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Abstract: The rapid growth in the number of vehicles has led to traffic congestion, pollution, and
delays in logistic transportation in metropolitan areas. IoT has been an emerging innovation, moving
the universe towards automated processes and intelligent management systems. This is a critical
contribution to automation and smart civilizations. Effective and reliable congestion management
and traffic control help save many precious resources. An IoT-based ITM system set of sensors
is embedded in automatic vehicles and intelligent devices to recognize, obtain, and transmit data.
Machine learning (ML) is another technique to improve the transport system. The existing transport-
management solutions encounter several challenges resulting in traffic congestion, delay, and a high
fatality rate. This research work presents the design and implementation of an Adaptive Traffic-
management system (ATM) based on ML and IoT. The design of the proposed system is based on
three essential entities: vehicle, infrastructure, and events. The design utilizes various scenarios to
cover all the possible issues of the transport system. The proposed ATM system also utilizes the
machine-learning-based DBSCAN clustering method to detect any accidental anomaly. The proposed
ATM model constantly updates traffic signal schedules depending on traffic volume and estimated
movements from nearby crossings. It significantly lowers traveling time by gradually moving
automobiles across green signals and decreases traffic congestion by generating a better transition.
The experiment outcomes reveal that the proposed ATM system significantly outperformed the
conventional traffic-management strategy and will be a frontrunner for transportation planning in
smart-city-based transport systems. The proposed ATM solution minimizes vehicle waiting times
and congestion, reduces road accidents, and improves the overall journey experience.

Keywords: adaptive traffic management system; internet of things; machine learning; DBSCAN
method; intelligent traffic management; smart road; intelligent transport system
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1. Introduction

Nowadays, many things such as autonomous vehicles, collaborative transport systems,
and intelligent roads are directly linked to IoT for ITM, enhancing data transmission and
generating heterogeneous communication and low-bandwidth devices in large-capacity
areas worldwide. India is a developing country, and its GDP was estimated to contract
by 7.7% in the financial year 2020, compared to the growth rate of 4.2% in 2019 as per
the report released by NSO [1]. This report proves that the economy of India has signifi-
cantly improved and enhanced the living standards of civilians. The development of any
country increases the number of personal and commercial vehicles. This has caused traffic
congestion, a delay in logistic supply, a higher number of road accidents, and pollution.
The demand for ITM systems has increased [2]. Mostly manual traffic controlling systems
required higher manpower. These systems have desperately poor traffic policies and hu-
man resources strength, so authorities cannot manage traffic effectively in all cities using a
manual system.

In order to solve traffic congestion, traffic signal systems are established in urban areas.
However, the frequency division of traffic lights is equivalent and persistent for all the
roads. Due to the dynamic nature of arrival traffic on all sides of the road, the signals are not
equal, resulting in resource waste. As the volume of road infrastructures and automobiles
grows, managing a traffic and transport network will be difficult. Generally, each road has
a zebra crossing near the road signal, and each signal also has an assigned time to perform
its function [3]. This complete process appears in a series. This traditional traffic-handling
framework has a flaw in that it cannot detect the occurrence of automobiles across each
route, and when a route is vacant, the traffic signal for that route squanders time. This
traditional automobile management structure cannot handle traffic and control traffic jams.
So, cities want a better alternative for the “Intelligent Transport Management System”.

An ITM system is a widely accepted system to overcome traffic management issues.
ITM systems can reduce traffic congestion and enhance the quality of transportation
for Logistics and passengers. The smartness and sustainability of the development of
IoT-based ITM Systems depend on the solutions implemented to improve individuals’
standard of living. One crucial component of ITM strategies is smart-city governance,
which creates planning methods for better policies. One of the core components of the
smart-city management system is the public value of innovative services [4]. Over the last
couple of decades, mobile appliances, sensors, and actuators have become more intelligent,
facilitating communication between devices and the performance of complicated projects.
Smart mobile devices, embedded systems, wireless sensors, and nearly all instruments are
linked to a local network or internet leading into the IoT. Due to the increasing number
of communication devices, the volumes of data generated by those devices also increase
rapidly [5].

IoT includes linking physical things to the internet to create intelligent networks and
mobile communication connectivity with innovative materials such as ITM. Communica-
tion among IoT-based automobiles is a new information-exchange paradigm contributing
to ITM. IoT is a composition of data collection and analysis of sensor data and computing
to effectively manage and support traffic networks [6]. On the other hand, automatic trans-
portation containing a traffic signal utilizes a timer for each phase. The use of electronic
sensors is another method of tracking automobiles. Although electronic traffic-control
sensors have been used for traffic control, road traffic also happens. An intelligent transport
system can resolve traffic congestion and other issues [7]. The primary aim of a smart city
is to build a social structure that can accomplish the productive usage of urban services and
infrastructure via AI and ML. This also concentrates on controlling the key characteristics,
productivity, and enhancing the quality of resources for its community members [8]. Air
quality and climate-change issues are essential research areas in smart cities. One research
study [9] includes a viewpoint on the opportunities for highlighting urban air-quality
management (UAQM) concerns by employing an intelligent urban model in ‘Smart urban
computing.’ This research explains the responsibility of Intelligent urban computing in
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UAQM and offers a collaborative platform for smart urban computing environments for
air pollutants processes.

Smart cities enable AI, ML, and IoT-based systems such as embedded linked devices,
IoT sensors, smart traffic-control systems, smart streetlamps, and smart roads to gather
and investigate statistics. These urban areas utilize this gathered information to optimize
transportation systems, utility services, facilities, and creatures that interact with different
platforms such as smart buildings, smart health care systems, smart automobiles, smart
agricultural production, and Industry 4.0. This work presents an ATM based on ML and
IoT design and implementation. The key contributions include:

1. The proposed ATM system utilizes the architecture and smart traffic signal to avoid
congestion.

2. We introduce a completely deterministic adaptive technique for effective and close
traffic monitoring and a congestion-control system at major regional intersections on
any sequence of events.

