A Geometric-Feature-Based Method for Automatic Extraction of Anchor Rod Points from Dense Point Cloud
Abstract
:1. Introduction
2. Methods
2.1. Preliminary Identification of Anchor Rod Points
2.1.1. Downsampling and Local Coordinate Frame Transformation
2.1.2. Triangular Mesh Normal Vector and Coordinate Threshold Screening
2.1.3. Clustering and Discrimination of Suspected Anchor Rod Points
2.2. Precise Extraction of Anchor Rod Points
2.2.1. Curvature Estimation
2.2.2. Curvature Threshold Determination
2.2.3. Evaluation of Extraction Results
3. Experiment and Results
3.1. Experimental Data
3.2. Preliminary Identification
3.3. Precise Extraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Jiang, J.; Wu, L.; Zhou, W.; Wei, L. 3D modeling for mine roadway from laser scanning point cloud. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 4452–4455. [Google Scholar]
- Mukupa, W.; Roberts, G.W.; Hancock, C.M.; Al-Manasir, K. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Surv. Rev. 2017, 49, 99–116. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, M. Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018. Adv. Eng. Inform. 2019, 39, 306–319. [Google Scholar] [CrossRef]
- Kaartinen, E.; Dunphy, K.; Sadhu, A. Lidar-based structural health monitoring: Applications in civil infrastructure systems. Sensors 2022, 22, 4610. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, L.P.; Singh, M. Empirical estimation of strength of jointed rocks traversed by rock bolts based on experimental observation. Eng. Geol. 2015, 197, 103–111. [Google Scholar] [CrossRef]
- Peng, S.S.; Tang, D.H.Y. Roof bolting in underground mining: A state-of-the-art review. Int. J. Min. Eng. 1984, 2, 1–42. [Google Scholar] [CrossRef]
- Wujanz, D.; Krueger, D.; Neitzel, F. Identification of Stable Areas in Unreferenced Laser Scans for Deformation Measurement. Photogramm. Rec. 2016, 31, 261–280. [Google Scholar] [CrossRef]
- Tang, P.; Huber, D.; Akinci, B. A Comparative Analysis of Depth-Discontinuity and Mixed-Pixel Detection Algorithms. In Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), Montreal, QC, Canada, 21–23 August 2007; pp. 29–38. [Google Scholar]
- Zhang, Z.; Zhang, L.; Tong, X.; Guo, B.; Xing, X. Discriminative-Dictionary-Learning-Based Multilevel Point-Cluster Features for ALS Point-Cloud Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7309–7322. [Google Scholar] [CrossRef]
- Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Huang, X.; Zhang, F.; Sohn, G. Classification of airborne laser scanning data using JointBoost. ISPRS J. Photogramm. Remote Sens. 2015, 100, 71–83. [Google Scholar] [CrossRef]
- Johnson, A.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 433–449. [Google Scholar] [CrossRef]
- Axelsson, P. Dem generation from laser scanner data using adaptive tin models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110–117. [Google Scholar]
- Chehata, N.; Guo, L.; Mallet, C. Airborne lidar feature selection for urban classification using random forests. In Laserscanning; HAL: Paris, France, 2009. [Google Scholar]
- Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D. Shape distributions. ACM Trans. Graph. TOG 2002, 21, 807–832. [Google Scholar] [CrossRef]
- Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Persistent Point Feature Histograms for 3D Point Clouds. In Proceedings of the 10th International Conference Intelligent Autonomous Systems (IAS-10), Baden-Baden, Germany, 23-25 July 2008; pp. 119–128. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (fpfh) for 3d registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3212–3217. [Google Scholar]
