Validation of Embedded State Estimator Modules for Decentralized Monitoring of Power Distribution Systems Using IoT Components
Abstract
:1. Introduction
- 1.
- The laboratory development and implementation of an AMI, making use of embedded modules such as NVIDIA Jetson Nano and Raspberry PI 3, coupled with wireless communication modules for the development of wireless networks, over which messages may be sent and received in real-time, using the concepts of IoT and Edge Computing. The function of each module in the proposed laboratory infrastructure is presented in Section 4. Observe that the objective is not to compare the performance of the electronic components, but to implement an AMI in a laboratory, enabling the simulation of a smart grid with regard to information traffic between the SMs, represented by Raspberry PI 3, and DOCs, represented by the Things Board Platform;
- 2.
- The laboratory development and implementation of a decentralized architecture based on Embedded State Estimator Modules (ESEMs) that manage information from SMs in LV networks, performing real-time state estimation in PDSs. Each ESEM is equipped with a high-performance processor with a Linux operating system to enable matrix analysis related to the Weighted Least Squares (WLS) state estimator.
2. Real-Time Monitoring of Power Distribution Systems
2.1. Power Distribution Systems
2.2. State Estimation
WLS State Estimator
2.3. Decentralized DSSEs
2.4. Smart Grids
3. Networks and Protocols of Communication
3.1. Radio Frequency Technologies
Long Range
3.2. Cellular Technologies
3.2.1. Long Term Evolution
3.2.2. Narrow Band
3.3. Network and Communications Protocols for IoT Applications
3.3.1. Message Queuing Telemetry Transport
3.3.2. Rest HTTP
3.3.3. IEC 61850
4. Embedded Platform for the Decentralized Monitoring of Power Distribution Systems
4.1. The Implemented Decentralized Architecture
4.2. Hardware and Software Requirements
5. Validation of a Decentralized Monitoring of PDSs via ESEMs
5.1. Metering System
5.2. Accuracy Analysis
5.3. Future Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMI | Advanced Measurements Infrastructures |
CTU | Customers Unit |
DOC | Distribution System Operations Centers |
DSO | Distribution System Operators |
DSSE | Distribution System State Estimators |
ESEM | Embedded State Estimator Module |
GOOSE | Generic Object Oriented Substation Event |
IoT | Internet of Things |
LoRa | Long Range |
LPWAN | Low Power Wide Area Network |
LTE | Long Term Evolution |
LV | Low Voltage |
MQTT | Message Queuing Telemetry Transport |
MV | Medium Voltage |
M2M | Machine to Machine |
NB IoT | Narrow Band IoT |
OFDMA | Orthogonal Frequency Division Multiple Access |
PDS | Power Distribution Systems |
PLC | Power Line Communication |
PMU | Pashor Measurement Units |
REST HTTP | Representational State Transfer and Hypertext Transfer Protocol |
SE | State Estimator |
SG | Smart Grids |
SM | Smart Meter |
UNB | Ultra Narrow Band |
WLS | Weighted Least Square |
6LowPAN | IPV6 Low Power Wireless Personal Area Network |
3Gpp | 3rd Generation Partnership Project |
References
- Dulău, L.I.; Bică, D. Effects of Electric Vehicles on Power Networks. Procedia Manuf. 2020, 46, 370–377. [Google Scholar] [CrossRef]
- Su, J.; Lie, T.T.; Zamora, R. Integration of electric vehicles in distribution network considering dynamic power imbalance issue. IEEE Trans. Ind. Appl. 2020, 56, 5913–5923. [Google Scholar] [CrossRef]
- Nizami, M.S.; Hossain, M.J.; Mahmud, K. A coordinated electric vehicle management system for grid-support services in residential networks. IEEE Syst. J. 2020, 15, 2066–2077. [Google Scholar] [CrossRef]