3. One critical advantage of the proposed ATM structure is its ability to integrate with
any adaptive method without requiring changes to the architectural style.

The complete research article is organized into various sections. Section 2 discusses
existing work and covers a comparative analysis. In Section 3, materials and methods are
covered; in Section 4, simulation experimental results and comparison of the results are
covered. In the last section, five conclusions and future work are discussed.

2. Related Work

ITM boosts the ever-increasing vehicle motion and vehicular traffic in highway areas
to avoid overcrowding. The generation of vast amounts of information produced by plenty
of smart devices linked to the transportation system enables the formation of datasets that
utilize deep learning algorithms to analyze data in depth.

2.1. Traffic Monitoring Based on Traffic Conditions

The authors of [10] explained an intelligent transmission-control system employing
cloud perspective and ML methods. The graphics of its next vehicular intersection are
captured and saved in the cloud database. The concentration and vehicle characteristics
are identified using the cloud image API. The condition is also returned to the subsequent
traffic signal. The prior traffic signal, which is now the current signal, will track the progress
of the next traffic signal and then proceed with the activity predicated on the conditions.
In order to increase the safety and efficiency of ITM, the authors of [11] demonstrated
that these methods can help us to anticipate traffic performance, automated traffic-signal
management, driveway identification, and recognition of nearby objects/vehicles. Various
researchers are working on intelligent transport systems, but better traffic management is
still challenging [12]. The authors of [13] demonstrated that significant traffic surveillance
frameworks transform smart urban areas. Many studies have been conducted regarding
intelligent traffic-control systems centered on the IoT approach.

The authors of [14] demonstrated that automatic traffic detecting is central to urban
planning services and infrastructure. Intelligent connectivity sensor nodes estimate traffic
flow, anticipate traffic jams, and adaptively control traffic movement. When performed
correctly, this creates a level of consciousness that allows for more effective recourses and
infrastructure usage. In another study [15], traffic flow, usage, and average density broadly
utilized vehicular congestion assessments, most of which were acquired from pictures and
videos recorded by computer vision applications. The authors of [16] proposed an IoT-
enabled control system to gather, operate, and accumulate authentic traffic patterns for such
a set of circumstances. Their primary goal was to deliver essential traffic information on
road congestion and unexpected traffic collisions through the highway signaling system and
increase the range of motion. The authors of [17] incorporated a framework to explore the
effectiveness of the traffic model. The experimental findings demonstrate excellent vehicle
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detection and tracking precision and relatively low inaccuracy in highway occupancy
prediction.

2.2. IoT Based Real-Time Traffic Management

Research has developed an IoT-based intelligent traffic strategy [18] to supervise
significant congestion through centralized and decentralized domain controllers. The
information-gathering component utilizes sensing devices, camera systems, and radiofre-
quency identification. Further, the application layer allows management of the traffic lights
and notifications based on on-road vehicle frequency and offers a routine update through a
software system. The authors of [19] described an inspection for reducing false projections
based on the “Rankine-Hugoniot” circumstance and an origin–destination traffic facility. In
order to authenticate the effectiveness of the suggested framework, a model was established.
The testing results prove that the suggested method can successfully supervise precision
and framework latency traffic congestion.

The authors of [20] used IoT-based linked vehicles to gather real-time data. The vehicle-
to-vehicle connection supports individual vehicle surveillance, allowing precise collision-
avoidance planning. The authors of [21] developed a perfected system for recognizing
traffic patterns to configure on busy roads. The visual signal unit exhibits the ongoing traffic
patterns and occurrences via notifications, indications, or color combinations. The authors
of [22] suggested an expressive IoV routing protocol, recognizing complex relationships
between automobiles, roadways, ecosystems, and pedestrian crossings. The authors of [23]
developed an efficient solution to correct the park and ride solution based on the reservation-
based optimal “park and ride” parking model inside the IoV ecosystem. The approach
supports a layered approach to consciously considering vehicles by way of contact with
the consideration of performance measures.

2.3. ML Methods in Real-Time Traffic Management

The authors of [24] presented a dynamic vehicular structure based on the IoT and ML
concepts. Key responsibilities were played by the image sensor and two different control
system panels. A scene detector mainly captured the specifics from the route with video
coverage and transferred that to the following driver circuit. The authors of [25] compared
multiple simulation models, a provisional logistic regression method, and a support vector
machine method with predicting accidents. The method was evaluated relying on the
information achieved from “Shanhai Middle Ring Highway,” China.

The authors of [26] suggested a method for predicting the volume of traffic, particular
development stage vehicular region, and lane width. Researchers optimized the traffic-
signal turnaround time and independent signalized intersections process time using the
values produced by vehicles. The authors of [27] proposed a decentralized reinforcement
learning-management system utilizing EA for a vehicular regulation system that efficiently
improves the transport system’s efficiency. However, this was not incorporated at a certain
period due to computing capacity restrictions. The paper also introduced a novel eco-
friendly, flow-approximate solution that offered the traffic signal period for each straight
path depending on the vehicular intensity. Then it used ML and the AI method to forecast
the time duration in a small timeframe.

The authors of [28] used a methodology for intelligent water-quality tracking that
focused on IoT. This research explored community water tracking criteria, hygiene for
drinkable water, linked sensor technologies, critical evaluation, and the accession of the
modern system via a proposed evidential measure, assessment, and discussion. Another
research paper [29] discusses Air pollution monitoring using AI-based frameworks. This
paper proposed an IoT-equipped climate-monitoring system for environment monitoring
utilizing an artificially intelligent methodology to enhance biological life by overcoming
the shortcomings of conventional monitoring systems and lowering overall costs. Research
paper [30] discussed a two-step procedure for assessing the carbon productivity of urban
integration hubs from well to vehicle. The carbon dioxide assessment of specific strategies
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is typically focused on a Tank-To-Wheel methodology that does not contribute to petroleum
production and consumption, resulting in a preliminary evaluation of all its carbon impacts.
The experimental results demonstrated that using the proposed monitoring and controlling
system can save up to 190 tons of carbon dioxide.

