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Abstract: At present, IoT and intelligent applications are developed on a large scale. However,
these types of new applications require stable wireless connectivity with sensors, based on several
standards of communication, such as ZigBee, LoRA, nRF, Bluetooth, or cellular (LTE, 5G, etc.). The
continuous expansion of these networks and services also comes with the requirement of a stable level
of service, which makes the task of maintenance operators more difficult. Therefore, in this research,
an integrated solution for the management of preventive maintenance is proposed, employing
software-defined sensing for hardware components, applications, and client satisfaction. A specific
algorithm for monitoring the levels of services was developed, and an integrated instrument to
assist the management of preventive maintenance was proposed, which are based on the network of
future states prediction. A case study was also investigated for smart city applications to verify the
expandability and flexibility of the approach. The purpose of this research is to improve the efficiency
and response time of the preventive maintenance, helping to rapidly recover the required levels of
service, thus increasing the resilience of complex systems.

Keywords: preventive maintenance; Markov Chains; future state prediction; state matrix; risk
assessment

1. Introduction

Today, the current developments in large cities are oriented towards the introduction
of smart applications, reduction of environmental impact, and new services to ease day-
to-day living for citizens. Continuous growth in data collection, storage, processing, and
transmission led to creating heterogeneous structures for communications and data mining,
which are not always compatible and/or well structured. Finally, smart mobility is also
seen as one of the main solutions to reduce traffic congestions, stress, and pollution in
urban areas. All these services are largely based on heterogeneous telecommunications
solutions and hybrid subsystems. Standards and technologies for communication evolve
on a permanent basis. For example, new standardization includes Matter, an open-source
connectivity standard for smart home and Internet-of-things devices, aimed at improving
compatibility and security, of which Version 1.0 of the specification was published on
4 October 2022. There is also Thread, an IPv6-based, low-power mesh networking tech-
nology for Internet-of-things (IoT) products. Hence, the evolution of network standards,
technologies, and hardware is in a continuous process.

On the other hand, the more intensive use of wireless sensors and non-intrusive
detection of vehicles, passengers, and/or travelers, along with the introduction of other
smart-city-specific services, means that communications are also extending and becoming
very heterogeneous. Maintaining the necessary level of service for such complex networks
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is becoming a difficult task, even though several applications and techniques help mainte-
nance operators to track and discover malfunctions and the excessive loading of network
channels or slow the response of applications. Consequently, the maintenance of such
complex systems and networks is also becoming complex, making it difficult for the human
operators and specific services to efficiently manage all functionalities in real-time and to
ensure flawless services. Up until this moment, the different solutions for hardware, traffic,
and applications monitoring are not integrated in a single platform, and standardization in
this field is still at a poor level. The present work is intended to represent an additional
solution for improving the response time of the SMC (Services’ Monitoring Centre), con-
sidering the continuous increase in complexity of telecommunication networks, in the
context of the exploitation of smart city services. Another goal is to improve the overall
application response time. From the period of the pandemic until the present day, there
has been an intense emphasis on the digitalization of as many services as possible that
citizens can access. Therefore, there is fierce competition between companies to offer clients
the opportunity to digitally achieve their forecasted goals, assessing the services from the
comfort of their home. The criterion that makes the difference and leads to customer loyalty
in this situation is the desired availability of applications. Situations in which applications
have a high response time provide a negative experience to users and make them re-orient
towards competition. Therefore, this work is also focused on improving this aspect.

- This research was aimed at creating a platform for integrated monitoring of reliability,
level of service, and client satisfaction, employing simple solutions that do not require
difficult programming tasks and/or intensive computing power—a solution to collect,
store, and analyze all information regarding hardware/software malfunctions and
application performance. The approach assumed that intelligent agents are employed
for the management of different services (e.g., specific for smart city and communica-
tion networks), which collect the relevant information regarding levels of service. The
collected data were stored and used to build a state matrix, which was then employed
to produce a prognosis on future states of the network and to issue early warnings
for preventive maintenance. This involved the integration of intelligent agents for
information collection regarding hardware and software monitoring, combined with
application and client satisfaction monitoring.

- A model was created for a state matrix based on collected data and building a data
base for cyclic and/or event-triggered updating and analysis.

- An algorithm was created for building and updating the state transition matrix based
on the Markov approach. This solution was chosen to keep the necessary computing
power at a low level.

- Development and adaptation of the solution for client satisfaction analysis were
proposed.

- All these approaches were integrated into a single platform to assist the maintenance
operators in early detection and warning, regarding malfunctions and network de-
crease in performance, also based on a risk assessment matrix.

2. Related Work

Studies and research were performed worldwide to enhance preventive maintenance
solutions and to keep in line with the rapid development of technologies and services. The
management of complex networks must begin with a deep understanding of the system
architecture, based on the topics defined by the ISO network management model: fault, con-
figuration, accounting, performance, and security managements [1]. This model provides a
comprehensive means for managing the major functions of network management. Modern
and heterogeneous communication networks challenge the maintenance services’ accuracy
and the effective processing of big data in a real-time manner. Mobility of some wireless
sensors, and/or monitored devices, also may create complex behavior of network traffic,
difficult for analysis and interpretation for early detection of anomalies. In this direction,
deep learning has been efficiently employed to facilitate analytics knowledge discovery in
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big data systems to detect hidden and complex patterns. Deep learning models are applied
in network traffic monitoring and analysis.

Modern communication networks, including Cognitive Radio [2,3], as well as the
reliability of the communication link between the users, are based on several Quality-
of-Service (QoS) indicators, such as connection availability, channel availability, service
retainability, and/or network unserviceable probability. These are evaluated under a
variety of channel failure and PU arrival rates, allowing for “on-line” monitoring of the
network viability. Still, these improvements depend on other, random factors, such as
the channel or the receiver’s availability (which may be in different state—out of reach,
busy, etc.). The authors of [2,3] conclude that another important KPI of these networks’
reliability, which should be included in the QoS study, should be the receiver’s availability.
Of course, this represents a very promising advance, but not all networks are presently
at this stage of development. Therefore, the methodology proposed in this work comes
as a complementary service to a heterogeneous type of network, integrating QoS-related
data in a solution for post-processing and forecasting of the network’s state of functionality.
However, for the proposed solution, mostly fixed receivers have been considered (i.e.,
sensors of the smart city services), and studying the availability of the receivers may
constitute, probably, a future work.

The work of S. Rezaei and X. Liu [4] presented a survey on a specific part of the models
for different Deep Learning-based network traffic classifications. Aniello et al. [5] also
introduced, in their study, some machine learning-based models (both unsupervised and
supervised) in a scenario involving malware analysis, but they do not extend their research
to malware detection.

A more in-depth analysis on network traffic analysis was performed by Conti et al. [6],
which had some interesting points in considering the level of traffic at which the network
is monitored and the aim of this analysis. Some non-supervised learning algorithms, such
as k-means, or supervised, i.e., Random Forest, are analyzed, along with a very pertinent
organization of the main KPIs in traffic monitoring, such as traffic characterization, app
identification, usage study, malware detection, user action identification, OS identification,
position estimation, ad fraud identification, tethering (internet sharing) information, or
website fingerprinting.

Additionally, Fadlullah et al. [7] presented deep learning models and architectures for
network traffic control systems, covering mainly the network infrastructural aspects.

For larger networks and big data analytics, D’Alconzo et al. [8] focused on anomaly
detection and security mechanisms with the purpose of identifying and reacting in a fast
manner to unpredictable events while monitoring many heterogeneous events. The authors
also categorize previous research on network traffic monitoring and analysis (NTMA) that
work with big data approaches. In the same domain of NTMA, the work [9] by M. Abbasi,
A. Shahraki and A. Taherkordi is mentioned, which provides a comprehensive review on
applications of deep learning in NTMA, analyzes the integration of deep learning and
NTMA, and performs a review of DL techniques for NTMA.

