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Abstract: As industrial development increases, electric machine systems are more widely used in
industrial production. Rolling bearings play a key role in machine systems and so the prevention
of faults in rolling bearings is more important than ever before. Recently, with the development
of artificial intelligence, neural networks have been used to monitor the remaining useful life of
rolling bearings. However, there are two problems with this technique. First, a network trained by
data for a single operating condition (source domain) cannot predict the remaining useful life of
bearings under a different operating condition (target domain), such as a different load or speed.
Second, a large number of labeled data are needed for network training, but the acquisition of labeled
data for different operating conditions is a challenging task. To address these problems, this paper
proposes a domain-adaptive adversarial network, in which a transfer learning strategy and maximum
mean discrepancy algorithm are used for network optimization, so that remaining useful life can be
predicted without labeled data in target domain training. Our results confirm that a model trained
by source domain data alone cannot predict the remaining useful life of bearings under different
conditions, but the domain-adaptive adversarial network can accurately predict remaining useful life
for varying operating conditions. The method proposed also exhibits good performance even if there
are noises in the signals.
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1. Introduction

As industrial development has increased, EMSs have become more widely used in
industrial applications [1–3]. However, if EMSs are faulty or broken, they present a threat
to application processes and to the physical safety of people. Assessment of the health
condition of EMSs is therefore an important matter, and this includes assessment of likely
future performance.

In recent years, as artificial intelligence technology has developed, neural networks
have become widely used in many fields. Reports in the research literature confirm this.
In [4], a backpropagation artificial neural network was employed for compressive strength
prediction of alkaline-activated slag concrete. In [5], an artificial neural network was used
to identify areas flooded by a cyclonic storm. Published papers also describe various
deep learning models proposed and used for EMS fault diagnosis. In [6], a network
constructed by sparse filtering and a softmax classifier was used to extract features from
bearing vibration signals and to identify fault types of a motor bearing at different loads
by adaptive means. In trials, this method obtained a good degree of accuracy. In [7],
an improved machine-learning-based fault diagnosis method with adaptive secondary
sampling filtering was proposed for multiphase drive systems. By this method, open-
circuit faults in power switches were effectively diagnosed. In [8], a Bi-LSTM network was
used to construct a fault diagnosis model of early gear pitting. This network was well
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designed to extract pitting features from the raw vibration signals of gears and achieved
good diagnosis accuracy. In [9], monitoring data were acquired by several vibration sensors,
and these signals were used as inputs to a representation learning subnetwork, and to an
RUL estimation subnetwork, to predict the RUL of bearings.

The methods just described exhibit two main limitations. First, they focus on sudden
faults rather than damage caused by age. Second, because of the identical distribution
assumption of deep learning, they only work when the predicting samples and training
samples are from the same distribution. However, machines are routinely used in different
operating conditions, meaning that a model trained by data of one condition cannot be
applied directly to other conditions. In addition, obtaining extensive amounts of labeled
data of different operating conditions is expensive. Training a model for different conditions
is, therefore, a challenging task, and the generalization of the methods just described is
weak. However, and as described in [10], most EMS accidents involve rolling bearings,
and this may represent a fruitful area of future research. In this study, considering the
findings reported above, we sought to make RUL predictions for rolling bearings under
different operating conditions with few labeled data. Our methods and results are set out
in this paper.

Transfer learning, as a deep learning algorithm, provides a solution for different
distribution prediction, and has been widely used in various fields [11–13]. In [11], transfer
learning was used in image generation. A generative adversarial network was pretrained
by image datasets; then, the network was transferred to generate images in different
domains. In [12], transfer learning was used for food material recognition. Recognition
knowledge learned from publicly available datasets was transferred to the real-world
restaurant domain, and the classifier was used to recognize food material. In [13], transfer
learning was used for the short-term prediction of extreme weather events in different
regions. The base CNN model was trained using radar data from near Beijing, China; the
transferred models were then successfully used for prediction near Guangzhou, China.
In [14], Pan and Yang reviewed developments in transfer learning. In [15], Selver et al.
provided an evaluation strategy for transfer learning. In transfer learning, there are two
main parts: first, the source domain Ds = Xs, belonging to feature space Ss and task Ts;
second, the target domain Dt = Xt, belonging to feature space St and task Tt. Generally, the
source domain samples are labeled, but there are either few labeled samples in the target
domain or none at all. Transfer learning aims to improve the performance of task Tt in the
target domain, with the help of information from the source domain.

