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Abstract: In the ultrasonic welding system, the ultrasonic power supply drives the piezoelectric
transducer to work in the resonant state to realize the conversion of electrical energy into mechanical
energy. In order to obtain stable ultrasonic energy and ensure welding quality, this paper designs a
driving power supply based on an improved LC matching network with two functions, frequency
tracking and power regulation. First, in order to analyze the dynamic branch of the piezoelectric
transducer, we propose an improved LC matching network, in which three voltage RMS values are
used to analyze the dynamic branch and discriminate the series resonant frequency. Further, the
driving power system is designed using the three RMS voltage values as feedback. A fuzzy control
method is used for frequency tracking. The double closed-loop control method of the power outer
loop and the current inner loop is used for power regulation. Through MATLAB software simulation
and experimental testing, it is verified that the power supply can effectively track the series resonant
frequency and control the power while being continuously adjustable. This study has promising
applications in ultrasonic welding technology with complex loads.

Keywords: ultrasonic power supply; piezoelectric transducer; improved LC matching network;
frequency tracking; power regulation

1. Introduction

Ultrasonic welding technology has the advantages of fast, environmentally friendly,
safe, and reliable welding [1,2], and is widely used in industrial production [3–5]. In
ultrasonic welding systems, the piezoelectric transducer (PT) converts the electrical en-
ergy provided by the ultrasonic power source into mechanical energy of high-frequency
vibration, and the energy is transferred to the welded part to achieve welding [6–8]. In
order to obtain stable ultrasonic energy, the ultrasonic power source requires two functions,
automatic frequency tracking and power regulation [9,10]. A piezoelectric transducer is an
oscillating unit that can achieve maximum power transfer only if it is made to work in a
resonance state [11,12]. When the system environment and working conditions change, the
piezoelectric transducer impedance and series resonance frequency also change [13,14], the
frequency tracking function makes the ultrasonic power supply operating frequency follow
the transducer series resonance frequency change accurately and timely to ensure that
the transducer always works in the resonance state [15]. The power adjustment function
regulates the electrical energy delivered to the piezoelectric transducer by the ultrasonic
power supply and controls the vibration amplitude of the piezoelectric transducer output
in order to adapt to a variety of welding conditions [16].

Since the dynamic branch in the equivalent circuit of the piezoelectric transducer is
equated by the electromechanical characteristics [17], it is difficult for the existing technol-
ogy to directly track the series resonance frequency of the dynamic branch of the transducer.
Currently, the voltage and current at both ends of the transducer are often used as feedback
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to achieve the closed-loop control function [18]. The maximum current method uses the
transducer current as the feedback quantity, and the frequency is tracked by using the
characteristics of the maximum current when the transducer is working in the minimum
impedance resonance [19], which is a simple method. However, the maximum current
value will change with the load, resulting in a slower frequency tracking speed under
sudden load changes. The phase-locked loop method uses the phase difference between
the transducer voltage and current as the feedback quantity and tracks the frequency using
the characteristic that the output voltage is in phase with the current when the transducer
is operating at the resonance frequency [20], but the tracking bandwidth of this method is
limited. Dong et al. [21] proposed a phase-locked loop improvement method with static
capacitive bandwidth compensation for this problem. Zhang et al. [22] used phase and
current for composite control, which can track the frequency change of the maximum
vibration amplitude more accurately and quickly.

Therefore, in order to track the series resonance frequency, this paper improves the
LC matching network and uses its component voltage information to discriminate the
transducer series resonance frequency, and designs an ultrasonic power supply based on
root-mean-square (RMS) voltage feedback control. The fuzzy control algorithm is used
to track the series resonant frequency with a wide tracking range and high accuracy. The
double closed-loop control method of the power outer loop and PT current inner loop is
used to ensure output power stability. The structure of this paper is as follows. Section 2
analyzes the transducer equivalent model and characteristic frequency, and designs an
improved LC matching network. Section 3 designs an ultrasonic driving system based on
RMS voltage feedback control, and gives the frequency tracking and power control methods.
Section 4 experimentally verifies the feasibility of the designed driving power supply.