2.4. VANET Based Real-Time Traffic Management

The author of [26], presented a VANET-based Smart ITM system. A VANET is a
type of mobile ad hoc network in which intelligent automobiles on highways were also
regarded as the connection point to communicate to transfer congested roads’ data. VANETs
involve multiple network topologies, WLAN, an ad hoc network, and are adaptive. The
authors of [31] proposed an advanced method to address this road traffic problem by using
attributes of VANET. The mechanism is built and validated utilizing AODV procedures of
mobile ad hoc networks to deal with vehicular road traffic in heterogeneous networks. The
performance acted as an indicator through the number of transmissions distributed, the
ratio of data packets, and a fraction of several vehicles rerouted and operational costs to
handle the issues related to data congestion in-vehicle communication networks.

The authors of [32] utilized a Vehicle-to-Infrastructure interaction architectural design
to adapt and incorporate two innovative solutions of an innovative “Intelligent Road Traffic
Signaling” system and the “Predictive Road Traffic Signaling” system. The authors of [33]
presented a distinctive VANET-enabled transportation and traffic signal management
framework that significantly enhances vehicles’ movement, power efficiency, and the
security of road users. In a research paper [34], a VANET-predicated technique was
implemented utilizing a modular structure by integrating the interconnected connectivity
characteristic. Research paper [35] recommends a distributed, interactive heavy-traffic
detection and transmission system that utilizes VANET. A traffic app was installed on every
one of the operators’ mobile phones to identify one’s position using the global positioning
system.

2.5. Comparative Analysis of Existing Work

Table 1 presents a comparative analysis of various research works suggested by
different researchers in IoT and ML-based intelligent transport systems.

Table 1. Review of various research in IoT and ML-based intelligent transport systems.

Ref. No. Key Technique Methods/Algorithm Traffic
Congestion

Smart
Parking/Road Merits

[36] Traffic congestion detection Machine learning, IoT Yes No
Automatic vehicle detection method

and automatic route-transfer
method

[37] Collision avoidance IoT, Big data Yes Yes Design collision-free protocol for
transportation

[38] Intelligent transport
system Machine learning, IoT Yes Yes

No collision
Improved road transportation

Improved safety

[39] Congestion and pollution
control in transportation Deep learning, IoT Yes Yes

Improved pollution control
Congestion control by time method

and route transfer

[40] Sustainable and safety in
transportation IoT and Machine learning Yes No Effectively managed road safety,

minor collision

[41] Collision and pollution in
traffic management IoT and Neural Network Yes Yes Consumed less energy

collision control method

[42] Intelligent, sustainable
transport

Machine learning, Cloud,
and IoT Yes Yes Smart route discovery

zero collision
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Table 1. Cont.

Ref. No. Key Technique Methods/Algorithm Traffic
Congestion

Smart
Parking/Road Merits

[43] Green transportation Neural Network, IoT Yes No Pollution control method
smooth traffic control

[44] Pollution control and
avoidance in transportation IoT and Big data Yes Yes Smart traffic lights and road

pollution control

[45] Smart transportation design IoT, Machine learning No Yes Smart city and parking system
model

[14] Safety issues in transportation Big data, IoT No No

Road safety model
analysis of accidental records

identification of critical accidental
zones

[46] Smart parking IoT, Machine learning No Yes Smart city model

[47] IoT Industry 4.0 IoT, Machine learning Yes Yes Smart logistics and supply chain
and automation in the industry

[48] Pollution and smart transport Cloud computing, IoT Yes No Congestion control method and
pollution control

[49] Intelligent transport system IoT and cloud computing Yes Yes No collision
improved road transportation

[50] Automation in transportation IoT and Machine learning Yes No

Improved pollution control
congestion control

improved time method and route
transfer protocol

3. Materials and Methods
3.1. IoT Architecture

The IoT defines the network of connected “things” that are often equipped with sen-
sors, applications, and other advancements to integrate and transfer information between
devices and platforms over the Web. The IoT has two main components. The first is
an “object or thing” which users intend to make intelligent through interconnection, and
another is the embedded platform that enables this communication. The latter part may
seem easy, but consists of a complicated structure composed of various sensors, actua-
tors, methods, and data-access layers. Each interconnection is accountable for creating
configurable, intelligent, and successful connections with human beings [51].

Figure 1 shows the three-layered architecture of IoT. This model’s first layer (bottom
to top) represents the perception layer, including IoT components, i.e., sensors, GPS., RFID
tags, and cameras. The application layer includes various protocols CoAP (Constrained
Application Protocol), MQTT (Message Queuing Telemetry Transport), XMPP (Extensible
Messaging Presence Protocol), and AMQP (Advanced Message Queuing Protocol), which
provides application in the field of Smart City, Smart Grid, Smart Healthcare, and Smart
Business. The second layer is the network layer, which mainly represents communication
technology and media, i.e., internet type (3G/4G), medium, and communication type. The
top layer is the application layer representing the final application or end-user viewing the
IoT communication.

3.2. IoT in ITM

The rise of the IoT technique and the availability of cloud resources are supporting us
in establishing processes that can integrate the transport systems and enhance the use of
current facilities. An ITM system utilizes the essential features of well-known technologies,
including IoT, cloud computing, ML, AI, and big data. In IoT, the objects need to interact
with communicating devices using M2M (Machine to Machine). The introduction of the
IoT and its relevance in transport systems creates the perfect platform for acknowledging
traffic-related difficulties, consequently leading to the formation of an ITM [52]. Figure 2
shows the use of IoT in ITM. Each component is interconnected with other component
blocks. The IoT components include sensors, actuators, internet platforms, cloud nodes,
data centers, and ML methods.
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In Figure 2, various blocks show how the IoT-based system helps in ITM. The first
block shows the IoT platform, which includes components, i.e., sensors and cameras, which
mainly collect the data from the traffic environment and transfer these data to the cloud.
The cloud node mainly stores the data. These blocks represent the complete data-collection
process of an IoT-based system. Additionally, IoT sensors and actuators collect data from
moving objects such as vehicles. The completed data are transferred in preprocessing
blocks in the next phase, which removes the various anomalies from the dataset. These
data are mainly stored in data centers. Later the stored data help in various fields of ITM.
Various Machine and deep-learning-based models are utilized to retrieve these data centers’
information.
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3.3. Proposed ATM System Design and Implementation