When predicting the health of bearings, two different operating conditions can be
regarded as a source domain and target domain, respectively, so that the feature spaces
and tasks are the same for both source and target domains, i.e., Ss = St and Ts = Tt.
However, because of the different operating conditions, the marginal distributions of the
two domains are different, i.e., P(Xs) 6= P(Xt). Some published works on transfer learning
are especially relevant in this regard. In [16], a subdomain adaptation transfer learning
network was established to predict different bearing faults. By this method, class and
domain misalignment issues in the fault diagnosis of bearings were overcome, and good
performance was obtained. In [17], a stack auto-encoder transfer learning algorithm based
on the class SAE-CSDF was proposed to address the “few data” problem in diagnosing
bearing faults; experimental results demonstrated that this method improved the accuracy
of diagnosis.

In the above-described transfer learning methods used for bearing fault diagnosis, the
data of different fault types are distributed differently, while data of similar fault types are
distributed similarly. Accuracy can therefore be improved just by reducing the differences
between the fault types. However, when predicting the RUL of bearings, the label is a real
number instead of a class, so it is hard to apply these methods directly to the task of RUL
prediction. In order to predict the RUL of bearings under different operating conditions, an
RUL prediction method based on transfer learning is proposed in this paper. The originality
of the method can be summarized as follows:



Sensors 2023, 23, 227 3 of 14

(1) A DAAN is used to address the problem that a network trained by data under one
condition cannot then be used for different conditions. Transfer learning and MMD
are employed to reduce the differences in vibration signals under different operating
conditions, so the network can be used under different conditions.

(2) To train the network, labeled data are needed for only one operating condition. For
other conditions, unlabeled data are used. This eliminates the difficulty of obtaining
large quantities of labeled data of different operating conditions.

(3) Compared with the results of similar previous works, the method proposed here
results in more accurate performance, with fewer data to train.

The details of the proposed method and the experimental results are described in the
remainder of this paper.

2. Proposed Method

Figure 1 shows the structure of the proposed method. A DAAN is used for predicting
the RUL of bearings under different operating conditions. In the DAAN, the CNN [18] is
used to extract features from the samples, and a fully connected network is used to predict
RUL. An adversarial transfer learning strategy and MMD are used to train the network
and to determine the RUL prediction under different operating conditions. Details of each
stage in the process are as follows:
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2.1. Signal Preprocessing

For the network, the original data cannot be used directly, and preprocessing is necessary.
To fit CNN, the signals need to be processed and constructed as two-dimensional samples.

WPT is a method based on multiresolution theory and orthogonal wavelet algorithms.
In WPT, the signals are decomposed to different frequency bands by a series of high-
and low-pass filter matrices. After the wavelet function is determined, the coefficients of
these filter matrices are obtained. In practical engineering, WPT is usually used to process
nonstationary signals, such as vibration signals [19,20]. WPT is described in detail in [20].
In this paper, WPT is used to transform the vibration signals to a time–frequency domain,
which is a two-dimensional space, so that samples can be used as input to the network.

A whole-life dataset V =
{

vi}m
i=1 contains m vibration signals. A larger superscript

indicates a lower corresponding RUL. For a vibration signal vi ∈ RN×1, this can be regarded
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as a wavelet coefficient a0
1 at level zero; wavelet coefficients of each successive level can

then be obtained as in (1), following [19]:{
an

2j−1 = Gn · an−1
j

an
2j = Hn · an−1

j

(
j = 1, 2, . . . , 2n−1

)
(1)

where an
j is the jth wavelet packet coefficient of the nth level, Hn and Gn are the high-

and low-pass filter matrices of the nth level, which are N/2n × N/2(n−1) dimensional.
The feature vector f i of the vibration signal is made up by summing and L2-normalizing
wavelet coefficients for each level, as in (2):

f i =

[
∑ an

1 ∑ an
2 . . . ∑ an

2n
]√(

∑ an
1
)2

+
(
∑ an

2
)2

+ . . . +
(
∑ an

2n
)2

(2)

To construct the two-dimensional samples for CNN, and ensure the samples are square
matrices, a total of 2n feature vectors with similar RUL values are used to construct the
sample si as in (3):

si =


f i+1−2n

...
f i−1

f i

 (3)

Finally, the samples are used as input to the network.

2.2. Network Training

In this paper, bearings under one operating condition are regarded as source domain
samples X1 =

{
xi

1
}m1

i=1. The RULs of the source domain samples construct Y1. Bearings
under different operating conditions are regarded as target domain samples X2 =

{
xi

2
}m2

i=1.
In addition, L represents domain labels (source: 0, target: 1) and the labels represent
whichever domain the samples belong to. The diagram of network training is shown
in Figure 2. The specific training steps are as follows (it should be pointed out that the
weight-shared networks update at the same time in the training).