Similarly related work is given in [10–12]: the passive flow monitoring of hybrid
network connections, usefulness of machine learning in network monitoring, and the
challenges and opportunities that big data present in this direction of research.

Another interesting direction of research is focused on analyzing data traffic statistics
and detecting anomalies [13]. Most of the actual methods for detecting anomalies in data
traffic, especially in public networks and institutions, have been analyzed and presented in
a comparative study: statistically based methods, distance-based methods, density-based
methods, clustering-based methods, graph-based methods, and learning-based methods.
The research concludes with the proposal of including an Anomaly Detection Module
(ADM), based on a combination of the above-described technologies.

There are different, other domains where this approach is also welcomed: power grids
need very accurate monitoring of operation status to ensure uninterruptible operation. One
solution for this is based on random matrix theory and qualitative trend analysis [14]. The
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solution considers two types of elements: the variability and the overall performance of
the system, ignoring the complex physical structure of the power grid and using the data
generated during the operation of the power grid more effectively. On the other hand, not
only natural factors may produce failures of such networks. In smart metering methods,
human intervention may also be a cause of malfunction, instability, or bad operation. Data-
driven fraud detection methods are analyzed in [15], comprised of AI-based supervised
methods, including wide and deep neural networks and multi-data-source deep learning
models, along with unsupervised methods, e.g., clustering. Complementary to these
methods, vulnerabilities are analyzed from as many aspects as possible, and the researchers
recommend employing lightweight privacy-preserving detection to preserve relevant data
for accurate detection, as well as the use of AI-based self-learning detectors.

One other and important aspect of smart city services is the distribution of utilities. Re-
search in the direction of improvement of water distribution normal operation and validity
include some innovative solutions, such as Digital Twins, for rapidly detecting leaking and
maintaining pressure control, fractal control, partitioning (pressure management areas), or
multi-objective optimization, which is an approach that is based on the Gomory–Hu tree to
maintain control over each segment, etc. [16].

In the same domain of energy grids management, some researchers propose hybrid
data transmission networks to compensate for the missing of GSM signals in remote
locations. Similar hybrid networks, based on a combination of RS485 and RF modules (nRF),
according to study [17], can be successfully used in solar power parks as an alternative to
GSM networks.

Hardware gear can also be a cause of a system’s or a network’s malfunction. A solution
for monitoring complex hardware computing equipment could be HDD failure monitoring,
which is based on self-monitoring analysis and reporting technology [18].

However, in complex distribution grids, correct operation might be corrupted via false
data injection attacks (FDIAs). In [19], a novel deep neural network approach is proposed to
perform simultaneously distribution system state estimation calculation (using regression)
and FDIA detection.

With the increasing role of complex networks in the era of information, another
problem that has been in focus in recent years is the prediction of data links related to air
transports networks to improve the efficiency of transportation in complex networks of
airports [20].

Regarding electricity distribution, consumption, and related policies, an arising con-
cept and a side-effect is so-called “energy justice”, concerning the effect of introducing
advanced techniques for data collection and AI-related applications in the field, which may
lead to privacy infringements. In [21], it is explained that “Energy justice” is a concept
that has emerged predominantly in social science research to highlight that energy related
decisions, particularly as part of the energy transition, should produce just outcomes.
Therefore, the authors of the study recommend that “it is important to take energy justice
in consideration from an early stage in the development or design of AI techniques”.

Technologies for monitoring and the maintenance of public transformers in an en-
ergy distribution network are considered in work [22]. The aim of the research is to
remotely determine public transformers load and to construct a load prediction model,
based on the LSTM (Long-Short Term Memory) algorithm, to be used for detection and
the accurate location of heavy overload risks in advance, therefore being a preventive
maintenance technique.

Preventive maintenance has always been a priority for critical applications and indus-
try. Therefore, many researchers are focused on finding the most appropriate solutions
to improve efficiency of this aspect. Different strategies are tested, and they prove their
efficacity in increasing reliability [23], such as using a logistic regression model to assess
the health condition of equipment and a neural network model to estimate its failure prob-
ability, considering the scheduled workloads. Besides the industrial process, employment
of intelligent agents to verify on a continuous basis the load of different components in
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a communication network has also been implemented. The goal is to determine the best
operational status of a server in each time slot, based on Markov chain models, as well
as to optimize the system’s performance, which is measured in terms of throughput [24].
However, modern communication networks now rely on optical fiber, which is immune to
e.m. interferences, but the optical fiber is also part of the reliability chain, so it also needs
monitoring in terms of its operational status. Therefore, there are some solutions to improve
the performance of FO via integration with optical amplifier boards, able to detect optical
layer events and fiber soft/hard failures with online remote management [25]. Processes
increase in complexity when they are developed in cloud applications. In order to extend
the preventive maintenance at this level, some researchers propose a Recurrent Neural
Network (RNN)-based method to proactively predict faults, in the event of insufficient
resources in fog devices, based on a conceptual LSTM and novel Computation Memory
and Power (CRP) rule-based network policy [26]. For networks and systems based on
sensors, some authors employ Bayesian Network Models (BNM) that can be improved via
fusion-learning methodology: merging different data from sensors and metrology logs,
combined with a human-in-the-loop approach for expert knowledge elicitation of the BN
structure [27]. Another solution is data prediction using a v-Support Vector Regression
(vSVR) algorithm [28], the latter being very useful for high network loads, such as in
emergency support during festivals and large-scale activities.

Other methods for improving reliability and resilience of different systems and net-
works with models of operation use Least Squares Support Vector Machine (LSSVM) [27],
an exponentially weighted moving average method combined with a continuous deep
belief network for constructing the reliability model [28], or even intelligent solutions
to prevent security breaches with a delay-based attack detection and isolation scheme
(DA-DIS) [29]. For underground medium-voltage power supplying networks, a novel
method for improving reliability is proposed in [30], using various machine learning
classification algorithms.

When complex systems, including more networks and subsystems, are to be moni-
tored, different approaches include dedicated sensors, IoT platforms, and a LSTM ensemble
neural, which are all developed to predict the operational status [31], and for avoiding
cascading failures, a hybridization of two meta-heuristic techniques, namely, the snake
optimizer and the sine-cosine algorithm (SO-SCA), are proposed to solve the problem [32].
A fault-tolerant topology algorithm for agricultural WSN, based on a double-price function,
is designed in [33] to improve the connectivity and reliability of the WSN, while some
approaches employ a trained multi-agent for comparing the computed future state with
the actual state and early detect faults [34].

Many of the techniques applied for improving early fault detection and preventive
maintenance are reviewed and analyzed together [35,36]. The authors conclude that “These
monitoring tools can be used for achieving the goal of high performance and reliable
networks as they are capable of analyzing the resources for configuring the network
problems and alert the administrator if any network issue occurs”.

When it comes to preventive maintenance, grid networks and energy supplying dis-
tributed systems are in the center of preoccupation; methodologies include: distributed data
collection network [37] or adding QoS to low cost protocols, such as ZigBee (using IEEE
802.15.4 defined physical and MAC layer) and Bluetooth (IEEE 802.15.1), by providing dif-
ferentiated service for traffic of different priority at the MAC layer [38]; also, the DFS (Depth
First Search) algorithm is used to divide the network in zones and to capture the influence
of maintenance decisions in the model of the served load from DGs and batteries by gener-
ating topological constraints [39]. Finally, state transitions and risk models [40] have also
been employed for the preventive maintenance. Regarding communication networks, dif-
ferent approaches are considered by several researchers: usage of infrastructure monitoring
tools [41], cloud applications monitoring [42], runtime software-fault monitoring tools [43],
distributed performance monitoring [44], or lightweight distributed metric services [45] to
cope with very large networks and continuous monitoring of applications [46,47].
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There are some research works that survey the state-of-the-art in the field of scalable
networks for heterogeneous systems, software-based networking, and hybrid systems
involving several categories of smart devices, such as [48], where the authors present
studies of ML/DL applications in software-defined environments.