- Tong, L.; Zhao, S.; Jiang, H.; Zhou, J.; Xu, B. Multi-scenario and multi-objective collaborative optimization of distribution network considering electric vehicles and mobile energy storage systems. IEEE Access 2021, 9, 55690–55697. [Google Scholar] [CrossRef]
- Ballanti, A.; Ochoa, L.F. On the integrated PV hosting capacity of MV and LV distribution networks. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; pp. 366–370. [Google Scholar]
- Sirige, S.; Blaauwbroek, N.; Torres, J.L.R.; Palensky, P.; Lekić, A. Assessment of Dynamic Measurement Intervals for State Estimation in Future Distribution Systems. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; pp. 1–6. [Google Scholar]
- Gonzaga, R.M.; Massignan, J.A.; Maciel, C.D.; London, J.B.A.; de Almeida, R.M.; Camillo, M.H. An Embedded State Estimator for Reducing Data Volume and Processing in Smart Grids Monitoring. In Proceedings of the 2018 Workshop on Communication Networks and Power Systems (WCNPS), Brasília, Brazil, 7–9 November 2018; pp. 1–5. [Google Scholar]
- Bretas, A.; Bretas, N.; London, J.B., Jr.; Carvalho, B. Hybrid Physics-Based Adaptive Kalman Filter State Estimation Framework. Energies 2021, 14, 6787. [Google Scholar] [CrossRef]
- Bretas, A.; Bretas, N.; London, J.B., Jr.; Carvalho, B. Cyber-Physical Power Systems State Estimation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2021; p. 292. [Google Scholar]
- Massignan, J.A.D.; London, J.B.A.; Bessani, M.; Maciel, C.D.; Delbem, A.C.B.; Camillo, M.H.M.; de Lima Soares, T.W. In-field validation of a real-time monitoring tool for distribution feeders. IEEE Trans. Power Deliv. 2017, 33, 1798–1808. [Google Scholar] [CrossRef]
- Ahmad, F.; Rasool, A.; Ozsoy, E.; Sekar, R.; Sabanovic, A.; Elitaş, M. Distribution system state estimation-A step towards smart grid. Renew. Sustain. Energy Rev. 2018, 81, 2659–2671. [Google Scholar] [CrossRef] [Green Version]
- Dehghanpour, K.; Wang, Z.; Wang, J.; Yuan, Y.; Bu, F. A survey on state estimation techniques and challenges in smart distribution systems. IEEE Trans. Smart Grid 2018, 10, 2312–2322. [Google Scholar] [CrossRef] [Green Version]
- Massignan, J.A.; London, J.B.; Bessani, M.; Maciel, C.D.; Fannucchi, R.Z.; Miranda, V. Bayesian Inference Approach for Information Fusion in Distribution System State Estimation. IEEE Trans. Smart Grid 2021, 13, 526–540. [Google Scholar] [CrossRef]
- Kheaksong, A.; Lee, W. Packet transfer of DLMS/COSEM standards for smart grid. In Proceedings of the 20th Asia-Pacific Conference on Communication (APCC2014), Pattaya, Thailand, 1–3 October 2014. [Google Scholar]
- Pau, M.; Patti, E.; Barbierato, L.; Estebsari, A.; Pons, E.; Ponci, F.; Monti, A. Design and accuracy analysis of multilevel state estimation based on smart metering infrastructure. IEEE Trans. Instrum. Meas. 2019, 68, 4300–4312. [Google Scholar] [CrossRef]
- Feng, X.; Yang, F.; Peterson, W. A practical multi-phase distribution state estimation solution incorporating smart meter and sensor data. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–6. [Google Scholar]
- Hebling, G.M.; Massignan, J.A.; Junior, J.B.L.; Camillo, M.H. Sparse and numerically stable implementation of a distribution system state estimation based on Multifrontal QR factorization. Electr. Power Syst. Res. 2020, 189, 106734. [Google Scholar] [CrossRef]
- Garcia, L.D.A.; Grenard, S. Scalable distribution state estimation approach for distribution management systems. In Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 5–7 December 2011; pp. 1–6. [Google Scholar]
- Nusrat, N.; Irving, M.; Taylor, G. Development of distributed state estimation methods to enable smart distribution management systems. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 1691–1696. [Google Scholar]
- Muscas, C.; Pau, M.; Pegoraro, P.A.; Sulis, S.; Ponci, F.; Monti, A. Multiarea distribution system state estimation. IEEE Trans. Instrum. Meas. 2015, 64, 1140–1148. [Google Scholar] [CrossRef]