The proposed ATM system involves the promising approach of the intelligent transport
system to address the actual significant problem in management traffic. The proposed
ATM model utilizes the following modules to develop an intelligent transport management
system. Figure 3 shows the layered architecture of the proposed ATM model. The first layer
is the application layer, representing the vehicle’s location, accidental tracking, message
passing, and image-tracking details. Layer 2 is the service layer, representing the data
gathering and storage process and showing the data preprocessing. Layer 3 is the network
layer, representing the communication, and Layer 4 represents the sensing layer.
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3.3.1. Vehicle Location Tracking

The proposed ATM system helps choose those routes that provide higher precision.
The model is validated for its performance with the benchmark’s lower bound precision
value. Still, suppose the proposed model generates the desired precision for the lower
bound. In that case, this strongly implies there are good effective routes, and all the other
lesser communication routes are removed. However, if the lower bound is more than the
predicted precision rate, there are not enough routes. The critical paths for effective vehicle
localization are further added to the set. Figure 4 displays the functioning model of the
proposed vehicle location tracking system module. In the first phase, data are collected
using the sensor and camera devices. The capture of data by sensor and camera and the
preprocessing of those data are vital components in ITM. The missing value estimation
methods are used in the preprocessing data phase [53]. The processing method processes
these collected data and later applies the training method to train the dataset. The vehicle’s
exact location and traffic details are collected.
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The feature clustering is achieved by creating a graph to prevent it. The nodes represent
feature paths, the edges represent path clustering interactions, and the network nodes
(feature groups) represent vehicle observations [54]. For each feature and attribute at a time
interval (Ti):

• Step 1—Features identified at a time interval (Ti) for the frame (Fi) are picked and
monitored for a threshold number of frames, if the expressed cumulative personal
motion is sufficiently massive. Almost every newly formed feature that is extracted is
linked to the presently recorded characteristics inside an Euclidean distance minimum.

• Step 2—The distance (Disi,j) between all presently monitored sets of linked functional-
ities (Lfi,j) is approximated, and the upper and lower limits intervals are revised. The
Dseg represents the value of the feature segmentation threshold. The linked vehicles’
characteristics can be defined as mentioned in (1).

[Max Tidij (Ti) −Min Tidij(Ti)] > (Dseg) (1)

• Step 3—The graph’s linked features are discovered. Each related component, i.e., pair
of attribute paths, represents a vehicle observation. Suppose all of the functionalities
that comprise a factor are no longer recorded. The attributes are eliminated from the
graph, and the vehicle hypothesis’ attributes (speed vector, centroid position, and
vehicle size) are calculated.

3.3.2. Accident Detection Module

An ITM system can reduce the possibility of accidents and the number of accidental
deaths by applying intelligent traffic control. The proposed ATM system helps the road
accident be detected by the fall of the automobile using an intelligent accelerometer sensor.
An accelerometer sensor mainly measures the speed forces in which it is equipped. These
forces may also be fixed, such as the constant gravitational pull or a scenario with many
smartphones, which can detect mobility or motions. Acceleration is the standard measure
of the change in speed or velocity differentiated by time period [54]. This model is mainly
performed using the ML method. The scheme is trained using preprocessed vehicular
accident samples, and the training is completed using pressure and distance. The pressure
is identified by utilizing data from sensing devices, where distance is evaluated with a U.C.
sensor. A motion sensor determines speed, and volume is calculated with a load-sensing
element. The formula for calculating force using kinetic energy and work is mentioned in
Equation (2).

Wforce = (K ∗ Eenergy) (2)
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3.3.3. Vehicle Image Processing Module in ITM

This model first identifies the motor vehicles via images and electronic sensors inte-
grated into the road surface. A webcam will also be positioned along with the traffic signal
and sensors. This will capture patterns of image data. Object detection is the best alterna-
tive to regulate the state change of the traffic signal. It can reduce road-traffic congestion
and minimize wasted time with a green light over an empty highway. Furthermore, it is
more accurate in predicting vehicle presence because it utilizes actual traffic-image data.
It analyzes the usefulness and processes much better than all those models that depend
on identifying the vehicular surface material [55]. Algorithm 1 represents the working of
Image processing in the intelligent transport system.

Algorithm 1: Image processing in the intelligent transport system

Step-1. Image data collection: using a camera and sensor installed over the road.
Step-2 Preprocessing phase: To process the images as follows-

2.1 Images are converted into a standard size (i.e., 450 × 450 pixels)
2.2 Convert all the captured RGB images into grayscale images.

Step-3. Edge detection phase: Canny edge detection method
Step-4. Pixel match technique: The output of step 3 is compared by using pixel to pixel (P.P.M.) matching
techniques
Step-5. Timing allocation: It depends on the result of step 4; the percentage of image matching criteria is as
follows:

5.1 If the image matched <= 40%, then on a green light for 90 s
5.2 If the 40% > image matched <= 70% then on green light for 60 s
5.3 If the 70% > image matched <= 90% then on green light for 30 s
5.4 If the 90% > image matched <= 100% then on Red light for 90 s
5.5 Repeat steps 3–5

3.3.4. Vehicle Communication with VANET

The sensors monitor the vehicle’s position in the current traffic situation by registering
the motor vehicle and its communications equipment. Through the use of IoT sensor
systems, data are transmitted and distributed among vehicles in such a way that helps
prevent traffic and ensure safe travel [56]. The platform design is created to notify ahead of
the vehicular situation and unsafe driving scenarios and handle the unpredicted injuries
and deaths and scenarios with statistics to be acknowledged ahead to vehicles on the road
for secure traveling. It is also necessary to communicate the messages to the drivers by
extracting the incredibly massive amount of past reliable statistics based on current traffic
conditions [57]. The Roadside Unit (RSU) plays a vital role in communication in VANET.
Algorithm 2 represents the working Vehicle communication process in proposed ATM.