The methods for assessing the network performance may be split into two categories:

- active methods for network efficiency and level of service monitoring, involving the
injection of probe traffic into the network to learn about its state of operation, as well as

- passive methods, observing and analyzing different KPIs collected in big data storages.

Table 1 presents in a comparative mode some of these aspects.

Table 1. Comparison between different NTMA approaches.

Active Monitoring (Injection of Test Data into the Network) Passive Monitoring (Big Data Analysis)

Allows for complete end-to-end analysis Allows for tracing faults in the network
Allows for both asynchronous and synchronous probing of the

network (real-time monitoring is possible) Allows for post-process analysis (non-real time)

Intelligent agents’ usage is possible Intelligent agents’ integration is possible
Not able to detect clients’ satisfaction Clients’ satisfaction monitoring is possible

Implementation of self-learning techniques needs maintenance
in regard to big data storage

Able to be developed to self-adapting and learning when
tracing past events

Oriented more towards Quality-of-Service (QoS) Oriented more towards Quality-of-Experience

Taking into consideration the information presented in Table 1, it is obvious that a
combination of the two techniques is the most beneficial for the NTMA. However, this is a
complicated process to implement because it needs a deep understanding of the network
and messages structures, and for this to become effective, a very complex team of experts
with a period of accommodation, or training, is also needed.

Complex systems and distributed network maintenance have also been the preoc-
cupations of many researchers [48–50], and modeling of the present and future states
using different models, including Markov Chains and/or Hidden Markov, are discussed
in connection with some applications for several systems [51], based on the modeling of
hidden states of those systems. These solutions might involve complex algorithms and
also presume higher computation power for achieving usable results in the prognosis of
a system’s future states, as well as possible training, using simulated or collected data.
Markov Chains and Hidden Markov Chains (HMMs) are both mathematical models used
to describe stochastic processes, where the state of a system evolves over time. The Markov
Chain consists of a finite set of states and a transition probability matrix. The matrix
defines the probability of transitioning from one state to another. Each state has a fixed
set of transition probabilities associated with it, and these probabilities remain constant
throughout the process.

A Hidden Markov Chain is an extension of the Markov Chain model that incorporates
hidden or unobservable states. In a HMM, the system has a set of observable states, but the
underlying state of the system is hidden or unknown. The observed states are generated by
the hidden states through a set of probability distributions. In general, HMMs require more
processing power than simple Markov Chains due to the additional complexity involved
in inferring the hidden states from the observed states. The computational complexity of
HMMs arises from the need to estimate or infer the hidden states using algorithms, such as
the Viterbi algorithm or the Baum-Welch algorithm. Moreover, HMMs often involve more
complex probability distributions for emission and transition probabilities compared to the
constant probabilities in simple Markov Chains. These probability distributions usually
require additional calculations and more processing power to handle.

The present work is focused on proposing an integrated platform for preventive
maintenance, which is dedicated to complex smart city services and involved data commu-
nication networks, based on a less demanding computation power. Therefore, it uses only
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observable indicators, using data collected by different intelligent agents. These agents
harvest information both from hardware and communication channels loads, as well as
from the applications’ availability and response times. As a continuation of a previous
research [52], the use of intelligent agents in early discovering and noticing deviations
of normal operation and lowering of the level of service is associated in this work with
the updating of a current state matrix and computing different state probabilities for a
future state prediction matrix. The latter is aimed at providing the operator with alerts and
suggestions for alleviating malfunctions’ and maloperations’ negative effects.

The remainder of this article is organized as follows: Section 3, Materials and Methods,
describes the main aspects regarding the permanent monitoring of reliability and levels of
service based on Markov Chain modeling of a future state matrix. Section 4 proposes an
algorithm for integrating the state matrix and clients’ satisfaction in a common monitoring
platform, as well as application on a case study with six smart city services, and, finally,
Sections 5 and 6 are proposed, where an analysis on the utility of the proposed solution is
discussed, along with future developments.

3. Materials and Methods
3.1. Reliability and Maintenance Relationship

Due to their required high level of service, smart city services and supporting data
communications networks need permanent monitoring and maintenance. Due to the
continuous development and the growing complexity, these networks have become difficult
to monitor and maintain.

Therefore, there is a need for automated maintenance processes, supported by intelli-
gent agents able to early detect failures, malfunctions, and any other defective operations.
At the same time, even manual upgrading, deployment of new software versions, opera-
tional support, troubleshooting, etc., may become sources of defective operation of some of
the functional components from the complex networks. In fact, as personal observations
reveal, on some of the mobile communication networks in Romania, intensive upgrading
and improvements in the functional (hardware or software) components caused more than
55% of the events causing low levels of service. This might be somehow justified, consid-
ering the vast complexity of the network and implications that one server, or application,
have in the overall process, implications that the human personnel might not be able to
envisage from the beginning. Moreover, there are some causes that cannot be forecasted,
such as natural disasters (flooding, earthquakes, fire, etc.), or works in the field, performed
by other parties, which are possible to intrude in the physical cabling, but these seem to be
much rare than the functional failures or human intervention effects, such as third-party
vendor services failures, security breaches, and so on.

For achieving the goal of obtaining a simple solution for the integrated management
of hardware failures, software problems and customer satisfaction, in this research, the
following aspects have been addressed:

- Integration of (existing) intelligent agents for hardware, applications, and services
monitoring

- Proposing an algorithm for building a state matrix for the system
- Proposing an algorithm for building and updating the state-transition matrix, based

on the Markov approach
- Development and adaptation of the solution for the clients’ satisfaction analysis
- Integration of all these approaches in a single platform to assist the maintenance

operators in early detection of malfunctions and network decrease in performance
- Creating a risk evaluation matrix for the maintenance operations

In general, the probability of failure is best described in reliability theory by the
failure rate,

λ(t) = ∑N
i=1 λi(t) (1)
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where; λi(t) represents the failure rate of the independent functional component, and N is
the total number of functional components taken into consideration. We say that λ(t) is a
probability that the product will work without failure until the considered moment and fail
during the immediately following time unit (if this unit is small).

Then, the overall reliability function RT(t) of the system for a year is given by:

RT(t) = e−∑N
i=1 λi(t)·t (2)

where; t is the duration of time corresponding to a year, expressed in hours, and the mean
time between failures (MTBF) is given by:

MTBF =
1

∑N
i=1 λi(t)

(3)

(if the chain of reliability only considers the equipment) Because determining the utility
function (failure-free operation) requires a large volume of experience, the reliability of a
product is generally characterized by the average duration of operation:

T0 = Mτ =
∫ ∞

0
tq(t)dt = −tP(t)|∞0 +

∫ ∞

0
P(t)dt =

∫ ∞

0
P(t)dt (4)

where; M[Td] or M[Ti] represent the average value of a repair or replacement of time
between two consecutive successful states of operation, during which the respective instal-
lation repaired or replaced, and P(t) represents the probability that the product will work
without breaking down until time t: P(t) = P(τ ≥ t).