- Pau, M.; Ponci, F.; Monti, A.; Sulis, S.; Muscas, C.; Pegoraro, P.A. An efficient and accurate solution for distribution system state estimation with multiarea architecture. IEEE Trans. Instrum. Meas. 2017, 66, 910–919. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liu, Z.; Guo, Y.; Zhao, C.; Huang, J.; Chen, L. Gradient-based multi-area distribution system state estimation. IEEE Trans. Smart Grid 2020, 11, 5325–5338. [Google Scholar] [CrossRef]
- Lefebvre, S.; Prevost, J.; Lenoir, L. Distribution state estimation: A necessary requirement for the smart grid. In Proceedings of the 2014 IEEE PES General Meeting| Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Shiobara, T.; Palensky, P.; Nishi, H. Effective metering data aggregation for smart grid communication infrastructure. In Proceedings of the IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 002136–002141. [Google Scholar]
- Zourm, A.; Hing, A.L.K.; Hung, C.W.; AbdulRehman, M. Internet of things (IoT) using LoRa technology. In Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June 2019; pp. 324–330. [Google Scholar]
- Eridani, D.; Widianto, E.D.; Augustinus, R.D.O. Monitoring system in LoRa network architecture using smart gateway in simple LoRa protocol. In Proceedings of the 2019 international seminar on research of information technology and intelligent systems (ISRITI), Yogyakarta, Indonesia, 5–6 December 2019; pp. 200–204. [Google Scholar]
- Amadou, I.; Foubert, B.; Mitton, N. LoRa in a haystack: A study of the LORA signal behavior. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–4. [Google Scholar]
- Devalal, S.; Karthikeyan, A. LoRa technology-an overview. In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 284–290. [Google Scholar]
- Wibisono, G.; Permata, S.G.; Awaludin, A.; Suhasfan, P. Development of advanced metering infrastructure based on LoRa WAN in PLN Bali toward Bali Eco smart grid. In Proceedings of the 2017 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia, 12–14 December 2017; pp. 1–4. [Google Scholar]
- Mekonnen, Y.; Haque, M.; Parvez, I.; Moghadasi, A.; Sarwat, A. LTE and Wi—Fi coexistence in unlicensed spectrum with application to smart grid: A review. In Proceedings of the 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, USA, 16–19 April 2018; pp. 1–5. [Google Scholar]
- Althumali, H.; Othman, M. A survey of random access control techniques for machine-to-machine communications in LTE/LTE-A networks. IEEE Access 2018, 6, 74961–74983. [Google Scholar] [CrossRef]
- Sacchi, C.; Bonafini, S. From lte-a to lte-m: A futuristic convergence between terrestrial and martian mobile communications. In Proceedings of the 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, Russia, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Petrenko, A.S.; Petrenko, S.A.; Makoveichuk, K.A.; Chetyrbok, P.V. The IIoT/IoT device control model based on narrow-band IoT (NB-IoT). In Proceedings of the 2018 IEEE conference of Russian young researchers in electrical and electronic engineering (EIConRus), Moscow and St. Petersburg, Russia, 29 January –1 February 2018; pp. 950–953. [Google Scholar]
- Popli, S.; Jha, R.K.; Jain, S. Adaptive Small Cell position algorithm (ASPA) for green farming using NB-IoT. J. Netw. Comput. Appl. 2021, 173, 102841. [Google Scholar] [CrossRef]
- Nair, K.K.; Abu-Mahfouz, A.M.; Lefophane, S. Analysis of the narrow band Internet of Things (NB-IoT) technology. In Proceedings of the 2019 conference on information communications technology and society (ICTAS), Durban, South Africa, 6–8 March 2019; pp. 1–6. [Google Scholar]
