On the Reliability of Wearable Technology: A Tutorial on Measuring Heart Rate and Heart Rate Variability in the Wild
Abstract
:1. Introduction
2. Measuring Reliability
2.1. Definitions
2.2. Measuring Between-Person Reliability
- is a measure taken from individual i in situation j,
- is the population average,
- is the average for each participant i, and
- is measurement error.
- MSBS is the mean sum of squared deviations between the participants,
- MSWS is the mean sum of squared deviations within the participants, and
- k is the number of measurements (which is required to be equal across participants).
2.3. Measuring Within-Person Reliability
- is a measure taken from individual i in situation j,
- is the population average,
- is the average for individual i,
- is the average for a situation j, and
- represents the difference between multiple measurements taken for individual i during situation j.
2.4. Empirical Examples
3. Study 1: Reliability of Six Wearable Sensors of Cardiac Biometrics
3.1. Method
3.2. Results
3.2.1. Data Processing
3.2.2. Between-Participant Reliability
3.2.3. Interim Discussion
3.2.4. Within-Participant Reliability
3.3. Discussion
4. Study 2: Reliability of Biostrap during Sleep and during Wakeful Time
4.1. Method
4.1.1. Participants
4.1.2. Apparatus
4.1.3. Procedure
4.2. Results
4.2.1. Data Processing
4.2.2. Descriptive Statistics
4.2.3. Between-Participant Reliability
4.2.4. Within-Participant Reliability
4.3. Interim Discussion
4.4. Correlations between Biomarkers and Subjective Emotions
4.5. Interim Discussion
5. General Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrios, L.; Oldrati, P.; Santini, S.; Lutterotti, A. Evaluating the Accuracy of Heart Rate Sensors Based on Photoplethysmography for in-the-Wild Analysis. In Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare, Trento, Italy, 20–23 May 2019; pp. 251–261. [Google Scholar]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating Sources of Inaccuracy in Wearable Optical Heart Rate Sensors. npj Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernando, D.; Roca, S.; Sancho, J.; Alesanco, Á.; Bailón, R. Validation of the Apple Watch for Heart Rate Variability Measurements during Relax and Mental Stress in Healthy Subjects. Sensors 2018, 18, 2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinnunen, H.; Rantanen, A.; Kenttä, T.; Koskimäki, H. Feasible Assessment of Recovery and Cardiovascular Health: Accuracy of Nocturnal HR and HRV Assessed via Ring PPG in Comparison to Medical Grade ECG. Physiol. Meas. 2020, 41, 04NT01. [Google Scholar] [CrossRef] [PubMed]
- Koskimäki, H.; Kinnunen, H.; Kurppa, T.; Röning, J. How Do We Sleep: A Case Study of Sleep Duration and Quality Using Data from Oura Ring. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; pp. 714–717. [Google Scholar]
- Menghini, L.; Gianfranchi, E.; Cellini, N.; Patron, E.; Tagliabue, M.; Sarlo, M. Stressing the Accuracy: Wrist-worn Wearable Sensor Validation over Different Conditions. Psychophysiology 2019, 56, e13441. [Google Scholar] [CrossRef]
- Steinberg, B.A.; Yuceege, M.; Mutlu, M.; Korkmaz, M.H.; van Mourik, R.A.; Dur, O.; Chelu, M.; Marrouche, N. Utility of A Wristband Device as a Portable Screening Tool for Obstructive Sleep Apnea. Circulation 2017, 136, A19059. [Google Scholar]
- van Lier, H.G.; Pieterse, M.E.; Garde, A.; Postel, M.G.; de Haan, H.A.; Vollenbroek-Hutten, M.M.R.; Schraagen, J.M.; Noordzij, M.L. A Standardized Validity Assessment Protocol for Physiological Signals from Wearable Technology: Methodological Underpinnings and an Application to the E4 Biosensor. Behav. Res. 2020, 52, 607–629. [Google Scholar] [CrossRef]