For example, in a mobile communication network in Romania, there have been cases
where applications which were making requests to a specific public domain failed because
other, banned domains, stole the public IP of the legal one, a process which led to blacklist-
ing the correct IP. Intensive maintenance of complex networks, consequently, could also
produce negative effects, such as randomly lowering of some service levels, increasing
operation costs, causing outage duration costs, etc. A balance is necessary to be made
between maintenance costs and outage duration costs.

The most appropriate maintenance service can be determined via two different ap-
proaches:

- Preventive maintenance—via scheduled procedures, condition-based procedures, or
reliability-centered maintenance

- Corrective maintenance—operation is performed after the failure has manifested. It
might also trigger corrective measures, or changes in the structure of the network,
upgrading of software components, etc.

Mathematical modeling of maintenance should consider an objective function, seeking
an optimum between the following criteria: minimization of restoring time, minimization
of maintenance costs, and risk minimization. It is considered that a model which employs
risk management is important in AI-assisted preventive maintenance, being more efficient
in suggesting the human operators the appropriate measures to be taken and their fore-
casted risks in terms of operating levels of service for the different hardware and software
components. This is because the quantification of risks enables determining an optimal
level of risk, which provides the most efficient maintenance strategy for complex systems
and networks.

The methodology in this paper proposes the automation of multiple integrated pro-
cesses, namely, (i) the introduction of risk assessment-based functional monitoring agents
and (ii) the monitoring of the clients’ satisfaction. To determine an optimal preventive
maintenance objective, it is necessary to analyze multiple possible operating states and
scenarios, based on state transition matrixes. A multi-level approach is easier to introduce
in practice, especially when complex networks and services are involved. In this way, a ded-
icated monitoring application and model should be developed for the data communication
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network. Then, a higher-level application for monitoring complex services (including the
monitored network) is to be set on a superior level of implementation. This superior-level
application shall be in charge, also, of monitoring clients’ satisfaction.

3.2. Building the Algorithm for Network and Service Risk Assessment

This subsection describes the proposed approach for obtaining an automated pre-
ventive maintenance process, helping human operators in the fast recovery activities of
the data communication network, or preventing the occurrence of a failure, due to early
warning messaging.

The basis of this model is founded on the analysis of a complex data communication
network and a set of relevant smart city-related monitoring agents, and, from the point of
view of the operating states, the main causes of the decrease in the level of some services,
as well as the analysis of the causes of the most frequent hardware and/or application
failures, are considered. A transition matrix is then built, considering different failure rates
and the corresponding risk factors, with associated causes. Risk is defined as the product
between the probability that a failure occurs and the expected value of costs that the failure
produces in the system. The risk is defined at the level of the considered data network. The
evaluated data network is a complex one, with different services and applications, and it
is used as a backbone data communication network in a smart-city environment, where
different services also rely on smaller communication networks, such as ZigBee, Bluetooth,
or LoRa.

For the intelligent monitoring of the backbone data network, previous work results
have been presented in [52]. The following intelligent agents have been in use for monitor-
ing smart city services:

1. Traffic service levels monitoring service
2. Energy distribution service levels monitoring
3. Environment monitoring service
4. Crowdsourcing monitoring service
5. Public lighting monitoring service
6. Waste disposal monitoring service

Each individual agent is set to monitor a specific service from the point of view of its
functionality, iteratively, and/or by event triggered. Each record is indexed with event start
and event end timestamps to determine the service unavailability duration. The assessment
took place for a one-year period, during which all six services have been monitored from
the availability point of view, namely, the ratio between the count of successful requests of
the service and overall requests (successful plus failed requests to services). The diagram
presented in Figure 1 shows a sample analysis for a month period, where a specific service
has experienced some failures. The number of failures is represented by the vertical (blue)
bars, while the availability index is presented in the upper part of the diagram, in percents,
and the red line shows the evolution in time of these indexes.

The next figures present, in detail, samples of the six independent service activities
during the monitoring period: Figure 2—traffic monitoring service, Figure 3—energy
distribution monitoring service, Figure 4—environmental monitoring service, Figure 5—
crowdsourcing monitoring service, Figure 6—public lighting monitoring service—vertical
lines represent the division of time for monitoring the service due to the fact that this
specific service is only monitored during night time, and, finally, Figure 7—waste disposal
monitoring service. The red vertical lines represent decreases in services’ availability due to
the different causes, including malfunctions, equipment failures, maintenance operations,
software upgrading, OSI physical level degradation, etc.
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Some of the most common failures noticed have been caused by human interven-
tions, including corrective maintenance, curative maintenance, software upgrading, pre-
ventive maintenance, peer migration, hardware replacement, hardware upgrade, and
standardization.

Considering the impact of these malfunctions, the following represent the main ef-
fects, on a scale from the worst to the less harmful impact: complete failure, traffic loss,
incoherence/loss of data, latency, loss of administration, loss of supervision, mini failure
(complete failure for a max. 10 min time), and slow response.

The probability of uninterrupted functioning for this service, computed based on
collected data, was Ptm = 0.99725.

The probability of uninterrupted functioning for this service computed, based on
collected data, was Ped = 0.997407.

The probability of uninterrupted functioning for this service computed, based on
collected data, was Penv = 0.99805.

The probability of uninterrupted functioning for this service computed, based on
collected data, was Pcs = 0.999448.

The probability of uninterrupted functioning for this service computed, based on
collected data, was Plm = 0.996346.
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The probability of uninterrupted functioning for this service computed, based on
collected data, was Pwd = 0.998662.

For the whole set of services, the overall probability of uninterrupted functioning
reached the value of PS = 0.987227. The most affected months by services’ dropdowns were
August (four warnings, with service availability of less than 99.5%), October (two warnings)
and December (two warnings). Causes of these reductions in service availability might
include: promotional campaigns and deployments, creating collateral problems, slower
response to failures due to lack of personnel (August), weather conditions (December),
insufficiently documented and bad organized preventive, and /or scheduled maintenance
operations (all cases).

The proposed approach is based on analyzing the processes with Markov Chains, for
the states in which the (super-) network (i.e., network of networks) could evolve, based on
events tracked over a determined period. The established quantized states in which the
(super-)network could evolve are the following: 100% functional (no failures), degraded
level 1 (small service degradations, acceptable—e.g., delay in service delivery), degraded
level 2 (missing some non-essential services), degraded level 3 (missing some essential
services), and fully degraded (no service).

The approach was developed in two directions:

(i) Reliability analysis
(ii) Client satisfaction analysis

In practice, the algorithm for reliability analysis works based on the following
processes:

- Process 1: extracting information regarding the availability of the services on the
determined period, to observe eventual patterns, and creating a table with agents’
availabilities, also containing the average outage probabilities

- Process 2: detecting the transition from the current state to another state and creating
a database table with these transitions

- Process 3: calculation of the matrix of state transitions based on Markov Chains
- Process 4: executing subroutine for defining the risk levels depending on the transition

probabilities between the states

Case P(Current state => Possible state x) between {interval 1}, Risk level = “Very Low”

(Current state => Possible state x) between {interval 2}, Risk level = “Low”

(Current state => Possible state x) between {interval 3}, Risk level = “Medium”

(Current state => Possible state x) between {interval 4}, Risk level = “High”

(Current state => Possible state x) between {interval 5}, Risk level = “Very High”

For the present case study concerning the reliability analysis, to obtain information
regarding the probabilities of transition between these states (transition matrix), a period of
one year of analysis has been assessed, with a sampling interval of one minute. The data
has been collected from a large network and services operator. For each sample, the current
state (according to the six possible) has been recorded, along with the timestamps. The
developed algorithm (Figure 8) extracted information regarding the types of transitions
(from previous state to the new one), and, with the results, the transition matrix has been
built for the analyzed period.
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The algorithm for the current state assessment (Figure 8 upper part) develops as follows:

- Intelligent agents collect information on current states of the services and network—
either on specific moments (regularly reading), or by event-triggered.

