu, H.; Chen, Z.; Liu, M.; Wang, T.; Ding, R. Contrastive Learning from Extremely Augmented Skeleton Sequences
for Self-Supervised Action Recognition. In Proceedings of the 2022 Association for the Advancement of Artificial Intelligence
(AAAI), Virtual, 22 February–1 March 2022; pp. 762–770.

29. Song, Y.-F.; Zhang, Z.; Shan, C.; Wang, L. Richly activated graph convolutional network for robust skeleton-based action
recognition. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 1915–1925. [CrossRef]

http://doi.org/10.1016/j.patcog.2021.108487
https://arxiv.org/abs/1812.05770
http://doi.org/10.1145/3491228
http://doi.org/10.1109/TPAMI.2019.2916873
http://www.ncbi.nlm.nih.gov/pubmed/31095476
http://doi.org/10.1109/TCSVT.2020.3015051

	Introduction 
	Related Studies 
	RGB of Video Frame-Based Action Recognition 
	Skeleton-Based Action Recognition 
	Video Frame and Skeleton Based Action Recognition 

	Proposed Method 
	Overall Architecture of SGN-SHA 
	Dynamic Representation Module 
	Single Head Attention of Joint-Level Module 
	Frame-Level Module 

	Experimental Results 
	Dataset 
	Implementation Details 
	Performance Comparison on NTU60 
	Performance Comparison on NTU120 
	Performance Comparison for the Number of Attention Heads 
	Performance Comparison on NW-UCLA Datasets 

	Conclusions 
	References