- Tantitharanukul, N.; Osathanunkul, K.; Hantrakul, K.; Pramokchon, P.; Khoenkaw, P. MQTT-topics management system for sharing of open data. In Proceedings of the 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), Chiang Mai, Thailand, 1–4 March 2017; pp. 62–65. [Google Scholar]
- Phung, C.V.; Dizdarevic, J.; Jukan, A. An experimental study of network coded REST HTTP in dynamic IoT systems. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Iglesias-Urkia, M.; Casado-Mansilla, D.; Mayer, S.; Urbieta, A. Validation of a CoAP to IEC 61850 Mapping and Benchmarking vs HTTP-REST and WS-SOAP. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; pp. 1015–1022. [Google Scholar]
- Leite, J.B. Simulação de Hardware-In-the-Loop para Testar Dispositivos de Automação Avançada em Redes de Distribuição de Energia Elétrica. SimpóSio Bras. Sist.-EléTricos-Sbse 2020, 1, 1. (In Portuguese) [Google Scholar]
- Rogozinski, M.; Calili, R.F. Smart grid security applied to the brazilian scenario: A visual approach. IEEE Lat. Am. Trans. 2021, 19, 446–455. [Google Scholar] [CrossRef]
- Ferrari, V.; Lima, P. Integração entre redes do sistema elétrico e da automação industrial. In Proceedings of the Congresso Brasileiro de Automática-CBA, Virtual, 13–26 November 2020; Volume 2. (In Portuguese). [Google Scholar]
- Singh, R.; Pal, B.C.; Vinter, R.B. Measurement placement in distribution system state estimation. IEEE Trans. Power Syst. 2009, 24, 668–675. [Google Scholar] [CrossRef] [Green Version]
- Castillo, M.R.; London, J.B.; Bretas, N.G.; Lefebvre, S.; Prévost, J.; Lambert, B. Offline detection, identification, and correction of branch parameter errors based on several measurement snapshots. IEEE Trans. Power Syst. 2010, 26, 870–877. [Google Scholar] [CrossRef]
- da Silva, R.S.; Fernandes, T.R.; de Almeida, M.C. Specifying angular reference for three-phase distribution system state estimators. IET Gener. Transm. Distrib. 2018, 12, 1655–1663. [Google Scholar] [CrossRef]
- Brolin, L.C.; Rolim, F.B.; Trindade, F.C. Fast screening approach to estimate the hosting capacity of rooftop PV generators in electric power distribution systems. Int. Trans. Electr. Energy Syst. 2019, 29, e2740. [Google Scholar] [CrossRef]
EMR Centralized | Standard Deviation Centralized | EMR Decentralized | Standard Deviation Decentralized |
---|---|---|---|
0.0255 | 0.0072939 | 0.0297 | 0.008119 |
Electricity Network Used | Processing Time (S) | CPU |
---|---|---|
Complete (MV and LV Buses) | 46.4579 | Core i3 |
Primary (MV Buses only) | 35.7633 | Jetson Nano |
LV Buses connected to Transformer 2960 | 0.3380 | Jetson Nano |
LV Buses connected to Transformer 1370 | 1.409 | Jetson Nano |
LV Buses connected to Transformer 1371 | 0.7472 | Jetson Nano |
LV Buses connected to Transformer 1372 | 1.3451 | Jetson Nano |
LV Buses connected to Transformer 1373 | 1.1043 | Jetson Nano |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, R.M.G.; Márquez-Sánchez, S.; Santos, J.H.; de Almeida, R.M.A.; London Junior, J.B.A.; Rodríguez, J.M.C. Validation of Embedded State Estimator Modules for Decentralized Monitoring of Power Distribution Systems Using IoT Components. Sensors 2022, 22, 2104. https://doi.org/10.3390/s22062104
Junior RMG, Márquez-Sánchez S, Santos JH, de Almeida RMA, London Junior JBA, Rodríguez JMC. Validation of Embedded State Estimator Modules for Decentralized Monitoring of Power Distribution Systems Using IoT Components. Sensors. 2022; 22(6):2104. https://doi.org/10.3390/s22062104
Chicago/Turabian StyleJunior, Rosvando Marques Gonzaga, Sergio Márquez-Sánchez, Jorge Herrera Santos, Rodrigo Maximiano Antunes de Almeida, João Bosco Augusto London Junior, and Juan Manuel Corchado Rodríguez. 2022. "Validation of Embedded State Estimator Modules for Decentralized Monitoring of Power Distribution Systems Using IoT Components" Sensors 22, no. 6: 2104. https://doi.org/10.3390/s22062104