- The state matrix is built and updated constantly, based on recording the state transi-
tions: from the former state in the new, current state, marking each state transition
with a flag in the matrix (Figure 8, lower part indicates an example of transitions).
The corresponding cell of the matrix (where the line index represents the former state
number, and the column index represents the new state number) will be incremented.

- On a repetitive basis, the number of transitions between different operational states
are computed and transformed into transition probabilities. In time, the state matrix
improves in estimating the probabilities of transitions.

The algorithm for the client satisfaction assessment works similarly, with the following
differences:

- The evaluation criterion for establishing state transition is in this case the APDX index,
given by Dynatrace application

- The following thresholds were established:

# 75% < APDX ≤ 80%—Sn4—Catastrophic state.
# 81% < APDX ≤ 88%—Sn3—Severe degradation state.
# 89% < APDX ≤ 94%—Sn2—Degradation state.
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# 95% < APDX ≤ 97%—Sn1—Graceful degradation state.
# 98% < APDX ≤ 100%—Sn0—Normal operational state.

- The state matrix for the clients’ satisfaction is built and updated constantly, based on
recording the state transitions: from the former state in the new, current state.

- The next transition (e.g., from a defective state into the fully operational state) is also
marked as the new state.

- On a repetitive basis, the number of transitions between different operational states
are computed and transformed into transition probabilities. In time, the state matrix
improves in estimating the probabilities of transitions.

- Based on the recorded transitions in the transition matrixes, the inherent and residual
risks are evaluated and displayed to the operators, showing a risk rating ranging from
“Sustainable” to “Critical”.

The following, Table 2, shows the format for the transition matrix, where pnxy repre-
sents the probability of changing from state x into state y.

Table 2. Generic transition matrix.

State SN0 Normal
(100% Operational)

SN1 Graceful
Degradation SN2 Degradation SN3 Severe

Degradation
SN4 Catastrophic

Failure

SN0 pn00 pn01 pn02 pn03 pn04
SN1 pn10 pn11 pn12 pn13 pn14
SN2 pn20 pn21 pn22 pn23 pn24
SN3 pn30 pn31 pn32 pn33 pn34
SN4 pn40 pn41 pn42 pn43 pn44

In Table 2, SNx represents each possible state, according to the definitions previously
given. For example, SN1 might represent that a local network has a longer response
time, SN2—host domain for several services from main network are down, SN3—physical
hardware in data center is malfunctioning, or multiple IP addresses are inaccessible, or
routing rules are working improperly, and SN4—physical level damage of the OSI stack
occurred, or there is a huge increase in all requests from clients without response. Based
on the data collected from the case study, the following results have been achieved for the
availability of services (Table 3, values in percents).

Table 3. Availability of services during the test period.

Intelligent Agent M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Avg.
Val. Outage Probab.

Traffic 99.65 99.94 99.81 99.88 99.77 99.82 99.95 99.40 99.95 99.38 99.84 99.35 99.73 0.002716667
Energy microgrids 99.64 99.96 99.83 99.74 100.00 100.00 99.95 99.50 99.62 98.82 99.94 99.92 99.74 0.002566667

Environment sensors 99.79 99.76 99.80 99.90 99.95 100.00 100.00 98.75 99.78 99.94 100.00 100.00 99.81 0.001941667
Crowdsourcing 99.81 99.93 99.94 99.93 100.00 100.00 99.97 99.80 99.98 100.00 100.00 99.98 99.95 0.00055
Public lighting 99.64 99.91 99.76 99.62 99.77 99.77 99.90 98.34 99.76 99.88 99.96 99.35 99.64 0.003616667

Waste management 99.24 99.94 99.94 99.85 100.00 99.92 99.92 99.70 100.00 100.00 99.95 99.95 99.87 0.001325

To give a more comprehensive image of the processes’ availability, the numbers in
Table 3 have been transposed in diagrams, where the blue columns represent the total
minutes of count in the respective month, and orange columns represent service up-time
recorded minutes during a month (Figures 9–11).
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The numerical data presented in the above table was obtained by monitoring, for a
period of one year, the most important services in a communications network and recording
all types of incidents that led to their degradation. The amount of degradation suffered by
services (representing the low value of availability) was analyzed, as well as the number
of incidents and their duration. Each transition of the services from a working state of
100% availability to any other state of degradation was counted on each individual type,
as well as the transitions from intermediate states of high degradation to those in which
services are almost recovered. In all this analysis, the duration of each incident and its
impact are important.

Incidents/fails are most often detected by applying APM methodologies (Application
Performance Management) with agent-based and AI monitoring tools, such as Dynatrace.
Without these tools, technical teams often find it difficult to find the root cause of an
application performance problem.

However, sometimes, some incidents are detected reactively by being informed by
third parties of the existence of a problem or by observing the increase in the number of com-
plaints. The operational teams that deal with maintaining the availability of applications as
high as possible, 24/7, use a bunch of monitoring and alerting tools for information and
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quick intervention in the event of an incident. For each incident, the moment of beginning,
its severity, the impact on services, and the moment of recovery, are recorded. After full
recovery is achieved, most of the time, through reverse engineering or analysis of the last
interventions made on the system, the cause of the production is also analyzed and noted.

The values in Table 4 were collected based on the historical database querying and
represent the probabilities of transitioning between a specific state (of degradation) into
another state, representing the number of events recorded during the one-year period
of analysis.

Table 4. Numerical example for the analyzed case—the transition matrix.

State Probabilities SN0 Normal
(100% Operational)

SN1 Graceful
Degradation SN2 Degradation SN3 Severe

Degradation
SN4 Catastrophic

Failure

State description

The network of
networks is fully
operational, all
microgrids are

operational, and the
internet and 5G/LTE

are operational

Local sensor/a local
data collection

network with high
response time >10 s

Host domain for one
or more services on
parent network—

non-functional
(single IP

unreachable)

Several services of the
mother network not
working (physical

equipment in data center
faulty—(multiple IPs

inaccessible)—use
network monitoring tools

e.g., PRTG Network
Monitor) + warning if
data center powered

on UPS

Damage of the
physical layer in the
OSI stack (e.g., FO
trunk cut)—major

increase in all
requests, no service

SN0 0.8572 0.0811 0.0352 0.0253 0.0012
SN1 0.5114 0.3221 0.1271 0.0382 0.0012
SN2 0.2632 0.3200 0.2312 0.1844 0.0012
SN3 0.2352 0.3724 0.3459 0.0453 0.0012
SN4 0.0253 0.0352 0.0811 0.8542 0.0042

Based on the current state of operation acquisition, and the state transition matrix, it
becomes now possible to estimate the future state of the network after n sampling steps
in the future, using the Markov Chains approach: Sn = pnS0, where Sn is the probability
of the predicted state at the nth sampling moment, pn is the transition matrix raised to
the power n, and S0 is the probability of the current state. The final goal is to create a
risk assessment mechanism for improving the preventive maintenance process. As an
example, using the collected data, the future predicted state after two sampling periods
(S2) is presented in Table 5.

Table 5. Predicted state for the analyzed case—a transition matrix after two sampling steps.

State Probabilities SN0 Normal
(100% Operational)

SN1 Graceful
Degradation SN2 Degradation SN3 Severe

Degradation
SN4 Catastrophic

Failure

State description

The network of
networks is fully
operational, all
microgrids are

operational, and the
internet and 5G/LTE

are operational.