2. Analysis of Piezoelectric Transducer and Matching Network
2.1. PT Equivalent Model and Characteristic Frequencies

In order to analyze the electrical behavior characteristics and characteristic frequencies
of the piezoelectric transducer, the PT can be modeled by the Butterworth–Van Dyke
(BVD) circuit model [23] in Figure 1. The equivalent circuit of the PT consists of static and
dynamic branches connected in parallel. C0 is the static capacitor, which is the capacitance
between the piezoelectric pole plates, so it is a real electrical parameter whose value hardly
changes. The dynamic branch consists of the dynamic capacitor C1, dynamic inductor
L1, and dynamic resistor R1 in series. The parameters C1, L1, and R1 are the reaction
equivalents of the vibration operating state, characterizing the system stiffness, oscillation
quality, and losses, respectively. Therefore, factors such as temperature, pressure, and
operating conditions can affect the equivalent circuit parameters of the PT.
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The admittance of the PT operated at frequency f is
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where ω is the operating angular frequency.
Based on Equation (1), the following equation can be obtained:

(G− 1
2R1

)
2
+ (B−ωC0)

2 = (
1

2R1
)

2
(2)

The variations of conductance G and susceptance B with frequency are represented as
the admittance circle shown in Figure 2. There are three characteristic frequencies [24,25].
f s is the series resonance frequency, which is the frequency at which series resonance occurs
in the dynamic branch, calculated as

fs =
1

2π
√

L1C1
(3)
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When the piezoelectric transducer is operated at f s, its conductance is maximum and
the energy conversion efficiency is highest. Therefore, in this paper, the series resonance
frequency f s should be the target point for frequency tracking. f m is the characteristic
frequency corresponding to the maximum admittance, and the current is maximum when
the PT is excited at f m. The maximum current method uses this characteristic for frequency
tracking, and the target frequency is f m. f r is the characteristic frequency at which the
susceptance is zero. The voltage and current are in phase when the PT operates at f r, which
is the target frequency of the phase-locked loop method. The value of 2πf sC0 is generally
small, so the three eigenfrequencies are approximately equal [26].

In this paper, we use a 20 kHz PT as the research object, and the parameters of the
PT under static conditions measured by an impedance analyzer are shown in Table 1. The
equivalent circuit parameters are used to build the PT in a later paper.

Table 1. Parameters of the PT.

Parameters C0 (nF) C1 (nF) L1 (mH) R1 (Ω) f s (Hz)

value 4.5 0.273 231.8 42 20,007

2.2. Matching Network

The matching network is connected between the driving power supply and the PT,
which plays a key role in the efficient and stable operation of the ultrasonic system. As
mentioned earlier, The PT operated at the series resonance frequency is resistive and
capacitive. To improve the transmission efficiency, a matching network needs to be designed
to compensate for the capacitance, which is called tuning. The inductor–capacitor (LC)
matching network is commonly used and is shown in Figure 3, where L2 is the matching
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inductor and C2 is the matching capacitor [27–29]. C2 can make the equivalent resistance
lower to play the role of resistance regulation. Moreover, the LC matching network can
filter the harmonic components of the ultrasonic power supply output and improve the
quality of the voltage waveform applied to the PT.
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= 0.28 mH, Cn = 440 nF, Ca = 34.375 nF, and Cb = 440 nF. 

  

Figure 3. LC matching network.

In order to indirectly analyze the dynamic branch through the matching network, the
conventional LC matching circuit is improved, and the improved LC matching circuit is
shown in Figure 4, where Lm is the matching inductor and Ca, Cb, and Cn are the matching
capacitors. The values of the matching network parameters are designed according to the
PT operating at the series resonance frequency.
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The overall equivalent impedance at series resonance frequency f s is calculated from
Figure 4. The real part indicates the equivalent resistance and the calculation formula is

R =
R1C2

n

ω2R2
1(C0Cm + C0Cn + CmCn)

2 + (Cm + Cn)
2 (4)

where Cm is the equivalent capacitance of Ca and Cb in series and Cm = CaCb/(Ca + Cb).
The matching capacitance parameters Cm, Ca, Cb are designed according to the variable

resistance requirement. Then, let the imaginary part of the equivalent impedance be 0 to
achieve tuning, and the matching inductance Lm is designed as Equation (5).