- Tombari, F.; Salti, S.; Stefano, L.D. Unique signatures of histograms for local surface description. In Proceedings of the European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; pp. 356–369. [Google Scholar]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Martínez-Sánchez, J.; Puente, I.; González Jorge, H.; Riveiro, B.; Arias, P. Automatic thickness and volume estimation of sprayed concrete on anchored retaining walls from terrestrial lidar data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Raval, S.; Banerjee, B. Roof bolt identification in underground coal mines from 3D point cloud data using local point descriptors and artificial neural network. Int. J. Remote Sens. 2021, 42, 367–377. [Google Scholar] [CrossRef]
- Singh, S.K.; Raval, S.; Banerjee, B. A robust approach to identify roof bolts in 3D point cloud data captured from a mobile laser scanner. Int. J. Min. Sci. Technol. 2021, 31, 303–312. [Google Scholar] [CrossRef]
- Gallwey, J.; Eyre, M.; Coggan, J. A machine learning approach for the detection of supporting rock bolts from laser scan data in an underground mine. Tunn. Undergr. Space Technol. 2021, 107, 103656. [Google Scholar] [CrossRef]
- Saydam, S.; Liu, B.; Li, B.; Zhang, W.; Singh, S.K.; Raval, S. A Coarse-to-Fine Approach for Rock Bolt Detection From 3D Point Clouds. IEEE Access 2021, 9, 148873–148883. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Gonzalez, R.C. Digital Image Processing, 3rd ed.; Pearson Education: Cranbury, NJ, America, 2007. [Google Scholar]
- Lee, D.T.; Schachter, B.J. Two algorithms for constructing a delaunay triangulation. Int. J. Comput. Inf. Sci. 1980, 9, 219–242. [Google Scholar] [CrossRef]
- Bronshtein, I.N.; Semendyayev, K.A. Handbook of Mathematics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Pauly, M.; Gross, M.; Kobbelt, L.P. Efficient simplification of point-sampled surfaces. In IEEE Visualization; IEEE: Piscataway, NJ, USA, 2002; pp. 163–170. [Google Scholar]
- Pauly, M.; Keiser, R.; Gross, M.H. Multi-scale Feature Extraction on Point-Sampled Surfaces. Comput. Graph. Forum 2003, 22, 281–289. [Google Scholar] [CrossRef]
No. | F | No. | F | ||||||
---|---|---|---|---|---|---|---|---|---|
1# | 247,624 | 9667 | 11,644 | 0.80% | 18# | 35,809 | 5003 | 5341 | 0.94% |
2# | 396,670 | 5367 | 8794 | 0.86% | 19# | 256,555 | 16,371 | 23,754 | 2.88% |
3# | 78,174 | 11,174 | 14,497 | 4.25% | 20# | 257,904 | 17,634 | 21,362 | 1.45% |
4# | 134,365 | 9115 | 14,365 | 3.91% | 21# | 286,312 | 4953 | 7213 | 0.79% |
5# | 158,955 | 4285 | 5427 | 0.72% | 22# | 698,531 | 12,314 | 15,644 | 0.48% |
6# | 512,638 | 15,680 | 16,726 | 0.20% | 23# | 722,836 | 24,422 | 28,517 | 0.57% |
7# | 150,623 | 16,373 | 22,566 | 4.11% | 24# | 369,082 | 12,908 | 19,305 | 1.73% |
8# | 217,695 | 10,617 | 19,502 | 4.08% | 25# | 335,320 | 14,253 | 16,160 | 0.57% |
9# | 641,686 | 8433 | 13,106 | 0.73% | 26# | 746,623 | 6532 | 7337 | 0.11% |
10# | 373,780 | 12,056 | 20,255 | 2.19% | 27# | 343,619 | 10,365 | 12,616 | 0.66% |
11# | 110,280 | 5346 | 9556 | 3.82% | 28# | 165,935 | 6465 | 7312 | 0.51% |
12# | 96,804 | 4885 | 6693 | 1.87% | 29# | 362,603 | 12,057 | 15,770 | 1.02% |
13# | 175,568 | 10,639 | 15,686 | 2.87% | 30# | 252,258 | 9151 | 21,985 | 5.09% |
14# | 149,944 | 8885 | 14,344 | 3.64% | 31# | 500,517 | 11,637 | 19,944 | 1.66% |
15# | 146,863 | 12,105 | 16,663 | 3.10% | 32# | 50,507 | 3898 | 4531 | 1.25% |
16# | 1,126,246 | 11,283 | 12,903 | 0.14% | 33# | 67,380 | 9084 | 9702 | 0.92% |
17# | 192,904 | 3453 | 5894 | 1.27% | 34# | 377,817 | 13,361 | 22,259 | 2.36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yue, D.; Zheng, D.; Cai, D.; Hu, C. A Geometric-Feature-Based Method for Automatic Extraction of Anchor Rod Points from Dense Point Cloud. Sensors 2022, 22, 9289. https://doi.org/10.3390/s22239289
Li S, Yue D, Zheng D, Cai D, Hu C. A Geometric-Feature-Based Method for Automatic Extraction of Anchor Rod Points from Dense Point Cloud. Sensors. 2022; 22(23):9289. https://doi.org/10.3390/s22239289
Chicago/Turabian StyleLi, Siyuan, Dongjie Yue, Dehua Zheng, Dongjian Cai, and Chuang Hu. 2022. "A Geometric-Feature-Based Method for Automatic Extraction of Anchor Rod Points from Dense Point Cloud" Sensors 22, no. 23: 9289. https://doi.org/10.3390/s22239289