- Dur, O.; Rhoades, C.; Ng, M.S.; Elsayed, R.; van Mourik, R.; Majmudar, M.D. Design Rationale and Performance Evaluation of the Wavelet Health Wristband: Benchtop Validation of a Wrist-Worn Physiological Signal Recorder. JMIR Mhealth Uhealth 2018, 6, e11040. [Google Scholar] [CrossRef]
- Salehizadeh, S.; Dao, D.; Bolkhovsky, J.; Cho, C.; Mendelson, Y.; Chon, K. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Sensors 2015, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Scully, C.G.; Lee, J.; Meyer, J.; Gorbach, A.M.; Granquist-Fraser, D.; Mendelson, Y.; Chon, K.H. Physiological Parameter Monitoring from Optical Recordings with a Mobile Phone. IEEE Trans. Biomed. Eng. 2012, 59, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Bashar, S.K.; Lázaro, J.; Mohagheghian, F.; Peitzsch, A.; Nishita, N.; Ding, E.; Dickson, E.L.; DiMezza, D.; Scott, J.; et al. A Real-Time PPG Peak Detection Method for Accurate Determination of Heart Rate during Sinus Rhythm and Cardiac Arrhythmia. Biosensors 2022, 12, 82. [Google Scholar] [CrossRef]
- Reiss, A.; Indlekofer, I.; Schmidt, P.; Van Laerhoven, K. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks. Sensors 2019, 19, 3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic Signals During Intensive Physical Exercise. IEEE Trans. Biomed. Eng. 2015, 62, 522–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, T. Current Progress of Photoplethysmography and SPO2 for Health Monitoring. Biomed. Eng. Lett. 2019, 9, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Simoes-Capela, N.; Van Hoof, C.; Van Helleputte, N. Heart Rate Estimation from Wrist-Worn Photoplethysmography: A Review. IEEE Sensors J. 2019, 19, 6560–6570. [Google Scholar] [CrossRef]
- Berntson, G.G.; Quigley, K.S.; Lozano, D. 8 Cardiovascular Psychophysiology; Cambridge University Press: Cambridg, UK, 2007; p. 29. [Google Scholar]
- Zheng, Y.; Poon, C.C.Y. Wearable Devices and Their Applications in Surgical Robot Control and P-Medicine. In Proceedings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanchang, China, 4–6 May 2016; pp. 659–663. [Google Scholar]
- Van Voorhees, E.E.; Dennis, P.A.; Watkins, L.L.; Patel, T.A.; Calhoun, P.S.; Dennis, M.F.; Beckham, J.C. Ambulatory Heart Rate Variability Monitoring: Comparisons Between the Empatica E4 Wristband and Holter Electrocardiogram. Psychosom. Med. 2022, 84, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Revelle, W.; Condon, D.M. Reliability from α to ω: A Tutorial. Psychol. Assess. 2019, 31, 1395–1411. [Google Scholar] [CrossRef] [Green Version]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR Mhealth Uhealth 2020, 8, e18694. [Google Scholar] [CrossRef]
- Kleckner, I.R.; Feldman, M.J.; Goodwin, M.S.; Quigley, K.S. Framework for Selecting and Benchmarking Mobile Devices in Psychophysiological Research. Behav. Res. 2021, 53, 518–535. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Johnson, H.G. An Empirical Study of the Influence of Errors of Measurement upon Correlation. Am. J. Psychol. 1944, 57, 521–536. [Google Scholar] [CrossRef]
- Nimon, K.; Zientek, L.R.; Henson, R.K. The Assumption of a Reliable Instrument and Other Pitfalls to Avoid When Considering the Reliability of Data. Front. Psychol. 2012, 3, 102. [Google Scholar] [CrossRef] [Green Version]