Lm =
ω2R2

1(C0Cm + C0Cn + CmCn)(C0 + Cn) + (Cm + Cn)

ω4R2
1(C0Cm + C0Cn + CmCn)

2 + ω2(Cm + Cn)
2 (5)

The high quality of the voltage and current waveform applied to the PT is required.
So it is verified that the filtering requirements are met after determining the matching
parameters. Therefore, this paper designs improved LC matching network parameters:
Lm = 0.28 mH, Cn = 440 nF, Ca = 34.375 nF, and Cb = 440 nF.
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3. The Driving Power Supply Design
3.1. System Composition

Figure 5 shows the overall structure of the driving power supply, consisting of two
parts: the power circuit and the control circuit. The power circuit adopts AC-DC-AC
conversion technology to convert the frequency-adjustable high-frequency AC signal to
drive the PT. The control circuit samples the three voltage RMS values on the modified LC
matching network as the feedback signals. The output PWM signal is adjusted by the DSP
controller to control the on/off of the IGBT of the full-bridge inverter circuit, thus realizing
the frequency tracking and power regulation functions.
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The power circuit topology is shown in Figure 6. The uncontrolled rectifier circuit
composed of diodes D1–D4 converts the industrial frequency AC power to DC power and
smooths the output after the LC filter circuit. The full-bridge inverter circuit with four
IGBTs as switching devices serves to convert DC power into high-frequency AC power. In
addition, the IGBTs are connected in parallel with capacitors and diodes to achieve soft
switching technology, which effectively reduces the switching losses under high-frequency
operating conditions [30]. The high-frequency transformer converts the inverted voltage
into the power ultrasonic signal required by the transducer and acts as an electrical isolator.
The improved LC matching network tuned matching makes the piezoelectric transducer
work in resonance to produce ultrasonic waves.
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3.2. Frequency Tracking
3.2.1. Series Resonance Frequency Discrimination

Using the three key voltage RMS values on the improved LC matching network as
feedback, it can discriminate the series resonant frequency shift of the PT, and then adjust
the operating frequency of the driving power supply until it is consistent with the series
resonant frequency to achieve frequency tracking. The discriminative principle is shown in
Figure 7, where u1 is the voltage on the matching capacitor Cb, u2 is the voltage on Cn, and
u3 is the voltage on Cb and Cn. The corresponding voltage RMS values are U1, U2, and U3,
the feedback signal of this paper.
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(1) As shown in Figure 9a, when the dynamic branch occurs in series resonance, the dy-
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Figure 7. The circuit analysis.

From Figure 7, Kirchhoff’s law equation is written as follows:
u1 − u2 − u3 = 0
k1u1 − u2 − uz = 0
i0 + i1 − in = 0

(6)

where k1, the voltage division factor, is the ratio of the voltage on Ca and Cb to the voltage on
Cb, and k1 = (Ca + Cb)/Ca. From Equation (6), the vector relationship is shown in Figure 8.
Here, uz is perpendicular to i0 and u2 is perpendicular to in. Let the angle between in
and uz be γ.
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The three states of the PT equivalent circuit are analyzed, and the current vector
relationship diagrams when the dynamic branches are resistive, inductive, and capacitive
are shown in Figure 9.

(1) As shown in Figure 9a, when the dynamic branch occurs in series resonance, the
dynamic branch is resistive, and uz is in phase with i1, the angle between in and i1 is
equal to the angle γ between in and uz, then Insin γ = I0;

(2) As shown in Figure 9b, when the dynamic branch is inductive, i1 lags uz by a certain
angle, then Insin γ < I0;

(3) As shown in Figure 9c, when the dynamic branch is capacitive, i1 leads uz by a certain
angle, then Insin γ > I0.
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Therefore, the relationship between the current In, I0, and sin γ can analyze the state
of the dynamic branch of the PT. Let:

A = In sin γ− I0 (7)

The value of A can be calculated to determine the phase relationship between the
dynamic branch voltage and current, and then determine whether the dynamic branch
achieves series resonance.

