Self-Supervised Robust Feature Matching Pipeline for Teach and Repeat Navigation
Abstract
:1. Introduction
2. Related Work
Point Feature Detectors and Descriptors
3. Method
3.1. Robot Navigation
3.2. Neural Network
3.3. Feature Matching
3.4. Training Pair Selector and Result Accumulator
3.5. Neural Network Training
4. Datasets
4.1. Nordland
4.2. Stromovka
4.3. North Campus Long-Term Dataset—“Carlevaris”
5. Experimental Evaluation
Computational and Storage Requirements
6. Results and Discussion
6.1. Evaluating the Teach, Repeat and Learn Scheme
6.2. Evaluating the Generalisation of the Trained Network
6.3. Performance Comparison to Supervised Training
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeSouza, G.N.; Kak, A.C. Vision for mobile robot navigation: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 237–267. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, Y.D.; Martins, L.E.G.; Cappabianco, F.A. Autonomous visual navigation for mobile robots: A systematic literature review. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi Amjadi, A.; Raoufi, M.; Turgut, A.E. A self-adaptive landmark-based aggregation method for robot swarms. Adapt. Behav. 2021. [Google Scholar] [CrossRef]
- Aznar, F.; Pujol, M.; Rizo, R. Visual navigation for UAV with map references using ConvNets. In Proceedings of the Conference of the Spanish Association for Artificial Intelligence, Salamanca, Spain, 14–16 September 2016; Springer: Cham, Switzerland, 2016; pp. 13–22. [Google Scholar]
- Arvin, F.; Xiong, C.; Yue, S. Colias-φ: An autonomous micro robot for artificial pheromone communication. Int. J. Mech. Eng. Robot. Res. 2015, 4, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Crisman, J.D.; Thorpe, C.E. Color vision for road following. In Vision and Navigation; Springer: Cham, Switzerland, 1990; pp. 9–24. [Google Scholar]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM algorithms: A survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Furgale, P.; Barfoot, T.D. Visual teach and repeat for long-range rover autonomy. J. Field Robot. 2010, 27, 534–560. [Google Scholar] [CrossRef]
- Krajník, T.; Faigl, J.; Vonásek, V.; Košnar, K.; Kulich, M.; Přeučil, L. Simple yet stable bearing-only navigation. J. Field Robot. 2010, 27, 511–533. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Mukherjee, D.; Jonathan Wu, Q.; Wang, G. A comparative experimental study of image feature detectors and descriptors. Mach. Vis. Appl. 2015, 26, 443–466. [Google Scholar] [CrossRef]
- Valgren, C.; Lilienthal, A.J. SIFT, SURF & seasons: Appearance-based long-term localization in outdoor environments. Robot. Auton. Syst. 2010, 58, 149–156. [Google Scholar]
- Dayoub, F.; Cielniak, G.; Duckett, T. Long-term experiments with an adaptive spherical view representation for navigation in changing environments. Robot. Auton. Syst. 2011, 59, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Lowry, S.; Sünderhauf, N.; Newman, P.; Leonard, J.J.; Cox, D.; Corke, P.; Milford, M.J. Visual place recognition: A survey. IEEE Trans. Robot. 2015, 32, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Paton, M.; MacTavish, K.; Warren, M.; Barfoot, T.D. Bridging the appearance gap: Multi-experience localization for long-term visual teach and repeat. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 1918–1925. [Google Scholar]
- Paton, M.; MacTavish, K.; Berczi, L.P.; van Es, S.K.; Barfoot, T.D. I can see for miles and miles: An extended field test of visual teach and repeat 2.0. In Field and Service Robotics; Springer: Cham, Switzerland, 2018; pp. 415–431. [Google Scholar]
- Krajník, T.; Cristóforis, P.; Kusumam, K.; Neubert, P.; Duckett, T. Image features for visual teach-and-repeat navigation in changing environments. Robot. Auton. Syst. 2017, 88, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Neubert, P.; Sünderhauf, N.; Protzel, P. Appearance change prediction for long-term navigation across seasons. In Proceedings of the 2013 European Conference on Mobile Robots, Barcelona, Spain, 25–27 September 2013; pp. 198–203. [Google Scholar]
- Zhang, N.; Warren, M.; Barfoot, T.D. Learning Place-and-Time-Dependent Binary Descriptors for Long-Term Visual Localization. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 828–835. [Google Scholar] [CrossRef]
- Sünderhauf, N.; Shirazi, S.; Dayoub, F.; Upcroft, B.; Milford, M. On the performance of convnet features for place recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4297–4304. [Google Scholar]