- Sklar, A.Y.; Goldstein, A.; Hassin, R.R. Regression to the Mean Does Not Explain Away Nonconscious Processing: A Critical Review of Shanks 2017. Exp. Psychol. 2021, 68, 130–136. [Google Scholar] [CrossRef]
- Fatisson, J.; Oswald, V.; Lalonde, F. Influence Diagram of Physiological and Environmental Factors Affecting Heart Rate Variability: An Extended Literature Overview. Heart Int. 2016, 11, heartint.500023. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Hedge, C.; Powell, G.; Sumner, P. The Reliability Paradox: Why Robust Cognitive Tasks Do Not Produce Reliable Individual Differences. Behav. Res. 2018, 50, 1166–1186. [Google Scholar] [CrossRef] [Green Version]
- Printz, M.P.; Jaworski, R.L. Hypertension: Overview. In Encyclopedia of Endocrine Diseases; Elsevier: Amsterdam, The Netherlands, 2004; pp. 369–380. [Google Scholar]
- Sommerfeldt, S.L.; Schaefer, S.M.; Brauer, M.; Ryff, C.D.; Davidson, R.J. Individual Differences in the Association Between Subjective Stress and Heart Rate Are Related to Psychological and Physical Well-Being. Psychol. Sci. 2019, 30, 1016–1029. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, X.; Qi, X. Resting Heart Rate and All-Cause and Cardiovascular Mortality in the General Population: A Meta-Analysis. Can. Med. Assoc. J. 2016, 188, E53–E63. [Google Scholar] [CrossRef] [Green Version]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, A.; Pantelopoulos, A.; Emir-Farinas, H.; Natarajan, P. Heart Rate Variability with Photoplethysmography in 8 Million Individuals: A Cross-Sectional Study. Lancet Digit. Health 2020, 2, e650–e657. [Google Scholar] [CrossRef]
- Karjalainen, J.; Viitasalo, M. Fever and Cardiac Rhythm. Arch. Intern. Med. 1986, 146, 1169–1171. [Google Scholar] [CrossRef]
- Williams, D.W.; Koenig, J.; Carnevali, L.; Sgoifo, A.; Jarczok, M.N.; Sternberg, E.M.; Thayer, J.F. Heart Rate Variability and Inflammation: A Meta-Analysis of Human Studies. Brain Behav. Immun. 2019, 80, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.R.; Madanu, R.; Abbod, M.F.; Fan, S.-Z.; Shieh, J.-S. Deep Learning via ECG and PPG Signals for Prediction of Depth of Anesthesia. Biomed. Signal Process. Control 2021, 68, 102663. [Google Scholar] [CrossRef]
- Kasaeyan Naeini, E.; Subramanian, A.; Calderon, M.-D.; Zheng, K.; Dutt, N.; Liljeberg, P.; Salantera, S.; Nelson, A.M.; Rahmani, A.M. Pain Recognition with Electrocardiographic Features in Postoperative Patients: Method Validation Study. J. Med. Internet Res. 2021, 23, e25079. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.; Jarczok, M.N.; Ellis, R.J.; Hillecke, T.K.; Thayer, J.F. Heart Rate Variability and Experimentally Induced Pain in Healthy Adults: A Systematic Review: HRV Nociceptive Stimulation Review. Eur. J. Pain 2014, 18, 301–314. [Google Scholar] [CrossRef]
- Lim, H.; Kim, B.; Noh, G.-J.; Yoo, S. A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal. Sensors 2019, 19, 384. [Google Scholar] [CrossRef] [Green Version]
- Brosschot, J.F.; Van Dijk, E.; Thayer, J.F. Daily Worry Is Related to Low Heart Rate Variability during Waking and the Subsequent Nocturnal Sleep Period. Int. J. Psychophysiol. 2007, 63, 39–47. [Google Scholar] [CrossRef]
- Hovsepian, K.; al’Absi, M.; Ertin, E.; Kamarck, T.; Nakajima, M.; Kumar, S. CStress: Towards a Gold Standard for Continuous Stress Assessment in the Mobile Environment. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing—UbiComp ’15, Osaka, Japan, 7–11 September 2015; pp. 493–504. [Google Scholar]