• Step A

In this step, Net1 and Net2 are fixed, and the loss function Lossd is minimized by
updating Net3. X1 and X2 are used as input to Net1 and Net3 to predict condition labels.
The classification loss (Lossd) can be then obtained by MSE as in (4):

Lossd =
1
m ∑m

i=1

(
li − l̂i

)
(4)

where m is the number of samples, and li and l̂i are the real domain label and the predicted
domain label, respectively.

• Step B

In this step, Net3 is fixed, and the loss function Lossg is minimized by updating Net1
and Net2. Lossg includes three parts: regression loss, classification loss and label MMD
loss, as follows:

Regression loss (Lossg1): X1 is used as input to predict RUL labels; these predicted
labels are then combined with Y1 to calculate Lossg1 by MSE as in (5):

Lossg1 =
1
m ∑m

i=1

(
yi − ŷi

)
(5)
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where m is the number of samples, and yi and ŷi are corresponding real RUL labels and
predicted RUL labels, respectively.
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Classification loss (Lossg2): Similarly to the generative adversarial network described
in [21], Lossg2 is set to negative Lossd to achieve adversarial training of Net1 and Net3. The
invariant features in the domains can then be extracted by the trained feature extractor,
following [22].

Label MMD loss (Lossg3): Due to the lack of target domain labels, the unlabeled
samples in the target domain cannot be used to train the parameters in Net2 [23]. However,
because the samples from the source domain and the target domain are both collected from
the whole life of the bearings, their RUL labels should obey the same distribution. MMD
can then quantify the difference of the distributions, by calculation, as in (6) [24]:

MMD(X1, X2) =
1

m2
1

∑m1
i=1 ∑m1

j=1 k
(

xi
1, xj

1

)
− 2

m1m2
∑m1

i=1 ∑m2
j=1 k

(
xi

1, xj
2

)
+

1
m2

2
∑m2

i=1 ∑m2
j=1 k

(
xi

2, xj
2

)
(6)

where k(·,·) is the kernel function.
We now recall that a radial basis function can map the distribution to infinite-dimensional

space, where the two distributions can be well measured. For this reason, we select a radial
basis function as the kernel function as in (7):

k
(
x, x′

)
= e−

‖x−x′‖2
2σ2 (7)

where σ is kernel width, which represents the influence range of the radial basis function.
Lossg3 is the MMD of the predicted RUL of source domain and target domain samples;
reducing this loss can update the parameters in Net3, using target domain unlabeled samples.

Finally, Lossg is the weighted sum of the above three parts, as in (8):

Lossg = Lossg1 + Lossg2 + Lossg3 (8)
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A single repetition of Step A and Step B is regarded as one iteration. The network is
trained until the threshold of iteration is attained, and the well-trained network can then be
used for RUL prediction purposes.

2.3. RUL Prediction

A well-trained network is obtained after network training. The RUL of bearings under
different operating conditions can be used by Net1 and Net2. The whole flowchart of the
proposed method for RUL prediction is shown in Figure 3.
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3. Experiment
3.1. Data Description and Parameters Configuration

The datasets used in the experiments can be found in [25]. The datasets include five
different load conditions and seventeen whole bearing remaining life vibration signals in
all. Signals are collected from vertical and horizontal directions at a sampling frequency of
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25.6 kHz. Typical vibration signals are shown in Figure 4. Signals are sampled every 0.1 s
for each 10 s, so each data segment has 2560 points.
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The horizontal-direction vibration signals used in the experiments are listed in Table 1.
Each data segment is regarded as a vibration signal vi, and the level of wavelet packet
decomposition n is set to five, which means each segment contains 32 wavelet packet coeffi-
cients. To construct one square matrix sample, 32 data segments with similar RUL values
are used. Considering the whole-life time is different for each bearing, the RUL of each
bearing is here represented as a percentage for convenience of comparison and evaluation.

Table 1. Datasets used in experiments.

Operating
Conditions

Radial Force
(kN)

Rotating Speed
(rpm)

Training
Datasets Test Datasets

Condition2 4.2 1650 Bearing2_1 Bearing2_2

Condition3 5 1500 Bearing3_1 Bearing3_3

For the network, the CNN is constructed by two convolutional layers and two max
pooling layers. Flattened features extracted by CNN are used as inputs to the fully con-
nected network. The outputs of Net2 and Net3 are RUL and condition labels, so the output
layer size of both Net2 and Net3 is one. The kernel width σ is also set to one. The parameter
set of the whole network is shown in Table 2.

Table 2. Parameters set of the network.