- Broughton, G.; Linder, P.; Rouček, T.; Vintr, T.; Krajník, T. Robust Image Alignment for Outdoor Teach-and-Repeat Navigation. In Proceedings of the 2021 European Conference on Mobile Robots (ECMR), Bonn, Germany, 31 August–3 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Toft, C.; Maddern, W.; Torii, A.; Hammarstrand, L.; Stenborg, E.; Safari, D.; Okutomi, M.; Pollefeys, M.; Sivic, J.; Pajdla, T.; et al. Long-term visual localization revisited. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gridseth, M.; Barfoot, T.D. Keeping an Eye on Things: Deep Learned Features for Long-Term Visual Localization. IEEE Robot. Autom. Lett. 2022, 7, 1016–1023. [Google Scholar] [CrossRef]
- Swedish, T.; Raskar, R. Deep visual teach and repeat on path networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Lake City, UT, USA, 18–22 June 2018; pp. 1533–1542. [Google Scholar]
- Rozsypalek, Z.; Broughton, G.; Linder, P.; Roucek, T.; Kusumam, K.; Krajnik, T. Semi-Supervised Learning for Image Alignment in Teach and Repeat navigation. In Proceedings of the Symposium on Applied Computing (SAC) 2022, Brno, Czech Republic, 25–29 April 2022. [Google Scholar]
- Finlayson, G.D.; Hordley, S.D. Color constancy at a pixel. JOSA A 2001, 18, 253–264. [Google Scholar] [CrossRef]
- Maddern, W.; Stewart, A.; McManus, C.; Upcroft, B.; Churchill, W.; Newman, P. Illumination invariant imaging: Applications in robust vision-based localisation, mapping and classification for autonomous vehicles. In Proceedings of the Visual Place Recognition in Changing Environments Workshop, IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014; Volume 2, p. 5. [Google Scholar]
- McManus, C.; Churchill, W.; Maddern, W.; Stewart, A.; Newman, P. Shady dealings: Robust, long-term visual localisation using illumination invariance. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 901–906. [Google Scholar] [CrossRef]
- MacTavish, K.; Paton, M.; Barfoot, T. Beyond a Shadow of a Doubt: Place Recognition with Colour-Constant Images. In Field and Service Robotics (FSR); Springer: Cham, Switzerland, 2015. [Google Scholar]
- Paton, M.; MacTavish, K.; Ostafew, C.; Barfoot, T. It’s Not Easy Seeing Green: Lighting-resistant Stereo Visual Teach-and-Repeat Using Color-constant Images. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015. [Google Scholar]
- Dayoub, F.; Duckett, T. An adaptive appearance-based map for long-term topological localization of mobile robots. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3364–3369. [Google Scholar]
- Rosen, D.M.; Mason, J.; Leonard, J.J. Towards lifelong feature-based mapping in semi-static environments. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1063–1070. [Google Scholar]
- Dymczyk, M.; Stumm, E.; Nieto, J.; Siegwart, R.; Gilitschenski, I. Will It Last? Learning Stable Features for Long-Term Visual Localization. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 572–581. [Google Scholar] [CrossRef] [Green Version]
- Berrio, J.S.; Ward, J.; Worrall, S.; Nebot, E. Identifying robust landmarks in feature-based maps. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1166–1172. [Google Scholar] [CrossRef] [Green Version]
- Luthardt, S.; Willert, V.; Adamy, J. LLama-SLAM: Learning High-Quality Visual Landmarks for Long-Term Mapping and Localization. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2645–2652. [Google Scholar] [CrossRef] [Green Version]
- Mühlfellner, P.; Bürki, M.; Bosse, M.; Derendarz, W.; Philippsen, R.; Furgale, P. Summary maps for lifelong visual localization. J. Field Robot. 2016, 33, 561–590. [Google Scholar] [CrossRef]
- Churchill, W.S.; Newman, P. Experience-based navigation for long-term localisation. Int. J. Robot. Res. 2013, 32, 1645–1661. [Google Scholar] [CrossRef]
- Linegar, C.; Churchill, W.; Newman, P. Work smart, not hard: Recalling relevant experiences for vast-scale but time-constrained localisation. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 90–97. [Google Scholar]
- MacTavish, K.; Paton, M.; Barfoot, T.D. Visual triage: A bag-of-words experience selector for long-term visual route following. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2065–2072. [Google Scholar] [CrossRef]
- Neubert, P.; Sünderhauf, N.; Protzel, P. Superpixel-based appearance change prediction for long-term navigation across seasons. Robot. Auton. Syst. 2014, 69, 15–27. [Google Scholar] [CrossRef]
- Lowry, S.M.; Milford, M.J.; Wyeth, G.F. Transforming morning to afternoon using linear regression techniques. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3950–3955. [Google Scholar]
- Krajník, T.; Vintr, T.; Molina, S.; Fentanes, J.P.; Cielniak, G.; Mozos, O.M.; Broughton, G.; Duckett, T. Warped Hypertime Representations for Long-Term Autonomy of Mobile Robots. IEEE Robot. Autom. Lett. 2019, 4, 3310–3317. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Chen, W.; Wang, J.; Wang, H. Long-Term Visual Inertial SLAM based on Time Series Map Prediction. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 5364–5369. [Google Scholar] [CrossRef]