- Perini, R.; Veicsteinas, A. Heart Rate Variability and Autonomic Activity at Rest and during Exercise in Various Physiological Conditions. Eur. J. Appl. Physiol. 2003, 90, 317–325. [Google Scholar] [CrossRef]
- Tulppo, M.P.; Mäkikallio, T.H.; Seppänen, T.; Laukkanen, R.T.; Huikuri, H.V. Vagal Modulation of Heart Rate during Exercise: Effects of Age and Physical Fitness. Am. J. Physiol. Heart Circ. Physiol. 1998, 274, H424–H429. [Google Scholar] [CrossRef]
- Buchheit, M.; Simon, C.; Charloux, A.; Doutreleau, S.; Piquard, F.; Brandenberger, G. Heart Rate Variability and Intensity of Habitual Physical Activity in Middle-Aged Persons. Med. Sci. Sport. Exerc. 2005, 37, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Rennie, K.L. Effects of Moderate and Vigorous Physical Activity on Heart Rate Variability in a British Study of Civil Servants. Am. J. Epidemiol. 2003, 158, 135–143. [Google Scholar] [CrossRef]
- Janse van Rensburg, D.C.; Ker, J.A.; Grant, C.C.; Fletcher, L. Effect of Exercise on Cardiac Autonomic Function in Females with Rheumatoid Arthritis. Clin. Rheumatol. 2012, 31, 1155–1162. [Google Scholar] [CrossRef] [Green Version]
- Routledge, F.S.; Campbell, T.S.; McFetridge-Durdle, J.A.; Bacon, S.L. Improvements in Heart Rate Variability with Exercise Therapy. Can. J. Cardiol. 2010, 26, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Bartko, J.J. The Intraclass Correlation Coefficient as a Measure of Reliability. Psychol. Rep. 1966, 19, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Cicchetti, D.V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass Correlation—A Discussion and Demonstration of Basic Features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef] [Green Version]
- Van Norman, E.R.; Parker, D.C. A Comparison of Split-Half and Multilevel Methods to Assesss the Reliability of Progress Monitoring Outcomes. J. Psychoeduc. Assess. 2018, 36, 616–627. [Google Scholar] [CrossRef]
- Thomson, E.A.; Nuss, K.; Comstock, A.; Reinwald, S.; Blake, S.; Pimentel, R.E.; Tracy, B.L.; Li, K. Heart Rate Measures from the Apple Watch, Fitbit Charge HR 2, and Electrocardiogram across Different Exercise Intensities. J. Sport. Sci. 2019, 37, 1411–1419. [Google Scholar] [CrossRef]
- Bent, B.; Dunn, J. BigIdeasLab_STEP: Heart Rate Measurements Captured by Smartwatches for Differing Skin Tones (Version 1.0). PhysioNet 2021. [Google Scholar]
- Jarchi, D.; Salvi, D.; Velardo, C.; Mahdi, A.; Tarassenko, L.; Clifton, D.A. Estimation of HRV and SpO2 from Wrist-Worn Commercial Sensors for Clinical Settings. In Proceedings of the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA, 4–7 March 2018; pp. 144–147. [Google Scholar]
- Coutts, L.V.; Plans, D.; Brown, A.W.; Collomosse, J. Deep Learning with Wearable Based Heart Rate Variability for Prediction of Mental and General Health. J. Biomed. Inform. 2020, 112, 103610. [Google Scholar] [CrossRef] [PubMed]
- Galarnyk, M.; Quer, G.; McLaughlin, K.; Ariniello, L.; Steinhubl, S.R. Usability of a Wrist-Worn Smartwatch in a Direct-to-Participant Randomized Pragmatic Clinical Trial. Digit. Biomark. 2019, 3, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Sneddon, G.; Carlin, C. P129 User Experience and Accuracy of Continuous Cardio-Respiratory Physiology Data from a Wearable Photoplethysmography Wristband. Thorax 2019, 74, A160. [Google Scholar] [CrossRef]