Algorithm 2: Vehicle communication process in proposed ATM

Step-1 installed the RSU unit set the roadside at a specific distance
Step-2 Vehicle connection setup with RSU

2.1 Neighboring vehicle receives a setup connection request from RSU
2.2 Vehicle sends the required data, i.e., location, velocity, start time to RSU

Step-3 Data storage: RSU stores all the received data in a data-based
Step-4 RSU Interval: if RSU received more than one request from multiple vehicles,
then apply the wait and synchronization method for data storage per the time interval.
Step-5 call (Image processing in ITM) method is described in the previous section.
Step-6 Vehicle synchronization: if Synchronization values are high (because of higher speed vehicle), send the
alert data (priority)
Step-7 Eliminate vehicle: remove the low-velocity vehicle and set the lower priority
Step-8 RSU communication: RSUs communicate with each other and share alert messages to handle
congestion

3.3.5. Machine Learning in ITM

Intelligent transportation is a scorching research area because it discovers numerous
real-world issues, with massive infrastructure in the advent of the smart metropolitan
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areas [58–60]. Furthermore, the conflicts it handles with favorable treatment utilize IoT
and ML technological advances (Figure 5). The dataset includes the complete details of the
traffic environment. It includes vehicle data, road data, and traffic details.
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Algorithm 3: The proposed ATM model utilizes the machine-learning-based DBSCAN
clustering method. This method deceived the MATLAB traffic simulator results and clusters
into detecting any accidental anomalies.

Algorithm 3: DBSCAN (Da, minimum_points, epsilon)

// Detection of a vehicle collision on the road
Input: dataset accidents Da; clusters Ck; and cluster mean Mc

Output: accidental cluster groups recognize Cki

Step-1 initialize the cluster Ck = 0
Step-2 Mark all the unvisited entries U.D. as visited VD in the dataset
Step-3 Calculate the s_p,
Where s_p is sphere_points, m_p is min_points, and r_Q is region_Quer.
s_p = r_Q(VD, epsilon)
Step-4 if size of (s_p) <m_p) not consider the value of V.D.

Else
Step-5 Calculate the next cluster by
Ck = Cnew, where Cnew is the next cluster value
Step-6 Call the expand clustering function E_C ( )
6.1 E_C(VD, s_p, Ck, epsilon, m_p);
6.2 E_C(VD, s_p, Cnewi, epsilon, m_p);
Step-7 Add all the new visited V.D. to cluster set Ck

Step-8 Verify for all the points V.D. in s_p
Step-9 For instance, if V.D. is marked as unvisited
Step-10 Update the V.D. and set it as status visited
Step-11 Calculate s_p=r_Q (VD, epsilon)
Step-12 Verify the size by if size of(s_p) >= m_p
Step-13 s_p = New s_p U existing s_p
Step-14 for any of the instances if V.D. is not in any of the cluster set
Step-15 update the V.D. status and add V.D. to the Ck cluster

15.1 Calculate the region are and execute the r_Q()
15.2 R_Q(V.D., epsilon);
15.3 Return all the new points inside the n-dimensional V.D. towards the radius epsilon.

3.4. Mathematical Model of the Proposed ATM System

The proposed ATM model is based on “Platoon-based traffic flow”. A Platoon is
usually interpreted as a cluster of automobiles moving next to each other, willingly or
unwillingly [61].

In the proposed ATM’s mathematical model, every vehicle is anticipated to get an
impartial requested power V, and the traffic variation, FT (V), is provided. If it closes the
gap to the traffic ahead, automobiles move constantly. After catching up, the object instantly
reduces its motion to that of the moving vehicle and continues to follow it, making constant
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progress. Figure 6 shows the traffic flow based on available space vs. time. L represents
the length of the road lane. TVIn represents the entering time, TVout represents the out
time of vehicle, Vi, and (TVhi) represents the headway time of vehicle, Vi mentioned in
Equation (3).

Tout =

{
TVouti ( f or i = 0)

Max (TVouti , TVouti−1 + TVhi ( f or i = 1, 2, . . . , n)
(3)

The time-out TVout, can be calculated by Equation (4). When i = 0, there are no
automobiles next to the boundary configuration.

TVout = {TVin
i +(L/Vi)} (4)

Let PV (EVs) be the deterministic probability of a platoon of N automobiles trying to
form the frequency of event EVs. Here, E is the event, and PV (N|EVs) is the deterministic
probability of a platoon of N automobiles providing the occurrence of event EVs. Finally,
at the end of the evaluation portion, the probability PVPrimaryV (N) that such a specific
new vehicle will become the prime vehicle of a platoon of n automobiles mentioned in
Equation (5).

PVPrimaryV(N) = lim0-∞ PV (EVs) ∗ PV (N|EVs) ∗ FV(PV)dv (5)

The results of PV (EVs) and PV (N|EVs) can be determined by the speed distribution
mapping (Figure 6).
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Mathematical Model Formulation for Proposed ATM

Let the vehicle congestion deterministic model CDM in a platoon of vehicles (Vi) on
the road (Ri) be (I = 1 . . . n). The Markov speed (Mspeed) property of any vehicle in a
platoon. State space can be defined as {ST0 . . . STn). A matrix (M) for state space can be
defined as mentioned in Equation (6).

M =
M ST0 ST0 M ST0 ST1 . . . M ST0 STn
M ST1 ST0 M ST1 ST1 . . . M ST1 STn

. . . . . . . . . . . . (6)
M STn ST0 M STn ST1 . . . M STn STn
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Here, a transition probability from the state P to Q can be defined as MPQ. The top-
speed vehicle on the road can be defined as TVtop. The state vector (B(i) TVtop) for any ith
vehicle mentioned in Equations (7)–(9).