Local sensor/A
local data collection
network with high
response time >10 s

Host domain for one
or more services on
parent network—

non-functional
(single IP

unreachable)

Several services of the
mother network not
working (physical

equipment in data center
faulty—(multiple IPs

inaccessible)—use
network monitoring tools,

e.g., PRTG Network
Monitor) + warning if
data center powered

on UPS

Damage of the
physical layer in the
OSI stack (e.g., FO
trunk cut)—major

increase in all
requests, no service

SN0
2 0.791510479 0.645561482 0.49351611 0.493784618 0.262048035

SN1
2 0.116369461 0.200163222 0.267114672 0.266625072 0.35759367

SN2
2 0.057468856 0.101637221 0.167272171 0.151350561 0.3199232

SN3
2 0.033455707 0.051443922 0.070903142 0.087045872 0.05922247

SN4
2 0.001213629 0.00121363 0.00121363 0.00121363 0.001222558
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3.3. Buliding the Algorithm for Clients’ Satisfaction Forecasting

Using the Apdex scores (APDX), the satisfaction of clients regarding the different
services has also been assessed for a year period. APDX are defined by the ratio between
the sum of satisfactory and tolerated requests over the total requests made in the analyzed
period (one year, monthly averaged):

APDX =
SR + 0.5 · TR + 0 ·UR

NR
(5)

where; SR stands for the number of satisfactory requests, TR—the number of tolerable
requests, and UR—the total number of unsatisfactory requests.

- Satisfied—satisfied client having a high application responsiveness. (depending on
application, less than 1 s, typically tens of milliseconds)

- Tolerating—a client with noticeable slow response from the application (depending
on application, less than 5 s, typically in the range of 1–3 s)

- Unsatisfied (frustrated)—a client experiencing unacceptable performance, leading to
abandonment of the application (typically more than 5 s)

NR = SR + TR + UR (6)

However, it is important to keep in mind that different categories of clients might
have different expectations for the services or applications’ performance. It is crucial to
create useful scores for the experiences the clients would expect, and this is mostly a human
operator-based experience. The clients will be willing to wait if the service brings something
desirable at the other end while in other areas, where they are not enjoying the process,
maintaining a high APDX score might prove crucial.

For the same analysis period, the APDX index has been calculated for all six services
mentioned above. The results are presented in the following table.

To give a more comprehensive image of the clients’ satisfaction regarding the services,
the numbers in Table 6 have been transposed in diagrams, where the columns represent
the measured levels of satisfaction (Figures 12–14). The dotted line represents the trend
over the entire analysis period (averaged trend over one year), in all figures below.

Table 6. APDX indexes for all services—one year analysis period, monthly averaged.

Intelligent Agent M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Avg.
Val.

Insatisfaction
Probab.

Traffic 86.00 86.00 90.00 90.00 91.00 90.00 90.00 90.00 90.00 92.00 92.00 92.00 89.92 0.100833333

Energy microgrids 96.00 95.00 94.00 96.00 94.00 96.00 97.00 98.00 93.00 92.00 94.00 98.00 95.25 0.0475

Environment sensors 94.00 94.00 94.00 92.00 92.00 93.00 93.00 93.00 94.00 94.00 96.00 94.00 93.58 0.064166667

Crowdsourcing 93.00 93.00 94.00 93.00 93.00 93.00 95.00 95.00 92.00 88.00 91.00 96.00 93.00 0.07

Public lighting 95.00 95.00 92.00 94.00 95.00 95.00 94.00 94.00 94.00 94.00 94.00 91.00 93.92 0.060833333

Waste management 80.00 77.00 79.00 75.00 77.00 79.00 77.00 76.00 79.00 81.00 81.00 82.00 78.58 0.214166667

Sensors 2023, 23, x FOR PEER REVIEW 17 of 26 
 

 

SN02 0.791510479 0.645561482 0.49351611 0.493784618 0.262048035 
SN12 0.116369461 0.200163222 0.267114672 0.266625072 0.35759367 
SN22 0.057468856 0.101637221 0.167272171 0.151350561 0.3199232 
SN32 0.033455707 0.051443922 0.070903142 0.087045872 0.05922247 
SN42 0.001213629 0.00121363 0.00121363 0.00121363 0.001222558 

3.3. Buliding the Algorithm for Clients’ Satisfaction Forecasting 
Using the Apdex scores (APDX), the satisfaction of clients regarding the different 

services has also been assessed for a year period. APDX are defined by the ratio between 
the sum of satisfactory and tolerated requests over the total requests made in the analyzed 
period (one year, monthly averaged): 𝐴𝑃𝐷𝑋 = 𝑆ோ + 0.5 ∙ 𝑇ோ + 0 ∙ 𝑈ோ𝑁ோ  (5)

where; 𝑆ோ  stands for the number of satisfactory requests, 𝑇ோ —the number of tolerable 
requests, and 𝑈ோ—the total number of unsatisfactory requests. 
- Satisfied—satisfied client having a high application responsiveness. (depending on 

application, less than 1 s, typically tens of milliseconds) 
- Tolerating—a client with noticeable slow response from the application (depending 

on application, less than 5 s, typically in the range of 1—3 s) 
- Unsatisfied (frustrated)—a client experiencing unacceptable performance, leading to 

abandonment of the application (typically more than 5 s) 𝑁ோ = 𝑆ோ + 𝑇ோ + 𝑈ோ (6)

However, it is important to keep in mind that different categories of clients might 
have different expectations for the services or applications’ performance. It is crucial to 
create useful scores for the experiences the clients would expect, and this is mostly a hu-
man operator-based experience. The clients will be willing to wait if the service brings 
something desirable at the other end while in other areas, where they are not enjoying the 
process, maintaining a high APDX score might prove crucial. 

For the same analysis period, the APDX index has been calculated for all six services 
mentioned above. The results are presented in the following table. 

To give a more comprehensive image of the clients’ satisfaction regarding the ser-
vices, the numbers in Table 6 have been transposed in diagrams, where the columns rep-
resent the measured levels of satisfaction (Figures 12–14). The dotted line represents the 
trend over the entire analysis period (averaged trend over one year), in all figures below. 

  
Figure 12. Left: traffic service clients’ satisfaction in the test period; Right: energy service clients’ 
satisfaction in the test period. 

Figure 12. Left: traffic service clients’ satisfaction in the test period; Right: energy service clients’
satisfaction in the test period.



Sensors 2023, 23, 6012 18 of 26Sensors 2023, 23, x FOR PEER REVIEW 18 of 26 
 

 

  
Figure 13. Left: environmental monitoring service clients’ satisfaction in the test period; Right: 
crowdsourcing service clients’ satisfaction in the test period. 

  

Figure 14. Left: public lighting monitoring service clients’ satisfaction in the test period; Right: waste 
management service clients’ satisfaction in the test period. 

Table 6. APDX indexes for all services—one year analysis period, monthly averaged. 

Intelligent Agent M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Avg. Val. Insatisfaction Probab. 
Traffic 86.00 86.00 90.00 90.00 91.00 90.00 90.00 90.00 90.00 92.00 92.00 92.00 89.92 0.100833333 

Energy microgrids 96.00 95.00 94.00 96.00 94.00 96.00 97.00 98.00 93.00 92.00 94.00 98.00 95.25 0.0475 
Environment sensors 94.00 94.00 94.00 92.00 92.00 93.00 93.00 93.00 94.00 94.00 96.00 94.00 93.58 0.064166667 

Crowdsourcing 93.00 93.00 94.00 93.00 93.00 93.00 95.00 95.00 92.00 88.00 91.00 96.00 93.00 0.07 
Public lighting 95.00 95.00 92.00 94.00 95.00 95.00 94.00 94.00 94.00 94.00 94.00 91.00 93.92 0.060833333 

Waste management 80.00 77.00 79.00 75.00 77.00 79.00 77.00 76.00 79.00 81.00 81.00 82.00 78.58 0.214166667 

The above, Figures 12–14, help turn measurements into insights on how satisfied the 
clients are in a smart-city environment of e-services. It is an addition to the quality of ser-
vice in the overall preventive maintenance process, especially when upgrading different 
software components to offer the best satisfaction to clients. Further analyzing the trends 
over the test period, one can see what services need attention and possible upgrading. 
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The above, Figures 12–14, help turn measurements into insights on how satisfied the
clients are in a smart-city environment of e-services. It is an addition to the quality of
service in the overall preventive maintenance process, especially when upgrading different
software components to offer the best satisfaction to clients. Further analyzing the trends
over the test period, one can see what services need attention and possible upgrading.