The In = ωCnU2 and I0 = ωC0Uz are substituted into Equation (7) to obtain Equation (8).

A = ωCnU2 sin γ−ωC0Uz (8)

Furthermore, let
B = U2 sin γ− k2Uz (9)

where, k2 = C0/Cn. According to the cosine theorem, three sets of relations are obtained as
in Equation (10). 

U2
3 = U2

1 + U2
2 − 2U1U2 cos θ

U2
z = k2

1U2
1 + U2

2 − 2k1U1U2 cos θ
k2

1U2
1 = U2

z + U2
2 − 2UzU2 cos(90◦ + γ)

(10)

In addition, because cos(90◦ + γ) = − sin γ, it can be deduced that Equation (11).{
sin γ =

k2
1U2

1−U2
z−U2

2
2UzU2

U2
z = (k2

1 − k1)U2
1 + (1− k1)U2

2 + k1U2
3

(11)

After substituting Equation (11) into Equation (10), let the judgment value

M = (k1 + 2k1k2 − 2k2
1k2)U2

1 + (k1 + 2k1k2 − 2k2 − 2)U2
2 − (k1 + 2k1k2)U2

3 (12)

In summary, the judgment value M can be calculated by sampled RMS voltage U1, U2,
U3, and corresponds to the three states of the PT as follows.

(1) If M = 0, the dynamic branch is resistive, and the PT works at a mechanical reso-
nant frequency.

(2) If M > 0, the dynamic branch is capacitive and the frequency should be increased.
(3) If M < 0, the dynamic branch is inductive and the frequency should be reduced.

The ultrasonic system simulation model is built in MATLAB/Simulink platform.
Taking the PT with series resonant frequency 20,007 Hz as the object, the relationship
between the judgment value M and frequency f is obtained as shown in Figure 10. As
can be seen from Figure 10, the judgment value M is 0 at the series resonant frequency
f s = 20,007 Hz, and |M| ≈ 2000 when the frequency differs from the series resonant
frequency by 1 Hz. The resonant frequency fs can be tracked by controlling M within
a certain range, and the control accuracy is high. In addition, near the series resonant
frequency, the judgment value M changes quickly with frequency, while away from the
series resonant frequency, the M changes relatively slowly.
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Therefore, the frequency is adjusted according to the judgment value M. The positive
or negative of M determines the direction of frequency change, and the magnitude of
frequency change is determined by the magnitude of M. The M is controlled near 0 as the
target that is tracked to the series resonant frequency. This method can avoid the influence
of static capacitance to directly analyze the dynamic branch to achieve accurate frequency
tracking, even in the case of matching misalignment or load change can still track the
series resonant frequency of the PT. In addition, the sampling circuit of the three voltages
adopts an identical circuit structure, which effectively reduces the detection error compared
with the phase-locked tracking method of voltage and current phase difference, and the
frequency of the PWM wave is digitally controlled by using a DSP controller with a large
frequency adjustment range.

3.2.2. Fuzzy Control Algorithm

Fuzzy control is based on fuzzy set theory, fuzzy linguistic variables, and fuzzy logic
reasoning, which does not require an accurate mathematical model of the controlled object
and has strong adaptability to nonlinear and unstable control objects. Based on the above
analysis, this paper adopts fuzzy control for frequency tracking. A two-dimensional fuzzy
controller with E, EC, and DF as fuzzy variables is used. The input variables of the fuzzy
control are the judgment value E = M and the relative frequency change rate EC = ∆M/∆f of
the judgment value M. The output variable is the frequency change DF. The block diagram
of the fuzzy control system is shown in Figure 11.
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In the fuzzy controller, the affiliation function adopts the trigonometric function, and
the area center method is used for clarification. The actual input and output quantities are
fuzzified as:

(1) The basic domain of the judgment value is [−45,000, 45,000], and the fuzzy domain
after fuzzification is [−6, −4, −2, 0, 2, 4, 6]. The fuzzy set composed of fuzzy lan-
guage uses 7 levels (NB, NM, NS, ZO, PS, PM, PB), and the quantization factor is
KE = 1/7500.
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(2) The basic domain of the rate of change of the judgment value is [−1800, 1800], and
the fuzzy domain after fuzzification is taken as [−6, −4, −2, 0, 2, 4, 6], and the fuzzy
set composed by the fuzzy language adopts 7 levels (NB, NM, NS, ZO, PS, PM, PB),
and the quantization factor is KEC = 1/300.

(3) The basic domain of the frequency change quantity is [−18, 18], the fuzzy domain is
taken as [−6, −4, −2, 0, 2, 4, 6], the fuzzy set is divided into 7 classes (NB, NM, NS,
ZO, PS, PM, PB), and the scaling factor KDF = 3.

The setting of fuzzy control rules determines the output of fuzzy control. When
M > 0, the output of the change in frequency is positive, the frequency should be adjusted
in the direction of increase, when M < 0, the output of the change in frequency is negative,
the frequency should be adjusted in the direction of decrease, the positive and negative of
E determines the positive and negative of ∆f. When the frequency is adjusted as shown
in Figure 12a, the frequency is less than the series resonant frequency, the frequency is
adjusted in the direction of increasing, Mn is the current moment judgment value, Mn−1
is the previous moment judgment value, Mn − Mn−1 > 0, then EC > 0, at this time, the
frequency is far from the series resonant frequency, the amount of frequency change can
take a larger value to speed up the search speed. When the frequency adjustment is as
shown in Figure 12b, Mn −Mn−1 < 0, that is, EC < 0, at this time the frequency is near the
series resonant frequency, the frequency change amount should take a smaller value.
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Figure 12. Frequency adjustment schematic. (a) The large frequency change corresponding to the
judgment value M; (b) The small frequency change corresponding to the judgment value M.

According to the logic judgment, if E and EC are positive, that is, the left half of the
rising part of the relationship curve, the judgment value is positive at this time; the working
frequency is much smaller than the series resonant frequency; the frequency change should
be in the direction of increasing; and the output value should be large, expressed by the
fuzzy rules as follows: if E is PB and EC is PS, then DF is PB. The fuzzy control rules are
summarized in Table 2.

Table 2. Fuzzy control rules.

DF
E

NB NM NS ZE PS PM PB

EC

NB NS NS NS ZE PS PS PS
NM NM NM NM ZE PM PM PM
NS NB NB NB ZE PB PB PB
ZE NB NB NB ZE PB PB PB
PS NB NB NB ZE PB PB PB
PM NM NM NM ZE PM PM PM
PB NS NS NS ZE PS PS PS
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The output surface of fuzzy reasoning is shown in Figure 13. In practical applications,
the fuzzy control table is generated offline. The process of frequency change is to first
calculate the judgment value M and the amount of change in the judgment value M relative
to the frequency based on the sampled voltage, multiply by the quantization factor to get
the fuzzy input variables, and then check the fuzzy control table to get the corresponding
fuzzy output variables and multiply by the scaling factor for the actual frequency change.
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Figure 13. Surface description of control rules.

The simulation is built in MATLAB to verify the frequency tracking method based
on the fuzzy control algorithm. A frequency less than the series resonant frequency is
selected as the initial frequency in the simulation, and the frequency is adjusted from the
initial frequency. Table 3 shows the three feedback voltage RMS values, judgment value
M, and frequency regulation size of the frequency regulation process. Figure 14 shows the
frequency tracking results.

Table 3. Results of frequency tracking simulation experiments.

