Wideband TDoA Positioning Exploiting RSS-Based Clustering
Abstract
:1. Introduction
1.1. State of the Art
1.2. Concept
1.3. Contribution
- A concept for the information fusion of WB TDoA and AoA measurements exploiting RSS-based clustering of multiple agent nodes to jointly process their position information.
- A maximum likelihood estimation-based algorithm for the mentioned concept.
- An efficient implementation of the proposed algorithm using a particle-based estimator.
- A derivation of estimation performance bounds for this concept incorporating:
- –
- Results for a correction factor describing the loss of information from large clusters.
- –
- Derivation of the CRLB incorporating this correction factor and information gain from multiple measurements.
- –
- Introduction of a biased lower bound attributing to the performance losses when estimating a single node within a cluster.
- Numeric evaluations of these bounds, showing the influence of parameters such as the number of nodes in the cluster, size of the cluster, and positions of nodes within a cluster. Specifically, we analyze the performance bounds for:
- –
- Single node positions, validating the information gain.
- –
- Increasing node distances for two nodes, validating the biased lower bound.
- –
- A fully synthetic measurement scenario with nodes over a simulated room with shelves, validating the data fusion concept.
- –
- The same scenario, incorporating real RSS measurements for clustering of adjacent nodes, but keeping synthetic WB measurements for positioning, validating the impact of realistic clustering with RSS data.
- A verification of the theoretical results with real-world measurement data for both WB and RSS, showing that the algorithm is applicable to real scenarios.
1.4. Paper Outline
2. Notation
3. Signal Model
4. Clustering Approach
5. Cramér-Rao Lower Bound
5.1. Introduction
5.2. Derivation of the Position Error Bound (PEB)
5.3. Biased Lower Bound
6. Numeric Evaluation
6.1. Cluster in Single Position
6.2. Double-Node Clusters with Variable Distance
6.3. Simulated Scenario with Genie-Aided Clusters
6.4. Simulated Scenario with RSS-Based Clusters
6.5. Experimental Validation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
AEB | angulation error bound |
AoA | angle of arrival |
AP | access point |
AWGN | additive white Gaussian noise |
CF | cumulative frequency |
CRLB | Cramér-Rao lower bound |
DM | dense multipath |
DMC | dense multipath component |
DPS | delay power spectrum |
FI | Fisher information |
EFI | equivalent Fisher information |
EFIM | equivalent Fisher information matrix |
FIM | Fisher information matrix |
IoT | internet of things |
ISM | industrial, scientific, and medical |
LoS | line-of-sight |
MCS | Monte-Carlo simulation |
probability density function | |
PEB | position error bound |
PSD | power spectral density |
RDM | ranging direction matrix |
REB | ranging error bound |
RFID | radio frequency identification |
RMSE | root-mean-square error |
RSS | received signal strength |
RSSI | received signal strength indicator |
SNR | signal-to-noise ratio |
SINR | signal-to-interference-plus-noise-ratio |
TDoA | time difference of arrival |
ToA | time of arrival |
ToF | time of flight |
UWB | ultra-wideband |
WB | wideband |
Appendix A. Derivation of EFIM
Appendix B. Derivation of the Ranging Error Bound (REB) and Correction Factor Λ
Appendix B.1. Ranging Error Bound
Appendix B.2. Correction Factor Λ
Appendix C. Derivation the AEB
References
- Neunteufel, D.; Grebien, S.; Arthaber, H. Indoor Positioning of Low-Cost Narrowband IoT Nodes: Evaluation of a TDoA Approach in a Retail Environment. Sensors 2022, 22, 2663. [Google Scholar] [CrossRef]
- Sadowski, S.; Spachos, P. RSSI-Based Indoor Localization With the Internet of Things. IEEE Access 2018, 6, 30149–30161. [Google Scholar] [CrossRef]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2017, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Neunteufel, D.; Fuchs, A.; Arthaber, H. ToF-based Indoor Positioning for Low-power IoT Nodes. In Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–5 November 2020; pp. 641–645. [Google Scholar] [CrossRef]