4. Results
An Algorithm for Building the Risk Assessment Matrix

The purpose of this approach was to design an automated solution for data collection
regarding the state of operation of several networks and services (collected from AI agents)
to help maintenance operators in decision making, based on future possible risks prediction.
In this section, the building of an AI-driven risk assessment matrix is presented, and a
global information table containing risk ratings, with or without any control measures,
is presented. Additional information may include responsible departments and recom-
mended actions. In this approach, residual risks are considered those that might still occur
after the first set of maintenance operations has been performed.

Based on the above obtained results, an AI-driven risk assessment matrix has been
designed, via the following processes, presented in Figure 15. The functional block, rep-
resenting a Markov process (computation of transition state matrix) has been presented
in more detail in Figure 8 (previously), showing that each state change in the network is
counted, the new state is recorded at regular time intervals, and the probabilities of state
changes are re-computed to update the whole matrix.
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Figure 15. An algorithm for building the forecasted states and residual risks.

Building a table to show the mapping of impact degrees (on 5 levels—very low, low,
medium, high, very high) and the related probabilities of occurrence is presented in Table 7.

Table 7. The impacts’ mapping structure.

Impact Very Low Low Medium High Very High

Probability

Very High Sustainable Moderate Severe Critical Critical
High Sustainable Moderate Severe Critical Critical

Medium Sustainable Moderate Moderate Severe Critical
Low Sustainable Sustainable Moderate Severe Critical

Very Low Sustainable Sustainable Moderate Moderate Severe

In Table 7, the associated colors are intended to help the operator to rapidly assess the
critical situations, seeing the gravity of an event without reading the risk.

• For each of the services and networks’ present states, SN , a table with possible transi-
tions to next states, SN+1, and their associated risks, is constructed.

• Computing the residual risk levels (the risk of passing into a non-functional state,
partially or totally, following the restoration interventions already applied)

• Displaying residual risks
• Displaying current operating status: if the current state is not 100% operational, then

display actions, recommendations, alarms, and involved departments. Then, display
the most probable next state, according to the forecast.

• Display, gradually decreasing, the pre-calculated risk levels for transitions in all other
possible states.

Taking into consideration previous experience in maintenance works, the algorithm
has been enhanced with a supplementary risk analysis feature, that is, the Residual Risk
with Control (RRC) matrix. This feature should improve the vision of the maintenance staff
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with more actions to avoid collapsing into a new failure situation of the network and/or
services, when inappropriate actions during the recovery might trigger cascading failures,
or disturbing other services that were previously in a good functioning state. To obtain less
faulty results in recovery actions, recordings of failures caused by incorrect, or insufficiently
documented maintenance operations, could be used to build a probability matrix. Based
on this database, a model for evolving states of the system might be obtained via a similar
process to the previously described one.

Any evolution in time and changes in the current state of the system is being recorded
according to the policy adopted for this protocol: regular sampling of states and/or event-
triggered recording of state. Due to this policy, temporal features may be also part of this
recorded information and further analyzed to discover if the system might experience
periodic temporal patterns that respond to a specific behavior. This process could help
maintenance service to perform upgrading and/or corrections in the system to avoid
such behavior.

For the case study in analysis, Figure 16 presents a screenshot with the AI-driven risk
assessment matrix, completed with the section of risk assessment with control. Additionally,
this matrix can be considered a useful instrument in preventive maintenance, serving as a
tutorial for:

• building new regulations for assessing the risks to which subsystems, or services
might be affected when periodical maintenance interventions are performed,

• defining new operation procedures,
• creating standardization, etc.
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Figure 16. Sample of the AI-Driven Risk Assessment Matrix (AI-DRAM)—screenshot from the
application.

In Figure 16, the following rates of risk have been considered:

• Very Low—risk rate Rr ≤ 20%.
• Low—risk rate 21% ≤ Rr ≤ 40%.
• Medium—risk rate 41% ≤ Rr ≤ 60%.
• High—risk rate 61% ≤ Rr ≤ 80%.
• Very High—risk rate 81% ≤ Rr ≤ 100%.

Each system state change is detected automatically (by the sudden change in the
values of the availability and APDX indexes) and, after such a change, a new line with the
current state is recorded in the matrix (current state ID). For this new state, the possible
future states are calculated, and these include the probability of passing into them, the
impact that passing would have, and, based on these last two criteria, the estimated risk is
displayed if no corrective measures are being taken. Retrieving information from adjacent
monitoring tools, such as Dynatrace, can also help detect the possible main causes that led
to the change in condition.
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Based on the history related to the impact that the application of the basic corrective
measures had in the past, the possible future states with control and the risk of their
occurrence are computed and displayed.

In both cases, the risk assessment tool offers the user an overview of what the evo-
lution of the system/network could be and informs him/her which are the departments
responsible for corrective measures. The AI-DRAM shows a general view of how many
low risks, medium risks, or very high risks the maintenance operator could have to be able
to cope with different situations and choose the most appropriate measures, according to
the moment of maintenance. This tool immediately gives the whole table of the possible
implications that the maintenance operation could involve. According to the case study
mentioned in this work, Table 8 shows the occurrence of events, which produced failures
(colour in background meaning an information on the gravity resulting from the combina-
tion between risk probability and its impact: green—very low, yellow background—low,
brown background—medium, and red background high/very high).

Table 8. Quantitative assessment of inherited risks.

Impact Very Low Low Medium High Very High

Probability

Very High 1
High

Medium 2 1
Low 3 2 1

Very Low 2 4 4
TOTAL 6 3 3 4 4

In Table 8 is depicted the table that quantitatively describes the historical evolution of
the events which produced failures, based on the correlation between the impact and the
probability of occurrence.

Since these still represents early research results, which are based both on real world
and simulated data, it is difficult, at this moment, to present, in a comparative mode, how
the proposed solution gives better results than similar, existing methodologies. However,
according to the authors’ actual knowledge, similar solutions only focus on solving specific
problems, such as those of network level of service, application, and/or clients’ satisfaction
monitoring in a separate, and not in an integrated manner. This study started from
the desire to find a solution to the numerous functionality problems mainly caused by
human triggered actions, updating of services, and re-allocations of resources, which led
to chain effects in reducing the network level of service and clients’ satisfaction. The
approach focused mainly in seeking for a simple way to deliver an integrated solution,
without resorting to complex AI algorithms, but keeping a desired level of support for
assisting the failure management system, based on a passive approach and data mining.
One of the main reasons for choosing this approach was to reduce the complexity of the
software programming, and to also provide a reliable strategy for data updating and
post-processing analysis, thus reducing as much as possible the involved resources. The
proposed algorithm is only updating the state matrix at each iteration of the process for
diminishing the computational overhead.