Layer Size Activation Function

Input 32 × 32 \

Convolutional layer 1 Kernel: 5 × 5 × 1
Stride: 3 ReLU

Pooling layer 1 Pool: 1 × 1
Stride: 1 \

Convolutional layer 2 Kernel: 5 × 5 × 6
Stride: 2 ReLU

Pooling layer 2 Pool: 1 × 1
Stride: 1 \

Net2 Layer 1: 160 × 10
Layer 2: 10 × 1 Sigmoid

Net3 Layer 1: 160 × 10
Layer 2: 10 × 1 Sigmoid
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3.2. Validity and Generalization of the Proposed Method

Generally, a trained network becomes invalid when the operating condition changes.
To experimentally assess the validation and generalization of the proposed method under
different operating conditions, two cases are used for testing purposes. In Case I, bear-
ing2_1 is regarded as the source domain, bearing3_1 is regarded as the target domain,
and bearing3_3 is used to test. In Case II, bearing3_1 is regarded as the source domain,
bearing2_1 is regarded as the target domain, and bearing2_2 is used to test.

The results are shown in Figures 5 and 6. For the method without transfer learning,
only labeled samples from the source domain are used to train Net1 and Net2. It is obvious
that the performance of the proposed method is much better than that of the non-transfer-
learning method, and this verifies the validity of the former. In addition, the results show
that the proposed method exhibits good performance in both of the two cases, demonstrat-
ing that the proposed method effectively transfers to different operating conditions.
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To evaluate the effectiveness of the prediction results, the following metrics are used
to measure the performance:

(1) RMSE is calculated as in (9) and can be used for measuring the average absolute error.

RMSE =

√
1
m

m

∑
i=1

(
ŷi − yi

)2 (9)

(2) MAPE is calculated as in (10) and can be used for measuring relative error.

MAPE =
1

m− 1

m−1

∑
i=1

∣∣ŷi − yi
∣∣

yi (10)

(3) Precision [26] is calculated as in (11), and this metric can quantify the dispersion of
the prediction error around its mean.

Precision =

√
1
m

m

∑
i=1

(εi − ε)2 (11)

where m is the number of samples, and ŷi and yi are the predicted RUL and real RUL of the
sample si, respectively. The error εi = ŷi − yi, mean error ε = 1

m ∑m
i=1 εi, RMSE and MAPE

are all used to measure the accuracy of prediction. The closer to zero these values are, the
more accurate the RUL estimation of the proposed method. Precision reflects the dispersion
of error, so when its value is close to zero, prediction errors are more concentrated, and the
method is more stable. When the RUL is close to zero, the value of MAPE will be large,
even if the absolute error is small. In addition, bearings are usually taken out of use when
they are predicted to be broken by industrial application. For this reason, samples with an
RUL of less than 10% are ignored when calculating MAPE. The results are shown in Table 3.

Table 3. Prediction metric results comparison.

Metric Method Bearing3_3 Bearing2_2

RMSE
Without trans. 27.23% 39.90%

Proposed 7.01% 14.67%

MAPE
Without trans. 48.00% 82.2%

Proposed 18.36% 28.10%

Precision
Without trans. 26.23% 20.19%

Proposed 6.48% 12.63%

It can be seen that the proposed method achieves better performance on each metric
than the method without transfer learning.

To further reveal the effectiveness of the transfer learning strategy, the features ex-
tracted by the CNN are analyzed visually. PCA is used for data dimension reduction, and
the probability density distributions of the first principal component of the deep features are
compared in Figures 7 and 8, where the source domain and target domain are bearing2_1
and bearing3_1, respectively, in Figure 7, and bearing3_1 and bearing2_1, respectively,
in Figure 8.
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It can be seen that, without using transfer learning, the distributions of the two do-
mains are very different, and this is obviously caused by the different marginal distributions
of these two domains. When the transfer learning strategy and MMD loss are employed to
reduce the differences in these two distributions, the probability density distribution curves
become similar, and the invariant features of the domains are extracted. It is important that
the regressor effectively predicts RUL under different operating conditions based on the
extracted features. These results show the effectiveness of the transfer learning strategy
for reducing the differences in the distributions and for predicting RUL under different
operating conditions.

3.3. The Robustness of the Method

Because bearings are routinely used under extreme operating conditions in harsh
working environments, the signals from bearings collected from real-world sites are more
confused than those collected in experimental environments, and usually contain a great
deal of interference and noise. For this reason, algorithm robustness is important.

