Telemonitoring for the Follow-Up of Obstructive Sleep Apnea Patients Treated with CPAP: Accuracy and Impact on Therapy
Abstract
:1. Introduction
2. Telemonitoring of CPAP-Treated Patients
2.1. Measurement and Accuracy of CPAP-Recorded Data
- Accurate interpretation of the CPAP data report.
- In cases where an auto-adjusting PAP (APAP) is used, the machine will react, by gradually increasing or decreasing the pressure, according to the type of respiratory event detected, and clinicians should be aware of the algorithm used by the device in order to be able to correctly interpret any inappropriate reactions of the APAP device during nighttime recordings.
2.2. Clinical Management of CPAP-Recorded Data
2.3. Impact of Telemonitoring on CPAP Therapy
2.3.1. Compliance—Adherence
2.3.2. Patient-Reported Outcomes (PROs)
2.3.3. Cardiac Events: Interpretation of CPAP-Detected Central Sleep Apnea and Cheynes-Stokes Respiration
2.3.4. Integrated Care for OSA and Associated Comorbidities, including Telemonitored CPAP
2.4. Telemonitored CPAP Therapy: Patient Perspectives
2.5. Telemonitored CPAP Therapy: Healthcare Professional Perspectives
2.5.1. Who to Monitor?
- -
- Long-term users with unexpected high residual respiratory events detected at consultation: TMg can help to monitor whether the problem is improving (or not);
- -
- Long-term users who become non-compliant: focusing on treatment and giving more support and feed-back for a limited period can help the patient to become a regular user again.
2.5.2. How to Monitor?
- -
- Pro-active analysis of TMg data, focused on troubleshooting problems identified by the filters. The frequency of this monitoring can be chosen by the staff (e.g., 1–2 times/week). In previous studies, the frequency of monitoring was highly variable: 1 X/day, 1 X/2 days, 3 times/week, every 6 days [47,56,57,61,62]. If we refer to the proposals from SFRMS/SPLF [17], AHI > 10 should be managed if it persists more than 7 days. According to Verbraecken’s review, alerts should be managed if they persist for 2–5 days [18]. According to these recommendations, weekly management of TMg alerts seems to be optimal. However, this workflow is time-consuming and needs to be adequately financed.
- -
- Passive use: TMg data are only reviewed when the patient calls to report a problem, or when the patient comes for a nursing or medical consultation. This organization of care is more acceptable in terms of time dedicated to the patient, but is a misuse of TMg. Many patients with inadequate efficacy of CPAP will not be detected and long delays can occur before detection of a significant problem or non-compliance, which can lead to medical complications (e.g., in case of Cheynes–Stokes breathing) or symptom recurrence and subsequent risks.
2.6. Telemonitored CPAP Therapy: Real Costs—Cost-Effectiveness
2.7. Issues Related to TMg Use
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, S.R. Obstructive Sleep Apnea. Ann. Intern. Med. 2019, 171, ITC81–ITC96. [Google Scholar] [CrossRef] [PubMed]
- Pevernagie, D.A.; Gnidovec-Strazisar, B.; Grote, L.; Heinzer, R.; McNicholas, W.T.; Penzel, T.; Randerath, W.; Schiza, S.; Verbraecken, J.; Arnardottir, E.S. On the rise and fall of the apnea-hypopnea index: A historical review and critical appraisal. J. Sleep Res. 2020, 29, e13066. [Google Scholar] [CrossRef] [PubMed]
- Voulgaris, A.; Ferini-Strambi, L.; Steiropoulos, P. Sleep medicine and COVID-19. Has a new era begun? Sleep Med. 2020, 73, 170–176. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Telemedicine: Opportunities and Developments in Member States. Report on the Second Global Survey on eHealth. Geneva Switzerland WHO 2010. Available online: https://www.who.int/goe/publications/goe_telemedicine_2010.pdf (accessed on 4 March 2022).