- Del Peral-Rosado, J.A.; Raulefs, R.; López-Salcedo, J.A.; Seco-Granados, G. Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G. IEEE Commun. Surv. Tutor. 2018, 20, 1124–1148. [Google Scholar] [CrossRef]
- Zand, P.; Romme, J.; Govers, J.; Pasveer, F.; Dolmans, G. A high-accuracy phase-based ranging solution with Bluetooth Low Energy (BLE). In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Comuniello, A.; Angelis, A.; Moschitta, A.; Carbone, P. Using Bluetooth Low Energy Technology to Perform ToF-Based Positioning. Electronics 2021, 11, 111. [Google Scholar] [CrossRef]
- Kotaru, M.; Joshi, K.; Bharadia, D.; Katti, S. SpotFi: Decimeter Level Localization Using WiFi. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM’15, New York, NY, USA, 10–14 September 2015; pp. 269–282. [Google Scholar] [CrossRef]
- Wielandner, L.; Leitinger, E.; Witrisal, K. RSS-Based Cooperative Localization and Orientation Estimation Exploiting Antenna Directivity. IEEE Access 2021, 9, 53046–53060. [Google Scholar] [CrossRef]
- Oppermann, I.; Hämäläinen, M.; Iinatti, J. UWB: Theory and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Dardari, D.; Conti, A.; Ferner, U.; Giorgetti, A.; Win, M.Z. Ranging with Ultrawide Bandwidth Signals in Multipath Environments. Proc. IEEE 2009, 97, 404–426. [Google Scholar] [CrossRef]
- Witrisal, K.; Leitinger, E.; Hinteregger, S.; Meissner, P. Bandwidth Scaling and Diversity Gain for Ranging and Positioning in Dense Multipath Channels. IEEE Wirel. Commun. Lett. 2016, 5, 396–399. [Google Scholar] [CrossRef]
- Wymeersch, H.; Marano, S.; Gifford, W.; Win, M. A Machine Learning Approach to Ranging Error Mitigation for UWB Localization. Commun. IEEE Trans. 2012, 60, 1719–1728. [Google Scholar] [CrossRef] [Green Version]
- Kulmer, J.; Hinteregger, S.; Großwindhager, B.; Rath, M.; Bakr, M.S.; Leitinger, E.; Witrisal, K. Using DecaWave UWB transceivers for high-accuracy multipath-assisted indoor positioning. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 1239–1245. [Google Scholar] [CrossRef]
- Hinteregger, S.; Kulmer, J.; Goller, M.; Galler, F.; Arthaber, H.; Witrisal, K. UHF-RFID backscatter channel analysis for accurate wideband ranging. In Proceedings of the 2017 IEEE International Conference on RFID (RFID), Warsaw, Poland, 20–22 September 2017; pp. 117–123. [Google Scholar] [CrossRef]
- Wilding, T.; Grebien, S.; Mühlmann, U.; Witrisal, K. Accuracy Bounds for Array-based Positioning in Dense Multipath Channels. Sensors 2018, 18, 4249. [Google Scholar] [CrossRef] [Green Version]
- Guvenc, I.; Chong, C.C. A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques. IEEE Commun. Surv. Tutor. 2009, 11, 107–124. [Google Scholar] [CrossRef]
- Qi, Y.; Kobayashi, H.; Suda, H. On Time-of-arrival Positioning in a Multipath Environment. IEEE Trans. Veh. Technol. 2006, 55, 1516–1526. [Google Scholar] [CrossRef]
- Jourdan, D.B.; Dardari, D.; Win, M.Z. Position error bound for UWB localization in dense cluttered environments. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 613–628. [Google Scholar] [CrossRef]
- Sadler, B.; Kozick, R. A Survey of Time Delay Estimation Performance Bounds. In Proceedings of the Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, MA, USA, 12–14 July 2006; pp. 282–288. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Dinis, R.; Bernardo, L. On Target Localization Using Combined RSS and AoA Measurements. Sensors 2018, 18, 1266. [Google Scholar] [CrossRef] [Green Version]
- Kia, G.; Ruotsalainen, L.; Talvitie, J. Toward Accurate Indoor Positioning: An RSS-Based Fusion of UWB and Machine-Learning-Enhanced WiFi. Sensors 2022, 22, 3204. [Google Scholar] [CrossRef] [PubMed]
- Landolsi, M.A.; Shubair, R. TOAI/AOA/RSS Maximum Likelihood Data Fusion for Efficient Localization in Wireless Networks. In Proceedings of the 2018 15th International Multi-Conference on Systems, Signals and Devices (SSD), Yasmine Hammamet, Tunisia, 19–22 March 2018; pp. 458–462. [Google Scholar] [CrossRef]
- Kia, G.; Talvitie, J.; Ruotsalainen, L. RSS-Based Fusion of UWB and WiFi-Based Ranging for Indoor Positioning. In Proceedings of the CEUR Workshop Proceedings, Naples, Italy, 4–5 October 2021; Volume 3097, p. 11. [Google Scholar]