- Evenson, K.R.; Spade, C.L. Review of Validity and Reliability of Garmin Activity Trackers. J. Meas. Phys. Behav. 2020, 3, 170–185. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and Reliability of Wearable Inertial Sensors in Healthy Adult Walking: A Systematic Review and Meta-Analysis. J. NeuroEng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef]
- Kooiman, T.J.M.; Dontje, M.L.; Sprenger, S.R.; Krijnen, W.P.; van der Schans, C.P.; de Groot, M. Reliability and Validity of Ten Consumer Activity Trackers. BMC Sports Sci. Med. Rehabil. 2015, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straiton, N.; Alharbi, M.; Bauman, A.; Neubeck, L.; Gullick, J.; Bhindi, R.; Gallagher, R. The Validity and Reliability of Consumer-Grade Activity Trackers in Older, Community-Dwelling Adults: A Systematic Review. Maturitas 2018, 112, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Almeida, M.; Bottino, A.; Ramos, P.; Araujo, C.G. Measuring Heart Rate During Exercise: From Artery Palpation to Monitors and Apps. Int. J. Cardiovasc. Sci. 2019, 32, 396–407. [Google Scholar] [CrossRef]
- Chuang, C.-C.; Ye, J.-J.; Lin, W.-C.; Lee, K.-T.; Tai, Y.-T. Photoplethysmography Variability as an Alternative Approach to Obtain Heart Rate Variability Information in Chronic Pain Patient. J. Clin. Monit. Comput. 2015, 29, 801–806. [Google Scholar] [CrossRef]
- Koskimäki, H.; Kinnunen, H.; Rönkä, S.; Smarr, B. Following the Heart: What Does Variation of Resting Heart Rate Tell about Us as Individuals and as a Population. In Proceedings of the Adjunct 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9 September 2019; pp. 1178–1181. [Google Scholar]
- Allen, A.P.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Biological and Psychological Markers of Stress in Humans: Focus on the Trier Social Stress Test. Neurosci. Biobehav. Rev. 2014, 38, 94–124. [Google Scholar] [CrossRef] [PubMed]
Device | ICC(1,1) | 95% CI | N |
---|---|---|---|
Apple Watch | 0.54 | [0.44 0.65] | 53 |
Biovotion | 0.65 | [0.55 0.75] | 45 |
Empatica | 0.38 | [0.27 0.496] | 53 |
Garmin | 0.50 | [0.397 0.61] | 52 |
Fitbit | 0.48 | [0.37 0.59] | 53 |
Miband | 0.37 | [0.27 0.496] | 50 |
Activity | ICC(1,1) | 95% CI | N |
---|---|---|---|
Breathing | 0.66 | [0.57 0.74] | 53 |
Physical activity | 0.37 | [0.27 0.48] | 53 |
Rest | 0.54 | [0.44 0.64] | 53 |
Task Transition | 0.60 | [0.51 0.69] | 53 |
Typing | 0.37 | [0.27 0.48] | 53 |
Device | Mean Beta | SD of Beta Across Iterations |
---|---|---|
Apple Watch | 0.988 | 0.008 |
Biovotion | 0.998 | 0.004 |
Empatica | 0.994 | 0.006 |
Fitbit | 0.959 | 0.016 |
Garmin | 0.994 | 0.006 |
Miband | 0.988 | 0.009 |
Activity | Mean Beta | SD of Beta Across Iterations |
---|---|---|
Breathing | 0.986 | 0.009 |
Phys. Activity | 0.993 | 0.006 |
Rest | 0.991 | 0.007 |
Transitioning | 0.976 | 0.013 |
Typing | 0.984 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudarev, V.; Barral, O.; Zhang, C.; Davis, G.; Enns, J.T. On the Reliability of Wearable Technology: A Tutorial on Measuring Heart Rate and Heart Rate Variability in the Wild. Sensors 2023, 23, 5863. https://doi.org/10.3390/s23135863
Dudarev V, Barral O, Zhang C, Davis G, Enns JT. On the Reliability of Wearable Technology: A Tutorial on Measuring Heart Rate and Heart Rate Variability in the Wild. Sensors. 2023; 23(13):5863. https://doi.org/10.3390/s23135863
Chicago/Turabian StyleDudarev, Veronica, Oswald Barral, Chuxuan Zhang, Guy Davis, and James T. Enns. 2023. "On the Reliability of Wearable Technology: A Tutorial on Measuring Heart Rate and Heart Rate Variability in the Wild" Sensors 23, no. 13: 5863. https://doi.org/10.3390/s23135863