(B(i) TVtop) = (B(0) TVtop)*A(i) (7)

(B(0) TVtop)* = (
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4. Discussion

The proposed ATM system was implemented on MATLAB simulator. The proposed
system utilizes three primary entities (vehicles, infrastructure, and events) described in
Table 2.

Table 2. Entities utilized in the proposed ATM system.

Entity Subunit Property Functionalities

Vehicles
Automobiles (2, 3, and 4

wheelers) Vehicle ID, speed, vehicle type, lane To recognize a vehicle

Vehicle control unit Manual and automatic To determine the vehicle control type

Infrastructure
Road unit Lane ID, Lane name, length, one

way, two way To determine the road unit

Traffic light control unit, ID, installation status, delay
duration

To determine the traffic light control
unit

Street light unit ID, installation status To determine the street light unit

Events
Vehicle to Vehicle Communication Vehicle speed, vehicle turn

information, To determine the V2V communication

Vehicle to infrastructure
communication

Signboard, pedestrian crossing,
traffic light, speed indicator To determine the V2I communication

In order to validate the efficiency and accuracy of the proposed ATM system, various
traffic scenarios were created for Linked automated vehicles (LAVs) as follows. (a) Only
with linked LAVs (b) Where Only with Non-LAVs, (c) in which for LAVs and Non-LAVs,
both types of vehicles are moving. Figure 7 shows the system design of the proposed ATM
model for road-traffic conditions on the road with both the moving vehicles in a forward
position.
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(a) Only with LAVs—This is the first scenario considering only LAVs. In this scenario,
the intelligent traffic-management systems mainly divide the traffic into two segments.
The first is the control segment (CS), and another is the merging segmentation (MS).
The CS has a control entity named control unit (CU), which helps it to communicate
with LAVs [62].

(b) Where Only with Non-LAVs—Assessments are necessary to verify the effectiveness
of proposed ATM methods. As a result, a traffic virtual environment system must
be easily adaptable to various traffic situations, allowing users to compare diverse
perspectives. A baseline sequence of events is developed and evaluated on the
vehicular modeling in which just the fixed-cycle traffic illumination monitors the
Non-LAVs [63].

(c) Where LAVs and Non-Linked both types of vehicles are moving—The mixed-traffic
case, in which both LAVs and Non-LAVs move on the roadways, should be viewed as
a significant challenge for the massive implementation of automated vehicles. System
model control techniques are tested on the proposed approach for this situation.
Figure 5 shows the results for LAVs and Non-Linked automated vehicles [64].

IoT devices will collect the live vehicle-traffic data and road conditions and store
these data in the data center, implementing the proposed ATM system. In the next phase,
big data techniques will apply to process the live data. The final phase will be based on
ML methods to train the data. We assume that the motor vehicles are fully equipped
with a wireless system module that interacts with the RSU in the proposed ATM system.
(Figure 7) positioned mainly on the highway to transfer heavy traffic data with other
moving automobiles.

In contrast, automobiles are assumed to be adequately equipped, mainly with the
entire event query recorder (EQR) used to measure an automobile’s fast movement speed
and traffic details. In the proposed system, the roadside units are positioned on the road
at a range of approximately 1.0 km apart. All such roadside units are ready to supply
fair coverage in their region and are located by the RSUs nearby. Those on the right side
of the road are also used to build architecture. Almost every RSU includes a GPS unit
to acquire the precise location of automobiles, a transceiver for creating communication
among passing traffic, and a computing device that delivers live traffic data gathered from
automobiles, such as lane-altering distance and over speed [59,60].

In scenario: 1 (Figure 8), vehicles move in one direction over the road and move from
the freeway. In this scenario, one vehicle consumes less fuel and travel time.
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In the second scenario, vehicles move backwards and forward over a multilane path
(Figure 9). In scenario 3, vehicles move forward and backwards over multiple lanes; this is
caused by “Traffic Congestion,” as described in Figure 10. The traffic congestion is resolved
by the proposed intelligent traffic-management system described in Figure 11.
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Experimental Results and Discussions

The simulation results demonstrate that the proposed ATM system outperforms the
conventional traffic-management system in packet delivery ratio, throughput, and time
delay [60]. This serves best in case of a change in traffic conditions (as per scenarios 1 to 3)
and latency. The graphs below accurately depict the numerous criteria and significance
regarding particular system strategies for correspondence with data packets. The experi-
mental results were performed on MATLAB simulation with 100 vehicles, a 5000 m road,
and different moving directions (i.e., Channel 1: East to West; Channel 2: North to West;
Channel 3: North to East; and Channel 4: East to North). In all the simulations, traffic
is moving in inflow and outflow directions. The model type is the Random model. The
probability for inflow traffic is 0.58%, and for outflow it is 0.49%. The simulation results
were calculated for three different scenarios.

Figure 12 shows the simulation result for scenario 1 only with LAVs. Figure 12a shows
the traffic congestion ratio, depending on road length and traffic-jam percentage. Figure 12b
shows the space-utilization graph, which depends on the car location and the distance
between each car. Figure 12c shows the traffic-jam ratio results, which depend on the jam
ratio during the whole time and the average jam percentage. Figure 12d time mean speed;
Figure 12e harmonic mean; Figure 12f time mean speed vs. space means speed results;
Figure 12g average speed vs. traffic flow and Figure 12h average speed vs. traffic density.
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Figure 13 shows the simulation result for the second scenario, which is related only
to Non-LAVs. Figure 13a shows the traffic congestion ratio, which depends on the road
length and traffic-jam percentage; Figure 13b shows the space utilization graph, which
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depends on the car location and distance between each car; c shows the traffic-jam ratio
results, which depend on the jam ratio during the whole time and average jam percentage
%. Figure 13d Time mean speed; Figure 13e harmonic mean; Figure 13f time mean speed vs.
space mean speed results; Figure 13g average speed vs. traffic flow and Figure 13h average
speed vs. traffic density.
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Figure 13. Simulations results for scenario 2, no-LAVs vehicles (from Figure 13a–h). (a) Traffic
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Figure 14 shows the simulation result for scenario 3, Hybrid with NAVs and Non-
LAVs. Figure 14a shows the traffic congestion ratio, which depends on the percentage
of road length and traffic jams. Figure 14b shows the space utilization graph, which
depends on car location and the distance between each car. Figure 14c shows the traffic-jam
ratio results, which depend on the jam ratio during the whole time and the average jam
percentage %. Figure 14d Average speeds vs. traffic flow and Figure 14e average speeds vs.
Traffic density.
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Figure 14. Scenario 3: Hybrid simulation (LAVs and no-LAVs) vehicles results. (a) Traffic congestion;
(b) space utilization; (c) traffic jam ratio; (d) average speed vs. traffic flow results; (e) average speed
vs. traffic density results.