- Schwab, R.J.; Badr, S.M.; Epstein, L.J.; Gay, P.C.; Gozal, D.; Kohler, M.; Lévy, P.; Malhotra, A.; Phillips, B.A.; Rosen, I.M.; et al. An official American Thoracic Society statement: Continuous positive airway pressure adherence tracking systems. The optimal monitoring strategies and outcome measures in adults. Am. J. Respir. Crit. Care Med. 2013, 188, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.G.; Johnson, D.C. Treatment of sleep-disordered breathing with positive airway pressure devices: Technology update. Med. Devices 2015, 8, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Ye, G.; Yin, H.; Chen, T.; Chen, H.; Cui, L.; Zhang, X. FENet: A Frequency Extraction Network for Obstructive Sleep Apnea Detection. IEEE J. Biomed. Health Inform. 2021, 8, 2848–2856. [Google Scholar] [CrossRef]
- Yeh, C.Y.; Chang, H.Y.; Hu, J.Y.; Lin, C.C. Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network. Sensors 2022, 2, 510. [Google Scholar] [CrossRef]
- Matthews, G.P.; Kane, M.T.; Duff, W.K.; Siirola, R.; Martin, D.; Ressler, H.; Shankar, U.; RIC Investments, LLC, Assignee. Auto-titration Pressure Support System and Method of Using Same. U.S. Patent US 7827988B2, 9 November 2010. [Google Scholar]
- Berthon-Jones, M.L.; ResMed Ltd. Determination of Patency of the Airway. U.S. Patent US 7730886B2, 8 June 2010. [Google Scholar]
- Bertelli, F.; Suehs, C.M.; Mallet, J.P.; Rotty, M.C.; Pépin, J.L.; Gagnadoux, F.; Matzner-Lober, E.; Bourdin, A.; Molinari, N.; Jaffuel, D. Apnoea-hypopnoea indices determined via continuous positive airway pressure (AHI-CPAPflow) versus those determined by polysomnography (AHI-PSGgold): A protocol for a systematic review and meta-analysis. BMJ Open 2021, 11, e044499. [Google Scholar] [CrossRef]
- Gagnadoux, F.; Pevernagie, D.; Jennum, P.; Lon, N.; Loiodice, C.; Tamisier, R.; van Mierlo, P.; Trzepizur, W.; Neddermann, M.; Machleit, A.; et al. Validation of the System One RemStar Auto A-Flex for Obstructive Sleep Apnea Treatment and Detection of Residual Apnea-Hypopnea Index: A European Randomized Trial. J. Clin. Sleep Med. 2017, 13, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.Y.; Berry, R.B.; Goetting, M.G.; Staley, B.; Soto-Calderon, H.; Tsai, S.C.; Jasko, J.G.; Pack, A.I.; Kuna, S.T. Detection of upper airway status and respiratory events by a current generation positive airway pressure device. Sleep 2015, 38, 597–605. [Google Scholar] [CrossRef]
- Fanfulla, F.; D’Artavilla Lupo, N.; Malovini, A.; Arcovio, S.; Prpa, A.; Mogavero, M.P.; Pronzato, C.; Bonsignore, M.R. Accuracy of automatic detection of AHI during positive airway pressure treatment in obstructive sleep apnea patients: A “real-life study”. Respir. Med. 2021, 177, 106303. [Google Scholar] [CrossRef]
- Midelet, A.; Borel, J.C.; Tamisier, R.; Le Hy, R.; Schaeffer, M.C.; Daabek, N.; Pépin, J.L.; Bailly, S. Apnea-hypopnea index supplied by CPAP devices: Time for standardization? Sleep Med. 2021, 81, 120–122. [Google Scholar] [CrossRef]
- Borel, J.C.; Sabil, A.; Janssens, J.P.; Couteau, M.; Boulon, L.; Lévy, P.; Pépin, J.L. Intentional leaks in industrial masks have a significant impact on efficacy of bilevel noninvasive ventilation: A bench test study. Chest 2009, 135, 669–677. [Google Scholar] [CrossRef]
- Prigent, A.; Gentina, T.; Launois, S.; Meurice, J.C.; Pia d’Ortho, M.; Philippe, C.; Tamisier, R.; Gagnadoux, F.; Jaffuel, D. Groupe de travail de la Société française de recherche et médecine du sommeil et la Société de pneumologie de langue française. [Telemonitoring in continuous positive airway pressure-treated patients with obstructive sleep apnoea syndrome: An algorithm proposal]. Rev. Mal. Respir. 2020, 37, 550–560. (In French) [Google Scholar] [CrossRef]