- Gidey, H.T.; Guo, X.; Zhong, K.; Li, L.; Zhang, Y. Data Fusion Methods for Indoor Positioning Systems Based on Channel State Information Fingerprinting. Sensors 2022, 22, 8720. [Google Scholar] [CrossRef]
- Yaro, A.S.; Maly, F.; Prazak, P. A Survey of the Performance-Limiting Factors of a 2-Dimensional RSS Fingerprinting-Based Indoor Wireless Localization System. Sensors 2023, 23, 2545. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Zhao, M.; Yao, G.; Cao, H.; Feng, Y.; Jiang, H.; Chai, D. PSOSVRPos: WiFi indoor positioning using SVR optimized by PSO. Expert Syst. Appl. 2023, 222, 119778. [Google Scholar] [CrossRef]
- Jondhale, S.R.; Mohan, V.; Sharma, B.B.; Lloret, J.; Athawale, S.V. Support Vector Regression for Mobile Target Localization in Indoor Environments. Sensors 2022, 22, 358. [Google Scholar] [CrossRef]
- Karedal, J.; Wyne, S.; Almers, P.; Tufvesson, F.; Molisch, A.F. A Measurement-Based Statistical Model for Industrial Ultra-Wideband Channels. IEEE Trans. Wirel. Commun. 2007, 6, 3028–3037. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Abu-Shaban, Z.; Zhou, X.; Abhayapala, T.; Seco-Granados, G.; Wymeersch, H. Error Bounds for Uplink and Downlink 3D Localization in 5G Millimeter Wave Systems. IEEE Trans. Wirel. Commun. 2018, 17, 4939–4954. [Google Scholar] [CrossRef] [Green Version]
- Platen, E.; Poor, H.V. An Introduction to Signal Detection and Estimation. New York etc., Springer-Verlag 1988. X, 549 pp., 47 figs., DM 118,-. ISBN 3–540-96667-6 (Springer Texts in Electrical Engineering). J. Appl. Math. Mech/Z. FüR Angew. Math. Mech. 1989, 69, 469. [Google Scholar] [CrossRef]
- Shen, Y.; Win, M.Z. Fundamental Limits of Wideband Localization—Part I: A General Framework. IEEE Trans. Inf. Theory 2010, 56, 4956–4980. [Google Scholar] [CrossRef]
- Arulampalam, M.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Steinböck, G.; Pedersen, T.; Fleury, B.H.; Wang, W.; Raulefs, R. Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels. IEEE Trans. Antennas Propag. 2013, 61, 4327–4340. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, A.; Witrisal, K. Time-of-Arrival Estimation for Positioning in Bandwidth-Limited Dense Multipath Channels. In Proceedings of the 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, Finland, 4–6 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Lampel, F. RSS-Based Localization of Smart Labels. Master’s Thesis, Graz University of Technology, Graz, Austria, 2018. [Google Scholar]
- Neunteufel, D.; Grebien, S.; Hechenberger, S.; Witrisal, K.; Arthaber, H. Coherent Chirp Generation by Narrowband Transceiver Chips for ToF Indoor Localization. In Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Neunteufel, D.; Grebien, S.; Arthaber, H. Bayesian CRLB for Blind Indoor Localization with Imperfect Receiver Synchronization. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; pp. 517–522. [Google Scholar] [CrossRef]
- Scholtz, R.A. How do you define Bandwidth? In Proceedings of the International Telemetering Conference Proceedings, Los Angeles, CA, USA, 10–12 October 1972. [Google Scholar]
M | K | Antenna Spacing | ||
---|---|---|---|---|
GHz | MHz | 6 | 2 | cm |
Intersections | 0 | 1 | 2 | 3 |
---|---|---|---|---|
of | −20 dB | −10 dB | 0 dB | 10 dB |
of | 2.16 dB | 5.30 dB | 7.15 dB | 6.40 dB |
at m | 25 dB | 21.42 dB | 19.46 dB | 19.56 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchs, A.; Wielandner, L.; Neunteufel, D.; Arthaber, H.; Witrisal, K. Wideband TDoA Positioning Exploiting RSS-Based Clustering. Sensors 2023, 23, 5772. https://doi.org/10.3390/s23125772
Fuchs A, Wielandner L, Neunteufel D, Arthaber H, Witrisal K. Wideband TDoA Positioning Exploiting RSS-Based Clustering. Sensors. 2023; 23(12):5772. https://doi.org/10.3390/s23125772
Chicago/Turabian StyleFuchs, Andreas, Lukas Wielandner, Daniel Neunteufel, Holger Arthaber, and Klaus Witrisal. 2023. "Wideband TDoA Positioning Exploiting RSS-Based Clustering" Sensors 23, no. 12: 5772. https://doi.org/10.3390/s23125772
APA StyleFuchs, A., Wielandner, L., Neunteufel, D., Arthaber, H., & Witrisal, K. (2023). Wideband TDoA Positioning Exploiting RSS-Based Clustering. Sensors, 23(12), 5772. https://doi.org/10.3390/s23125772