MATLAB simulator is a collision-free traffic simulator. In order to detect the accident in
the next phase, a ML-based DBSCAN method will apply. Table 3 represents the Clustering
Outcomes of DBSCAN and ML methods for accident detection. A vehicle is pressured to
come to a halt in a predetermined location. Halts can also be viewed as significant incidents
in a section of the road. Vehicles on their own or divers driving the vehicle and passengers
traveling in the vehicle can also make the transportation system difficult. Recognizing
such instances and activating coming automobiles will avoid potential collisions. At each
100 s timeframe of the simulation, each vehicle is required to halt at a road view. In order
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to achieve a remarkably rapid stop, the deceleration point is fixed to 60 m/s2. In this
simulation, we are using three types of vehicles.

Table 3. Clustering Outcomes of DBSCAN and ML methods for accident detection.

Simulation Duration
in Seconds

Vehicle Count(in Each Road
Segment)

Cluster Type
(Normal)

Cluster Type
(Anomaly)

60 75 70 1
70 77 72 1
80 80 75 1
90 82 76 2

100 85 78 2
110 87 79 3
120 88 81 3
130 90 82 3

The proposed ATM system helps with effective vehicular tracking. It also aids in-
convenient traffic congestion so the motor vehicles are redirected in a congestion scenario
in a particular place. The traffic conditions, density, and traffic-flow criteria predict the
traffic situation, and automobiles are redirected to their destination without further acci-
dents. The vehicle density is lower with the rise in range for the proposed ATM system
as the current scheme tries to resolve road traffic without too many difficult situations.
The automobiles are also redirected to the alternative route to prevent congestion. The
proposed ATM system significantly outperformed the other existing structure. Apart from
previous designs, the proposed ATM accepts different countries’ traffic situations and traffic
movement patterns and communicates in actual environments. It supports day-to-day op-
erations with downstream monitoring and a consumer environment. In terms of achieving
highway interchanges green–green coordination throughout the distribution zone, traffic
information from crossings is aggregated in a centralized transport network. Advanced
traffic control algorithms generate optimum red–green cycles of traffic lights. In live time,
the ATM constantly reacts to changing traffic situations. ATM analyzes real-time traffic
information from automobile detection using a machine learning approach to calculate the
signal durations that are best for current traffic situations.

5. Conclusions

This research provides an ITM system for tracking LAVs and Non-LAVs vehicles related
to potential highway-vulnerability factors. The proposed ATM model enables in-location
services of automobiles, parking management, and implementing traffic-management
techniques for development of an intelligent transport system. The scheme helps to monitor
automobile movement, thereby examining the traffic in a specific region.

Automatic accident detection has become a popular topic in vehicular traffic-management
systems. Surveillance of an accident can help us to avoid possible similar incidents in the
future, and it will facilitate security agencies in reopening the road segment to a number of
vehicles. We successfully demonstrated that vehicular activity could be evaluated, utilizing
vehicular locations and average speeds. Additionally, abnormal events on the highway can
be considered a future challenge for drivers who have already been nearest to the accident
region. It was found that the proposed ATM system had a superior performance to the
existing conventional systems.

Future work will integrate energy-efficient systems and security into the proposed
ATM system. The proposed system will be implemented in a real-time environment in the
place of the simulator with real-time traffic flow.
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2. Jelínek, J.; Čejka, J.; Šedivý, J. Importance of the Static Infrastructure for Dissemination of Information within Intelligent

Transportation Systems. Commun.–Sci. Lett. Univ. Zilina 2021, 24, E63–E73. [CrossRef]
3. Parihar, M.; Dasari, N.; Bhagwat, K. Intelligent Infrastructure and Transportation: A Case of Passenger Transportation System in

Jaipur City of Rajasthan. In Smart Systems: Innovations in Computing; Springer: Singapore, 2021; pp. 11–20. [CrossRef]
4. Olayode, I.O.; Severino, A.; Campisi, T.; Tartibu, L.K. Prediction of Vehicular Traffic Flow using Levenberg-Marquardt Artificial

Neural Network Model: Italy Road Transportation System. Commun.-Sci. Lett. Univ. Zilina 2021, 24, E74–E86. [CrossRef]
5. Bhatia, V.; Jaglan, V.; Kumawat, S.; Siwach, V.; Sehrawat, H. Intellıgent Transportatıon System Applıcatıons: A Traffıc Management

Perspectıve. In Intelligent Sustainable Systems; Springer: Singapore, 2022; pp. 419–433.
6. Manasseh, C.; Sengupta, R. Middleware to enhance mobile communications for road safety and traffic mobility applications. IET

Intell. Transp. Syst. 2010, 4, 24–36. [CrossRef]
7. Choi, J.; Kum, K. Analysis of Mutual Understanding about Dangerous Driving Behaviors between Male and Female Drivers by

Co-orientation Model. J. Korea Inst. Intell. Transp. Syst. 2018, 17, 32–45. [CrossRef]
8. Zhang, Y.; Chu, L.; Fu, Z.; Xu, N.; Guo, C.; Zhang, X.; Chen, Z.; Wang, P. Optimal energy management strategy for parallel plug-in

hybrid electric vehicle based on driving behavior analysis and real time traffic information prediction. Mechatronics 2017, 46,
177–192. [CrossRef]