- Verbraecken, J. Telemedicine in Sleep-Disordered Breathing: Expanding the Horizons. Sleep Med. Clin. 2021, 16, 417–445. [Google Scholar] [CrossRef]
- Collard, P.; Pieters, T.; Aubert, G.; Delguste, P.; Rodenstein, D.O. Compliance with nasal CPAP in obstructive sleep apnea patients. Sleep Med. Rev. 1997, 1, 33–44. [Google Scholar] [CrossRef]
- Weaver, T.E.; Maislin, G.; Dinges, D.F.; Bloxham, T.; George, C.F.; Greenberg, H.; Kader, G.; Mahowald, M.; Younger, J.; Pack, A.I. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep 2007, 30, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Campos-Rodriguez, F.; Peña-Griñan, N.; Reyes-Nuñez, N.; De la Cruz-Moron, I.; Perez-Ronchel, J.; De la Vega-Gallardo, F.; Fernandez-Palacin, A. Mortality in obstructive sleep apnea–hypopnea patients treated with positive airway pressure. Chest 2005, 128, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G.N. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Masa, J.F.; Corral-Peñafiel, J. Should use of 4 hours continuous positive airway pressure per night be considered acceptable compliance? Eur. Respir. J. 2014, 44, 1119–1120. [Google Scholar] [CrossRef]
- Bouloukaki, I.; Giannadaki, K.; Mermigkis, C.; Tzanakis, N.; Mauroudi, E. Intensive versus standard follow-up to improve continuous positive airway pressure compliance. Eur. Respir. J. 2014, 44, 1262–1274. [Google Scholar] [CrossRef] [Green Version]
- Peker, Y.; Glantz, H.; Eulenburg, C.; Wegscheider, K.; Herlitz, J.; Thunström, E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 613–620. [Google Scholar] [CrossRef]
- McEvoy, R.D.; Antic, N.A.; Heeley, E.; Luo, Y.; Ou, Q.; Zhang, X.; Mediano, O.; Chen, R.; Drager, L.F.; Liu, Z.; et al. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. N. Engl. J. Med. 2016, 375, 919–931. [Google Scholar] [CrossRef]
- Sánchez-de-la-Torre, M.; Sánchez-de-la-Torre, A.; Bertran, S.; Abad, J.; Duran-Cantolla, J.; Cabriada, V.; Mediano, O.; Masdeu, M.J.; Alonso, M.L.; Masa, J.F.; et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): A randomised controlled trial. Lancet Respir. Med. 2020, 8, 359–367. [Google Scholar] [CrossRef]
- Khan, S.U.; Duran, C.A.; Rahman, H.; Lekkala, M.; Saleem, M.A.; Kaluski, E. A meta-analysis of continuous positive airway pressure therapy in prevention of cardiovascular events in patients with obstructive sleep apnoea. Eur. Heart. J. 2018, 39, 2291–2297. [Google Scholar] [CrossRef] [Green Version]
- Weaver, T.E.; Sawyer, A.M. Adherence to Continuous Positive Airway Pressure Treatment for Obstructive Sleep Apnea: Implications for Future Interventions. Indian J. Med. Res. 2010, 131, 245–258. [Google Scholar]
- Cistulli, P.A.; Armitstead, J.; Pepin, J.L.; Woehrle, H.; Nunez, C.M.; Benjafield, A.; Malhotra, A. Short-term CPAP adherence in obstructive sleep apnea: A big data analysis using real world data. Sleep Med. 2019, 59, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Buyse, B.; Bruyneel, M.; Verbraecken, J.; Testelmans, D. High adherence to continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA) in Belgium: A narrative review. Acta Clin. Belg. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, D. KCE reports 330B. 2020. Available online: https://kce.fgov.be/en/node/6185 (accessed on 4 March 2022).