To test the robustness of the proposed method, the experiments under Case I (source
domain: bearing2_1, target domain: bearing3_1, test bearing: bearing3_3) were carried out
with different noise level data to simulate extreme operating conditions. White Gaussian
noise signals with a mean value of zero were added to the vibration signals of all the
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bearing vibration signals used in the experiments, and the noise level was determined by
its standard deviation. The experiments were carried out several times under different
noise levels, and the accuracy results obtained are shown in Table 4.

Table 4. RMSE prediction results under different noise levels.

Standard Deviation of Noise (g) Bearing3_3

0.1 12.07%

0.2 17.22%

0.5 17.12%

1 17.00%

1.5 17.69%

2 26.51%

It can be seen that use of the proposed method results in acceptable performance until
the standard deviation of the noise reaches 2 g. Considering that the standard deviation
of the whole-life vibration signals of bearing2_1 and bearing3_1 are 10.40 g and 5.88 g,
respectively, the noise with 2 g standard deviation can be regarded as a strong interference
with the signals. It is therefore reasonable to conclude that the proposed method is robust
and performs well even when the vibration signals contain noise.

3.4. Comparison with Related Methods

To further assess the proposed method, its performance is compared to that of pre-
viously described RUL prediction methods using transfer learning, as shown in Table 5.
In [27], an RUL estimation method using DTMLKR was used. Bearings under condition1
or condition 2 were regarded as source domain, and target domain, respectively. Source
domain bearings and two target domain bearings were used to train the model, and the
trained model was used to predict RULs of the remaining target domain bearings. In [28],
the whole RUL of the bearing was divided into a normal stage and a rapid degradation
stage. An RUL prediction method based on SCAE and MK-MMD was used to estimate the
rapid degradation stage RUL of bearings under condition2. In [29], the fault occurrence
time of bearings was determined first using a hidden Markov model. Bearings under
condition 1 were then regarded as source domain, and a novel TLMLP was used to predict
the RUL of bearings under condition 2 and condition 3.

Table 5. Performance comparisons of related methods.

Method
Training Bearings ID

Test Bearings ID Mean RMSE Mean MAPE
Source Domain Target Domain

DTMLKR [27] Ber1_1,1_2 Ber2_1,2_2 Ber2_6 15% 34%

SCAE +
MK-MMD [28] Ber1_1,1_2 Ber2_1,2_2 Ber2_7 10.78% 14%

TLMLP [29] Ber1_1,1_2,1_3,
1_4,1_5,1_6,1_7 Ber2_1,2_2 Ber2_6 29.83% \

Proposed method Ber3_1 Ber2_1 Ber2_2 14.67% 28.10%

The results show that the method proposed in this paper results in good absolute
accuracy, compared with the other methods, but its relative error performance is slightly
poorer in some instances. Firstly, compared with the DTMLKR method, the proposed
method is a little more accurate. Secondly, the SCAE method exhibits better performance
on the metrics, but this method is only used to predict rapid degradation stage RUL,
whereas the proposed method is used for the whole life of the bearing. This is a more
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challenging task than predicting only the rapid degradation stage, and this explains why
the accuracy of the proposed method is lower than that of the SCAE method. In addition,
the amount of source and target domain data used in the proposed method is less than
that of the SCAE method, and this also contributes to the lower accuracy of the proposed
method. However, this deficiency is small and acceptable. Finally, in comparison with
TLMLP, the proposed method obtains better accuracy with fewer training data, indicating
a clear superiority of the proposed method.

4. Conclusions

In this paper, the use of DAAN is proposed for predicting the RUL of bearings under
different operating conditions. In the method described here, WPT is used for signals
pre-processing and for the construction of two-dimensional data. A transfer learning
strategy and MMD algorithm are then used for network optimization, which reduces the
differences between the features extracted from samples obtained from different operat-
ing conditions samples, so the network can predict the RUL of bearings under different
operating conditions.

The results demonstrate that, because of its use of a transfer learning strategy and
MMD algorithm, the proposed method can map vibration data under different operating
conditions to a similar distribution, so the network can predict the RUL of bearings under
different conditions. In addition, the proposed method delivers good performance even if
the vibration signals contain noise.
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Electric machine system EMS
Remaining useful life RUL
Domain-adaptive adversarial network DAAN
Convolutional neural network CNN
Maximum mean discrepancy MMD
Bidirectional long short-term memory Bi-LSTM
Separation and domain fusion SAE-CSDF
Wavelet package transformation WPT
Mean square error MSE
Root-mean-squared error RMSE
Mean absolute percentage error MAPE
Principal component analysis PCA
Deep metric transfer learning for kernel regression DTMLKR
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Multikernel maximum mean discrepancy MK-MMD
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