9. Kaginalkar, A.; Kumar, S.; Gargava, P.; Niyogi, D. Review of urban computing in air quality management as smart city service:
An integrated IoT, AI, and cloud technology perspective. Urban Clim. 2021, 39, 100972. [CrossRef]

10. Silva, P.B.; Andrade, M.; Ferreira, S. Machine learning applied to road safety modeling: A systematic literature review. J. Traffic
Transp. Eng. 2020, 7, 775–790. [CrossRef]

11. Gatto, R.C.; Forster, C.H.Q. Audio-Based Machine Learning Model for Traffic Congestion Detection. IEEE Trans. Intell. Transp.
Syst. 2020, 22, 7200–7207. [CrossRef]

12. Tubaishat, M.; Zhuang, P.; Qi, Q.; Shang, Y. Wireless sensor networks in intelligent transportation systems. Wirel. Commun. Mob.
Comput. 2008, 9, 287–302. [CrossRef]

13. Padmaja, B.; Rao, P.V.N.; Bala, M.M.; Patro, E.K.R. A Novel Design of Autonomous Cars using IoT and Visual Features. In
Proceedings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC
(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 30–31 August 2018; pp. 18–21. [CrossRef]

14. Bhardwaj, K.K.; Khanna, A.; Sharma, D.K.; Chhabra, A. Designing energy-efficient IoT-based intelligent transport system: Need,
architecture, characteristics, challenges, and applications. In Energy Conservation for IoT Devices; Springer: Singapore, 2019; pp.
209–233.

15. Perez-Murueta, P.; Gómez-Espinosa, A.; Cardenas, C.; Gonzalez-Mendoza, M., Jr. Deep Learning System for Vehicular Re-Routing
and Congestion Avoidance. Appl. Sci. 2019, 9, 2717. [CrossRef]

16. Nosratabadi, S.; Mosavi, A.; Keivani, R.; Ardabili, S.; Aram, F. State of the Art Survey of Deep Learning and Machine Learning
Models for Smart Cities and Urban Sustainability. In Proceedings of the International Conference on Global Research and
Education, Balatonfüred, Hungary, 4–7 September 2019; pp. 228–238. [CrossRef]

17. Chen, C.; Xiang, H.; Qiu, T.; Wang, C.; Zhou, Y.; Chang, V. A rear-end collision prediction scheme based on deep learning in the
Internet of Vehicles. J. Parallel Distrib. Comput. 2018, 117, 192–204. [CrossRef]

18. Majumdar, S.; Subhani, M.M.; Roullier, B.; Anjum, A.; Zhu, R. Congestion prediction for smart sustainable cities using IoT and
machine learning approaches. Sustain. Cities Soc. 2020, 64, 102500. [CrossRef]

http://doi.org/10.1007/978-3-030-78284-9_2
http://doi.org/10.26552/com.C.2022.2.E63-E73
http://doi.org/10.1007/978-981-16-2877-1_2
http://doi.org/10.26552/com.C.2022.2.E74-E86
http://doi.org/10.1049/iet-its.2009.0019
http://doi.org/10.12815/kits.2018.17.3.32
http://doi.org/10.1016/j.mechatronics.2017.08.008
http://doi.org/10.1016/j.uclim.2021.100972
http://doi.org/10.1016/j.jtte.2020.07.004
http://doi.org/10.1109/TITS.2020.3003111
http://doi.org/10.1002/wcm.616
http://doi.org/10.1109/i-smac.2018.8653736
http://doi.org/10.3390/app9132717
http://doi.org/10.1007/978-3-030-36841-8_22
http://doi.org/10.1016/j.jpdc.2017.08.014
http://doi.org/10.1016/j.scs.2020.102500


Sensors 2022, 22, 2908 25 of 26

19. Arshad, R.; Zahoor, S.; Shah, M.A.; Wahid, A.; Yu, H. Green IoT: An Investigation on Energy Saving Practices for 2020 and Beyond.
IEEE Access 2017, 5, 15667–15681. [CrossRef]

20. Balasubramaniam, A.; Paul, A.; Hong, W.-H.; Seo, H.; Kim, J.H. Comparative Analysis of Intelligent Transportation Systems for
Sustainable Environment in Smart Cities. Sustainability 2017, 9, 1120. [CrossRef]

21. Priyanka, E.B.; Thangavel, S.; Madhuvishal, V.; Tharun, S.; Raagul, K.V.; Krishnan, C.S.S. Application of Integrated IoT Framework
to Water Pipeline Transportation System in Smart Cities. In Intelligence in Big Data Technologies—Beyond the Hype; Springer:
Singapore, 2020; pp. 571–579. [CrossRef]

22. Hussein, W.N.; Kamarudin, L.; Hussain, H.N.; Zakaria, A.; Ahmed, R.B.; Zahri, N. The Prospect of Internet of Things and Big
Data Analytics in Transportation System. J. Phys. Conf. Ser. 2018, 1018, 012013. [CrossRef]

23. Shoeibi, N. Future of smart parking: Automated valet parking using deep Q-learning. In Advances in Intelligent Systems and
Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 177–182.

24. Calabrese, M.; Cimmino, M.; Fiume, F.; Manfrin, M.; Romeo, L.; Ceccacci, S.; Paolanti, M.; Toscano, G.; Ciandrini, G.; Carrotta, A.;
et al. SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0. Information
2020, 11, 202. [CrossRef]

25. Patil, P. Smart IoT based system for vehicle noise and pollution monitoring. In Proceedings of the 2017 International Conference
on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May 2017.

26. Zear, A.; Singh, P.K.; Singh, Y. Intelligent Transport System: A Progressive Review. Indian J. Sci. Technol. 2016, 9, 32. [CrossRef]
27. Cheng, J.C.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based

on BIM and IoT using machine learning algorithms. Autom. Constr. 2020, 112, 103087. [CrossRef]
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