- Pépin, J.L.; Bailly, S.; Rinder, P.; Adler, D.; Szeftel, D.; Malhotra, A.; Cistulli, P.A.; Benjafield, A.; Lavergne, F.; Josseran, A.; et al. CPAP Therapy Termination Rates by OSA Phenotype: A French Nationwide Database Analysis. J. Clin. Med. 2021, 10, 936. [Google Scholar] [CrossRef] [PubMed]
- Carlier, S.; Bruyneel, A.V.; Bruyneel, M. Pressure adjustment is the most useful intervention for improving compliance in telemonitored patients treated with CPAP in the first 6 months of treatment. Sleep Breath 2022, 26, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Chai-Coetzer, C.L.; Luo, Y.M.; Antic, N.A.; Zhang, X.L.; Chen, B.Y.; He, Q.Y.; Heeley, E.; Huang, S.G.; Anderson, C.; Zhong, N.S.; et al. Predictors of long-term adherence to continuous positive airway pressure therapy in patients with obstructive sleep apnea and cardiovascular disease in the SAVE study. Sleep 2013, 36, 1929–1937. [Google Scholar] [CrossRef] [Green Version]
- Borel, J.C.; Tamisier, R.; Dias-Domingos, S.; Sapene, M.; Martin, F.; Stach, B.; Grillet, Y.; Muir, J.F.; Levy, P.; Series, F.; et al. Type of Mask May Impact on Continuous Positive Airway Pressure Adherence in Apneic Patients. PLoS ONE 2013, 8, e64382. [Google Scholar] [CrossRef] [Green Version]
- Van Ryswyk, E.; Anderson, C.S.; Antic, N.A.; Barbe, F.; Bittencourt, L.; Freed, R.; Heeley, E.; Liu, Z.; Loffler, K.A.; Lorenzi-Filho, G.; et al. Predictors of long-term adherence to continuous positive airway pressure in patients with obstructive sleep apnea and cardiovascular disease. Sleep 2019, 42, zsz152. [Google Scholar] [CrossRef]
- Epstein, L.J.; Kristo, D.; Strollo, P.J., Jr.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.; Rogers, R.; Schwab, R.J.; Weaver, E.M.; et al. Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009, 5, 263–276. [Google Scholar]
- Fox, N.; Hirsch-Allen, A.J.; Goodfellow, E.; Wenner, J.; Fleetham, J.; Ryan, C.F.; Kwiatkowska, M.; Ayas, N.T. The impact of a telemedicine monitoring system on positive airway pressure adherence in patients with obstructive sleep apnea: A randomized controlled trial. Sleep 2012, 35, 477–481. [Google Scholar] [CrossRef]
- Sparrow, D.; Aloia, M.; Demolles, D.A.; Gottlieb, D.J. A telemedicine intervention to improve adherence to continuous positive airway pressure: A randomised controlled trial. Thorax 2010, 65, 1061–1066. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, J.; Pang, L.; Wang, Y.; Ma, G.; Liao, W. Telemonitor care helps CPAP compliance in patients with obstructive sleep apnea: A systemic review and meta-analysis of randomized controlled trials. Ther. Adv. Chronic Dis. 2020, 11, 2040622320901625. [Google Scholar] [CrossRef]
- Labarca, G.; Schmidt, A.; Dreyse, J.; Jorquera, J.; Barbe, F. Telemedicine interventions for CPAP adherence in obstructive sleep apnea patients: Systematic review and meta-analysis. Sleep Med. Rev. 2021, 60, 101543. [Google Scholar] [CrossRef]
- Malhotra, A.; Crocker, M.E.; Willes, L.; Kelly, C.; Lynch, S.; Benjafield, A.V. Patient Engagement Using New Technology to Improve Adherence to Positive Airway Pressure Therapy. A Retrospective Analysis. Chest 2018, 153, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Kuna, S.T.; Shuttleworth, D.; Chi, L.; Schutte-Rodin, S.; Friedman, E.; Guo, H.; Dhand, S.; Yang, L.; Zhu, J.; Bellamy, S.L.; et al. Web-Based Access to Positive Airway Pressure Usage with or without an Initial Financial Incentive Improves Treatment Use in Patients with Obstructive Sleep Apnea. Sleep 2015, 38, 1229–1236. [Google Scholar] [CrossRef]