Adjustment U1 U2 U3 M ∆f

1 37.56 32.88 13.51 20,312 3.45
2 39.08 40.25 17.43 24,935 14.10
3 40.9 49.67 27.8 28,746 14.11
4 45.12 56.81 34.26 34,437 14.02
5 38.12 53.81 43.26 18,428 9.67
6 28.78 52.77 49.81 5071 3.51
7 25.52 48.21 51.42 −2552 −2.23
8 25.3 51.18 50.9 662 1.02
9 25.23 50.02 51.14 −723 −0.57

10 25.52 50.27 50.95 −145 −0.63
11 26.21 50.78 50.93 665 1.46
12 25.21 50.03 51.22 −815 −0.84
13 26.13 50.43 50.94 291 0.38
14 25.63 50.2 51.1 −332 −0.05
15 25.98 50.46 51.09 78 0.04
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After 5 frequency adjustments by the fuzzy controller, the judgment value M de-
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fundamental current dominates, and the inverter output power can be approximated as 
the fundamental power. The PT works at the series resonant frequency, the load 
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After 5 frequency adjustments by the fuzzy controller, the judgment value M decreases,
the frequency adjustment size starts to decrease, and the frequency approaches the series
resonant frequency. After 8 frequency adjustments, the frequency is basically stabilized at
the series resonant frequency of 20,007 Hz with an accuracy of 1 Hz, which achieves the
rapidity and accuracy of frequency tracking.

3.3. Power Regulation

The phase shift pulse width modulation (PS-PWM) method is to regulate the duty
cycle of the output voltage and the output power by changing the phase difference between
the conduction of the two bridge arms of the full-bridge inverter circuit, i.e., the phase
shift angle ϕ [30,31]. The IGBT driving waveforms and output voltage waveform of the
PS-PWM method are shown in Figure 15, where Ud is the output voltage amplitude.
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Fourier expansion of the inverter output voltage uab is shown in Equation (13).

uab =
∞

∑
n=1,3,5···

4Ud
nπ

cos
nϕ

2
sin

[
n(ωt +

ϕ

2
)
]

(13)
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where, n is the number of harmonics. As the transducer creates a high impedance to the
higher harmonic current, and the impedance to the fundamental current is very small, the
fundamental current dominates, and the inverter output power can be approximated as the
fundamental power. The PT works at the series resonant frequency, the load fundamental
shift factor is 1, and let R be the load equivalent resistance, then the relationship between
the output active power P and the phase shift angle ϕ is shown in Equation (13).

P =
8U2

d
π2R

cos2 ϕ

2
(14)

Therefore, controlling the phase shift angle can control the output power continuously
adjustable. To achieve closed-loop control of power, the output power and transducer loop
current are calculated using the three voltage RMS values on the improved LC matching
network and used as feedback. The transducer loop current is calculated as Equation (14).

In = ωCnU2 (15)

The output power is calculated as Equation (15).

Pz = k1ωCnU1U2 sin θ (16)

where, {
sin θ =

√
1− cos2 θ

cos θ =
U2

1+U2
2−U2

3
2U1U2

(17)

The output power is used as the outer loop feedback, the transducer loop current
is used as the inner loop feedback, and the controller is a Proportional Integration (PI)
controller, the control block diagram is shown in Figure 16. The power is given according
to the demand, and the deviation value is obtained after comparing it with the feedback
value. The output of the outer-loop controller is used as the given value of the inner-loop
controller, and then the inner-loop controller controls the phase shift angle output, so as to
realize the power regulation.
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Figure 16. Power control block diagram.