5. Discussion

Complex network maintenance modeling is presently an active area of research. Var-
ious approaches and techniques are being explored to address the challenges associated
with maintaining complex networks. In this field, the main directions of research include:

- Reliability-based maintenance modeling—by the quantification of the reliability and
availability of complex networks and optimization of the maintenance strategies
accordingly



Sensors 2023, 23, 6012 22 of 26

- Prognostics and Health Management (PHM)—oriented towards the prediction and
prevention of failures in complex networks by continuously monitoring the health
condition of network components

- Condition-Based Maintenance (CBM)—strategies that rely on real-time condition
monitoring and diagnostics to optimize maintenance decisions

- Stochastic modeling and simulation
- Optimization-based approach
- AI and data-driven approaches, etc.

Usually, a combination of these approaches might prove more effective in finding
optimal solutions for complex network maintenance modeling.

The present work represents a continuation of research [51], as well as a combination of
PHM-CBM, focusing on the development of an automated tool to assist maintenance oper-
ations for complex, heterogeneous systems, and data communication networks. Regarding
the complexity of automation components, IoT-connected devices and communication
networks increase on a day-by-day basis, and the maintenance of heterogeneous systems
becomes more and more difficult. Therefore, the support that an automated maintenance
process could bring is considered beneficial in increasing the productivity and resilience
of IoT-based smart city services. In this research, a solution for assessing the risks and
estimating the future states of the complex environment of a smart city has been developed.
When intelligent monitoring agents for hardware and software components and users’
satisfaction are employed, harmonization of recorded events regarding malfunctions and
maloperations should be subject to automated processing, too. For this to be achieved in
an efficient manner, the present research developed a risk assessment matrix, based on a
one-year analysis of a case study comprising six smart city services and related data com-
munication networks. The purpose of this analysis was to create evidence of the services’
availability and of the APDEX.

After this analysis has been completed, a second quantitative assessment of the causes
of incidents and how these incidents affected the functionality of the system has been made.
Any incident that occurred caused a decrease in the performance indicators. However, a
special interest has been the analysis of the causes that produced incidents. It has been
emphasized that, in this study, human interventions (maintenance operations) that caused
incidents have been considered.

The next phase was to count the number of incident occurrences and to compute
their probabilities. Based on the obtained probabilities, a state transition matrix has been
developed. Using a Markov Chains approach, future possible states of the system could
be then estimated. For each of the malfunction states, an impact has been associated, and
a scaling of the respective occurrence probabilities has been proposed (as presented in
Figure 16). The AI-DRAM has been developed, based on a dedicated algorithm. In this
algorithm, anytime the current state is changing, a new record is registered, and the new,
estimated probabilities of the system to evolve in any possible state is computed, along with
the associated impacts. The main KPI of this process is the availability indicator; however,
the APDEX is an improvement to correlate services quality with the clients’ satisfaction.
Compared with similar technologies, the present solution has some advantages (Table 9).

Table 9. Comparison of similar technologies for NTMA.

Classic Approaches Employing DBN/DNN and/or
Active Monitoring

Proposed Solution Involving Usage of AI Agents and
Passive Monitoring

Complexity in programming Reduced programming complexity
Needs complex engineering teams Less demanding in integration

Provides a direct path to failure or faulting application Only permits post-analysis of failures causes

Not integrating all services and applications Allows for future state prediction in a certain degree of
confidence (confidence may improve in time)
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The proposed algorithm is not considered a perfect solution, and it is very possible
that similar, modern research solutions may surpass it in efficiency in some respects [52–54],
such as employment of Adaptive Transmission Data Rate (ADTR) mechanism or Self-
Adaptive Routing Algorithm (SARA) or the use of a Partially Observable Markov Decision
Process (POMDP) formulation to map metrics to 5G requirements, aimed to improve
reliability. However, similar work [55] also confirms the applicability and efficiency of
Markov Chain State Prediction, compared with other algorithms, such as sequential Monte
Carlo, in estimating even k-out-of-n systems’ reliability, based mostly on its reduced
computation time.

Some of the main advantages of the solution given by Markov Chains prediction,
which stood at the fundament of taking this approach, are the following:

- Capturing State Transition Probabilities: by analyzing historical data, one can extract
state transition probabilities and build a Markov Chain model that accurately repre-
sents the network’s dynamics. This allows one to make informed predictions about
future network states with high precision.

- Simplicity and Computational Efficiency: this property simplifies the prediction pro-
cess, becoming unnecessary to consider the entire history of the system. Additionally,
Markov Chain models are computationally efficient, enabling real-time or near-real-
time predictions, which are crucial for dynamic communication networks.

- Flexibility and Adaptability: scalability is a significant advantage of using the Markov
Chain for future state prediction in communication networks. These networks often
comprise a vast number of interconnected elements, such as routers, switches, and
transmission links. Markov Chain models can handle large-scale networks without
compromising prediction accuracy. By dividing the network into smaller manageable
subsystems, we can build local Markov Chain models and aggregate their predic-
tions to obtain an overall network forecast. This approach ensures scalability while
maintaining accuracy.

- Decision Support and Optimization: predicting future states in communication net-
works involves making informed decisions to optimize network performance. Markov
Chain models can serve as decision support tools.

In conclusion, the main benefits of this research include, compared with similar work:
integrating a solution for both systems state and applications response time monitoring,
analysis and evolution, and employing a less computationally intensive approach.

Whether Hidden Markov Models (HMMs) are more accurate than simple Markov
Chain models depends on the specific problem and the nature of the data being modeled.
In some cases, HMMs can provide more accurate results, while, in others, simple Markov
Chain models may be sufficient or even preferable. For this specific case, the simpler solu-
tion has been preferred with regards to the idea of reducing the complexity of the processes
and required computational stress. Simple Markov Chain models were considered more
appropriate for this case because the problem involves directly observable states and the
transitions between those states. This is the case when modeling the behavior of a system
with a fixed set of states, where the future state was considered to depend only on the
current state and may not require the complexity of HMMs. However, it is possible that,
based on the future experience, the choice between HMMs and simple Markov Chains for
developing this approach should be based on a careful analysis of the problem domain and
the specific requirements of the application.

The main limitations of the proposed solution consist in the difficulty of initializing the
state matrix because this is a process which needs previously collected and sorted data on
hardware and applications failures. The clients’ satisfaction section, however, can be based
on directly monitoring of different metrics and using specific tools, such as Dynatrace, and
related KPIs, such as APDX. However, in a correct implementation, it is estimated that
the solution can improve over time, when sufficient data is collected, allowing for a better
analysis of the system’s behavior.
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It is desirable that, in the future, the standardization of these solutions becomes more
practical and mandatory, as the heterogeneity of AI-assisted maintenance of complex
networks and system will probably become too large to harmonize intelligent systems and
the exchange in information. However, some trends in this regard have been noticed, such
as the Matter standardized application layer for connections in the IoT.

6. Conclusions

It is believed that the optimal combination between hardware sensors and intelligent
agents can reach the highest degree of dependability in the complex process of preventive
maintenance. However, it is not easy to implement active AI-driven solutions due to
intensive initial resources requirements: staff training, specialists’ involvement, complex
teams building, good knowledge of system architecture and behavior, etc. A simpler start
is proposed in this research by using passive maintenance monitoring. The approach is
based on historical data analysis and artificial intelligence (AI) to anticipate and prevent
failures, reduce downtime, and optimize performance. In this research, the goal was
to try to optimize the interaction between automated and human-performed operations
maintenance.

Presently, the solution has been applied on a set of six smart city related services,
collecting and analyzing information recorded in one year. Only for the communication
network services, considering the obtained results based on the maintenance staff feedback,
it can be concluded that it helped in improving the recovery time of major failures with a
percentage of 9.4% in 87% of analyzed cases, including human interventions and network
scheduled maintenance procedures.

Future research will focus also on providing automatic network configuration solutions
to maintain the level of service within acceptable limits.
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