- Taylor, A.H.; Taylor, R.S.; Ingram, W.M.; Anokye, N.; Dean, S.; Jolly, K.; Mutrie, N.; Lambert, J.; Yardley, L.; Greaves, C.; et al. Adding web-based behavioural support to exercise referral schemes for inactive adults with chronic health conditions: The e-coachER RCT. Health Technol. Assess. 2020, 24, 1–106. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Kon, S.S.C.; Nolan, C.M.; Barker, R.E.; Simonds, A.K.; Morrell, M.J.; Man, W.D. The Epworth Sleepiness Scale: Minimum Clinically Important Difference in Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2018, 197, 961–963. [Google Scholar] [CrossRef] [PubMed]
- Hoet, F.; Libert, W.; Sanida, C.; Van den Broecke, S.; Bruyneel, A.V.; Bruyneel, M. Telemonitoring in continuous positive airway pressure-treated patients improves delay to first intervention and early compliance: A randomized trial. Sleep Med. 2017, 39, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Pépin, J.L.; Jullian-Desayes, I.; Sapène, M.; Treptow, E.; Joyeux-Faure, M.; Benmerad, M.; Bailly, S.; Grillet, Y.; Stach, B.; Richard, P.; et al. Multimodal Remote Monitoring of High Cardiovascular Risk Patients With OSA Initiating CPAP: A Randomized Trial. Chest 2019, 155, 730–739. [Google Scholar] [CrossRef]
- DeMolles, D.A.; Sparrow, D.; Gottlieb, D.J.; Friedman, R. A pilot trial of a telecommunications system in sleep apnea management. Med. Care 2004, 42, 764–769. [Google Scholar] [CrossRef]
- Taylor, Y.; Eliasson, A.; Andrada, T.; Kristo, D.; Howard, R. The role of telemedicine in CPAP compliance for patients with obstructive sleep apnea syndrome. Sleep Breath 2006, 10, 132–138. [Google Scholar] [CrossRef]
- Stepnowsky, C.J.; Palau, J.J.; Marler, M.R.; Gifford, A.L. Pilot randomized trial of the effect of wireless telemonitoring on compliance and treatment efficacy in obstructive sleep apnea. J. Med. Internet Res. 2007, 9, e14. [Google Scholar] [CrossRef]
- Mendelson, M.; Vivodtzev, I.; Tamisier, R.; Laplaud, D.; Dias-Domingos, S.; Baguet, J.P.; Moreau, L.; Koltes, C.; Chavez, L.; De Lamberterie, G.; et al. CPAP treatment supported by telemedicine does not improve blood pressure in high cardiovascular risk OSA patients: A randomized, controlled trial. Sleep 2014, 37, 1863–1870. [Google Scholar] [CrossRef]
- Prigent, A.; Pellen, C.; Texereau, J.; Bailly, S.; Coquerel, N.; Gervais, R.; Liegaux, J.M.; Luraine, R.; Renaud, J.C.; Serandour, A.L.; et al. CPAP telemonitoring can track Cheyne-Stokes respiration and detect serious cardiac events: The AlertApnée Study. Respirology 2022, 27, 161–169. [Google Scholar] [CrossRef]
- André, S.; Andreozzi, F.; Van Overstraeten, C.; Ben Youssef, S.; Bold, I.; Carlier, S.; Gruwez, A.; Bruyneel, A.V.; Bruyneel, M. Cardiometabolic comorbidities in obstructive sleep apnea patients are related to disease severity, nocturnal hypoxemia, and decreased sleep quality. Respir. Res. 2020, 21, 35. [Google Scholar] [CrossRef]
- Pépin, J.L.; Tamisier, R.; Hwang, D.; Mereddy, S.; Parthasarathy, S. Does remote monitoring change OSA management and CPAP adherence? Respirology 2017, 22, 1508–1517. [Google Scholar] [CrossRef]