The simulation is built in MATLAB to verify the power regulation of the dual closed-
loop control. The power regulation process is shown in Figure 17 after 0.2 s of sudden
change in the given power value from 500 W to 1000 W. After 0.02 s of regulation time,
the power and current re-stabilize, and the power stabilizes at the given value of 1000 W
and the current stabilizes at 3.5 A. The power and current overshoot during the regulation
process is 7.8% and 1.7%, both of which are small. The simulation results verify that the
dual closed-loop control has good stability.
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4. Experimental Verification
4.1. Experimental Setups

Figure 18 shows the ultrasonic system experimental platform. The power circuit of
the driving power supply, improved LC matching circuit, and voltage sampling circuit are
integrated into the main circuit board. In the control board, dsPIC33EP128GS706 is used
as the main control chip to realize the functions of AD conversion, control algorithm, and
PWM generation; the RMS measurement circuit is used to process the sampled voltage
signal; the IED020I12-F2 chip is used to drive the IGBT in the full-bridge inverter circuit.
The transducer parameters are the same as in Table 1. The touch screen realizes human–
machine interaction, online display, and setting of driving power parameters. Experiments
were conducted under low voltage conditions.
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4.2. Frequency Tracking Verification

The maximum frequency shift due to its impedance variation is approximately +/−300 Hz
under different operating conditions. Therefore, the frequency tracking range of the drive
power supply is designed from 19 kHz to 21 kHz. The frequency of the PWM module Auxil-
iary Clock (ACLK) of the dsPIC33EP128GS706 chip used in the control system is 119.632 MHz,
and the PWM resolution is 1.04 ns, so the frequency accuracy can reach 0.44 Hz.

Frequency tracking frequency function based on fuzzy control algorithm is experi-
mented with. The initial frequency is selected as the minimum frequency, i.e., 19 kHz. The
current and voltage signals of the transducer are detected by an oscilloscope. Figure 19a
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shows the current and voltage waveforms in the detuned state of the PT, and the current
and voltage have phase differences. After 0.6 s, the frequency tracking is locked, and the
PT voltage and current phases reach the same, as shown in Figure 19b. The results show
the effectiveness of the algorithm in accurately tracking the series resonant frequency.
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4.3. Power Regulation Verification

Figure 20a,b show the waveforms of full-bridge inverter output voltage and PT voltage
when the PT works in a resonance state and the phase shift angle ϕ is 120◦ and 90◦,
respectively. As the phase shift angle decreases, the inverter output voltage duty cycle
increases, and the voltage at both ends of the transducer increases, which shows that the
power can be continuously adjusted by changing the phase shift angle.
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Set the given frequency parameter to 100 W by touch screen, test time 3 s. The voltage
and current signals of the transducer are detected by the oscilloscope, and the power
regulation process is shown in Figure 21a. Without obvious sudden changes in the voltage
and current, the transducer voltage and current reached stability in about 800 ms. After
stabilization, the voltage and current waveforms of the PT are shown in Figure 21b.
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5. Conclusions

In order to make the PT convert energy efficiently and stably, we proposed a driving
power supply based on an improved LC matching network. It can be summarized as follows:

1. To address the problem that it is difficult to analyze the dynamic branch of a PT
because its equivalent circuit has electromechanical characteristics, we designed an
improved LC matching circuit. The voltage information in the LC matching circuit
was used to determine the series resonant frequency of the PT. The theoretical analysis
results show that it can be achieved to analyze the dynamic branch of the PT indirectly
and accurately.

2. The driving power supply system was designed with three voltage RMS values in a
modified LC matching network as feedback. Based on the analysis of the relationship
between the judgment value and frequency, a frequency-tracking method based on
fuzzy control was proposed. Simulation and experiment verified that the method can
effectively track the series resonant frequency with high tracking accuracy.

3. The principle of PS-PWM power regulation of the full-bridge inverter circuit in the
main circuit of the driving power supply was analyzed. The power and current were
calculated from the three RMS voltage values of the improved LC matching network.
The power control strategy of the power outer loop and circuit current inner loop was
proposed. Simulations and experiments verified the performance of PS-PWM power
regulation and the stability and rapidity of the double closed-loop control algorithm.

Therefore, the method proposed in this paper solves the problem that dynamic
branches are difficult to analyze. The designed driving power supply is able to oper-
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ate the PT in resonance and control the output power while being continuously adjustable.
It is considered to be applicable in ultrasonic welding systems with large load variations.
In the future, the relationship between frequency regulation and power regulation will be
further studied to speed up the regulation.
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