- Halodová, L.; Dvořráková, E.; Majer, F.; Vintr, T.; Mozos, O.M.; Dayoub, F.; Krajník, T. Predictive and adaptive maps for long-term visual navigation in changing environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 7033–7039. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Porav, H.; Maddern, W.; Newman, P. Adversarial training for adverse conditions: Robust metric localisation using appearance transfer. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1011–1018. [Google Scholar]
- Cho, Y.; Jeong, J.; Shin, Y.; Kim, A. DejavuGAN: Multi-temporal image translation toward long-term robot autonomy. In Proceedings of the ICRA Workshop, Brisbane, Australia, 21–25 May 2018; pp. 1–4. [Google Scholar]
- Choi, Y.; Kim, N.; Hwang, S.; Park, K.; Yoon, J.S.; An, K.; Kweon, I.S. KAIST Multi-spectral Day/Night Dataset for Autonomous and Assisted Driving. IEEE Trans. Intell. Transp. Syst. (TITS) 2018, 19, 934–948. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Carlevaris-Bianco, N.; Ushani, A.K.; Eustice, R.M. University of Michigan North Campus long-term vision and lidar dataset. Int. J. Robot. Res. 2015. [Google Scholar] [CrossRef]
- Maddern, W.; Pascoe, G.; Linegar, C.; Newman, P. 1 year, 1000 km: The Oxford RobotCar dataset. Int. J. Robot. Res. 2017, 36, 3–15. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, L.; Krajník, T.; Ruichek, Y. EU long-term dataset with multiple sensors for autonomous driving. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020; pp. 10697–10704. [Google Scholar]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary robust independent elementary features. In Proceedings of the Computer Vision ICCV—ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010. [Google Scholar]
- Neubert, P.; Protzel, P. Local region detector+ CNN based landmarks for practical place recognition in changing environments. In Proceedings of the ECMR, Lincoln, UK, 2–4 September 2015; pp. 1–6. [Google Scholar]
- Taisho, T.; Kanji, T. Mining DCNN landmarks for long-term visual SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 570–576. [Google Scholar] [CrossRef]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef] [Green Version]
- Kunze, L.; Hawes, N.; Duckett, T.; Hanheide, M.; Krajník, T. Artificial intelligence for long-term robot autonomy: A survey. IEEE Robot. Autom. Lett. 2018, 3, 4023–4030. [Google Scholar] [CrossRef] [Green Version]
- Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A Comprehensive Survey of Visual SLAM Algorithms. Robotics 2022, 11, 24. [Google Scholar] [CrossRef]
- Krajník, T.; Cristóforis, P.; Nitsche, M.; Kusumam, K.; Duckett, T. Image features and seasons revisited. In Proceedings of the 2015 European Conference on Mobile Robots (ECMR), Lincoln, UK, 2–4 September 2015; pp. 1–7. [Google Scholar]
- Chen, Z.; Birchfield, S.T. Qualitative vision-based path following. IEEE Trans. Robot. Autom. 2009, 25, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Royer, E.; Lhuillier, M.; Dhome, M.; Lavest, J.M. Monocular vision for mobile robot localization and autonomous navigation. Int. J. Comput. Vis. 2007, 74, 237–260. [Google Scholar] [CrossRef] [Green Version]
- Krajník, T.; Majer, F.; Halodová, L.; Vintr, T. Navigation without localisation: Reliable teach and repeat based on the convergence theorem. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1657–1664. [Google Scholar]
- De Cristóforis, P.; Nitsche, M.; Krajník, T.; Pire, T.; Mejail, M. Hybrid vision-based navigation for mobile robots in mixed indoor/outdoor environments. Pattern Recognit. Lett. 2015, 53, 118–128. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In European Conference on Computer Vision (ECCV); Springer: Cham, Switzerland, 2006. [Google Scholar]
- Olid, D.; Fácil, J.M.; Civera, J. Single-View Place Recognition under Seasonal Changes. In Proceedings of the PPNIV Workshop at IROS, Madrid, Spain, 1–5 October 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouček, T.; Amjadi, A.S.; Rozsypálek, Z.; Broughton, G.; Blaha, J.; Kusumam, K.; Krajník, T. Self-Supervised Robust Feature Matching Pipeline for Teach and Repeat Navigation. Sensors 2022, 22, 2836. https://doi.org/10.3390/s22082836
Rouček T, Amjadi AS, Rozsypálek Z, Broughton G, Blaha J, Kusumam K, Krajník T. Self-Supervised Robust Feature Matching Pipeline for Teach and Repeat Navigation. Sensors. 2022; 22(8):2836. https://doi.org/10.3390/s22082836
Chicago/Turabian StyleRouček, Tomáš, Arash Sadeghi Amjadi, Zdeněk Rozsypálek, George Broughton, Jan Blaha, Keerthy Kusumam, and Tomáš Krajník. 2022. "Self-Supervised Robust Feature Matching Pipeline for Teach and Repeat Navigation" Sensors 22, no. 8: 2836. https://doi.org/10.3390/s22082836