- Frasnelli, M.; Baty, F.; Niedermann, J.; Brutsche, M.H.; Schoch, O.D. Effect of telemetric monitoring in the first 30 days of continuous positive airway pressure adaptation for obstructive sleep apnoea syndrome—A controlled pilot study. J. Telemed. Telecare 2016, 22, 209–214. [Google Scholar] [CrossRef]
- Turino, C.; de Batlle, J.; Woehrle, H.; Mayoral, A.; Castro-Grattoni, A.L.; Gómez, S.; Dalmases, M.; Sánchez-de-la-Torre, M.; Barbé, F. Management of continuous positive airway pressure treatment compliance using telemonitoring in obstructive sleep apnoea. Eur. Respir. J. 2017, 49, 1601128. [Google Scholar] [CrossRef] [Green Version]
- Isetta, V.; Negrín, M.A.; Monasterio, C.; Masa, J.F.; Feu, N.; Álvarez, A.; Campos-Rodriguez, F.; Ruiz, C.; Abad, J.; Vázquez-Polo, F.J.; et al. A Bayesian cost-effectiveness analysis of a telemedicine-based strategy for the management of sleep apnoea: A multicentre randomised controlled trial. Thorax 2015, 70, 1054–1061. [Google Scholar] [CrossRef] [Green Version]
- Bros, J.S.; Poulet, C.; Arnol, N.; Deschaux, C.; Gandit, M.; Charavel, M. Acceptance of Telemonitoring Among Patients with Obstructive Sleep Apnea Syndrome: How is the Perceived Interest by and for Patients? Telemed. J. E Health 2018, 24, 351–359. [Google Scholar] [CrossRef]
- Brunton, L.; Bower, P.; Sanders, C. The Contradictions of Telehealth User Experience in Chronic Obstructive Pulmonary Disease (COPD): A Qualitative Meta-Synthesis. PLoS ONE 2015, 10, e0139561. [Google Scholar] [CrossRef]
- Anttalainen, U.; Melkko, S.; Hakko, S.; Laitinen, T.; Saaresranta, T. Telemonitoring of CPAP therapy may save nursing time. Sleep Breath 2016, 20, 1209–1215. [Google Scholar] [CrossRef]
- Munafo, D.; Hevener, W.; Crocker, M.; Willes, L.; Sridasome, S.; Mushin, M. A telehealth program for CPAP adherence reduces labor and yields similar adherence and efficacity when compared to standard of care. Sleep Breath 2016, 20, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Bakker, J.P.; Weaver, T.E.; Parthasarathy, S.; Aloia, M.S. Adherence to CPAP: What Should We Be Aiming For, and How Can We Get There? Chest 2019, 155, 1272–1287. [Google Scholar] [CrossRef]
- Sucena, M.; Liistro, G.; Aubert, G.; Rodenstein, D.O.; Pieters, T. Continuous positive airway pressure treatment for sleep apnoea: Compliance increases with time in continuing users. Eur. Respir. J. 2006, 27, 761–766. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dusart, C.; Andre, S.; Mettay, T.; Bruyneel, M. Telemonitoring for the Follow-Up of Obstructive Sleep Apnea Patients Treated with CPAP: Accuracy and Impact on Therapy. Sensors 2022, 22, 2782. https://doi.org/10.3390/s22072782
Dusart C, Andre S, Mettay T, Bruyneel M. Telemonitoring for the Follow-Up of Obstructive Sleep Apnea Patients Treated with CPAP: Accuracy and Impact on Therapy. Sensors. 2022; 22(7):2782. https://doi.org/10.3390/s22072782
Chicago/Turabian StyleDusart, Cécile, Stéphanie Andre, Thomas Mettay, and Marie Bruyneel. 2022. "Telemonitoring for the Follow-Up of Obstructive Sleep Apnea Patients Treated with CPAP: Accuracy and Impact on Therapy" Sensors 22, no. 7: 2782. https://doi.org/10.3390/s22072782
APA StyleDusart, C., Andre, S., Mettay, T., & Bruyneel, M. (2022). Telemonitoring for the Follow-Up of Obstructive Sleep Apnea Patients Treated with CPAP: Accuracy and Impact on Therapy. Sensors, 22(7), 2782. https://doi.org/10.3390/s22072782