Transmission Line-Planning Method Based on Adaptive Resolution Grid and Improved Dijkstra Algorithm
Abstract
:1. Introduction
2. Adaptive Resolution Grid Map Modelization
2.1. Remote Sensing Image Segmentation of Ground Objects
2.2. Introduction of Single Resolution Grid Map
2.3. Adaptive Quadtree Image Segmentation
- The grayscale variance of grid block;
- The minimum grid size.
2.4. Adaptive Resolution Grid Cost Calculation
3. Dijkstra Algorithm and Improvement
3.1. Dijkstra Algorithm
3.2. Combination of Dijkstra Algorithm and Adaptive Resolution Grid
3.3. Bidirectional Search and Inflection Point-Correction Mechanism
4. Experiment and Discussion
4.1. Experimental Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schito, J.; Moncecchi, D.; Raubal, M. Determining transmission line path alternatives using a valley-finding algorithm. Comput. Environ. Urban Syst. 2021, 86, 101571. [Google Scholar] [CrossRef]
- De Lima, R.M.; Osis, R.; de Queiroz, A.R.; Moreira Santos, A.H. Least-cost path analysis and multi-criteria assessment for routing electricity transmission lines. IET Gener. Transm. Distrib. 2016, 10, 4222–4230. [Google Scholar] [CrossRef]
- Bachmann, D.; Bökler, F.; Kopec, J.; Popp, K.; Schwarze, B.; Weichert, F. Multi-Objective Optimisation Based Planning of Power-Line Grid Expansions. ISPRS Int. J. Geo-Inf. 2018, 7, 258. [Google Scholar] [CrossRef] [Green Version]
- Teegala, S.K.; Singal, S.K. Optimal economic planning of power transmission lines: A review. Renew. Sust. Energ. Rev. 2014, 39, 949–974. [Google Scholar]
- Teegala, S.K.; Singal, S.K. Optimal costing of overhead power transmission lines using genetic algorithms. Int. J. Electr. Power Energy Syst. 2016, 83, 298–308. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, H.; You, C.; Jiang, L.; Xin, W.D. Construction and application research of Three-dimensional digital power grid in Southwest China. Iop Conf. Ser. Earth Environ. Sci. 2018, 108, 052066. [Google Scholar] [CrossRef]
- Monteiro, C.; Ramirez-Rosado, I.J.; Miranda, V.; Zorzano-Santamaria, P.J. Garcia-Garrido E, Fernandez-Jimenez LA. GIS spatial analysis applied to electric line routing optimization. IEEE Trans. Power Deliv. 2005, 20, 934–942. [Google Scholar] [CrossRef]
- Shao, S.K.; Peng, Y.; He, C.L.; Du, Y. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Trans. 2020, 97, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Gao, L.; Shen, X.; Li, M.; Jiang, W. A Novel Swarm Intelligence Algorithm with a Parasitism-Relation-Based Structure for Mobile Robot Path Planning. Sensors 2023, 23, 1751. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Xia, W.; Yuan, Q. Double ant colony algorithm based on dynamic feedback for energy-saving route planning for ships. Soft Comput. 2021, 25, 5021–5035. [Google Scholar] [CrossRef]
- Hong, Z.; Sun, P.; Tong, X.; Pan, H.Y.; Zhou, R.Y.; Zhang, Y.; Han, Y.L.; Wang, J.; Yang, S.H.; Xu, L.J. Improved A-Star algorithm for long-distance off-road path planning using terrain data map. Isprs Int. J. -Geo-Inf. 2021, 10, 785. [Google Scholar] [CrossRef]
- Santos, A.H.M.; de Lima, R.M.; Pereira, C.R.S.; Osis, R.; Medeiros, G.O.S.; de Queiroz, A.R.; Flauzino, B.K.; Cardoso, A.R.P.C.; Junior, L.C.; dos Santos, R.A.; et al. Optimizing routing and tower spotting of electricity transmission lines: An integration of geographical data and engineering aspects into decision-making. Electr. Power Syst. Res. 2019, 176, 105953. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S. Optimization of Joint Decision of Transport Mode and Path in Multi-Mode Freight Transportation Network. Sensors 2022, 22, 4887. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, C.; Xu, J.; Zhao, J. Simplified object-based deep neural network for very high resolution remote sensing image classification. ISPRS J. Photogramm. Remote Sens. 2021, 181, 218–237. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Zhang, X.F.; Ma, Y.J.; Yang, Q.Y.; Wang, C.J.; Liu, H.L.; Qi, Q. Full convolutional neural network based on multi-scale feature fusion for the class imbalance remote sensing image classification. Remote Sens. 2020, 12, 3547. [Google Scholar] [CrossRef]
- Li, W.; Jafari, O.H.; Rother, C. Deep object co-segmentation. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; pp. 638–653. [Google Scholar]
- Hu, X.W.; Zhu, L.; Qin, J.; Fu, C.W.; Heng, P.A. Recurrently aggregating deep features for salient object detection. In Proceedings of the Thirty-Second Aaai Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 6943–6950. [Google Scholar]
- Ikenna, I.S. Assessment of groundwater potential zones using GIS and AHP techniques: A case study of the Lafia district, Nasarawa State, Nigeria. Appl. Water Sci. 2021, 12, 10. [Google Scholar]
- Guo, J.X.; Li, D.R.; Shan, H.T. Remote sensing image fusion technology and its application of updating GIS database. In Proceedings of the MIPPR 2005: Image Analysis Techniques, Wuhan, China, 31 October–2 November 2005; Volume 6044, pp. 111–116. [Google Scholar]
- Weis, M.; Müller, S.; Liedtke, C.-E.; Pahl, M. A framework for GIS and imagery data fusion in support of cartographic updating. Inf. Fusion 2004, 6, 311–317. [Google Scholar]
- Yang, Q.; Zhang, Y.Z.; Zhao, T.B.; Chen, Y.Q. Single image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction. ISA Trans. 2018, 82, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Tomlin, D. Propagating radial waves of travel cost in a grid. Int. J. Geogr. Inf. Sci. 2010, 24, 1391–1413. [Google Scholar] [CrossRef]
- Seegmiller, L.; Takeshi, S.; Dana Tomlin, C. A method for finding least-cost corridors with reduced distortion in raster space. Int. J. Geogr. Inf. Sci. 2021, 35, 1570–1591. [Google Scholar] [CrossRef]
- De, I.; Chanda, B. Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure. Inf. Fusion 2013, 14, 136–146. [Google Scholar] [CrossRef]
- Van Bemmelen, J.; Quak, W.; van Hekken, M.; van Oosterom, P. Vector vs. raster-based algorithms for cross country movement planning. In Proceedings of the Auto-Carto Conference, Minneapolis, MN, USA, 30 October–1 November 1993; Volume 11, pp. 304–317. [Google Scholar]
- Etherington, T.R. Least-cost modelling on irregular landscape graphs. Landsc. Ecol. 2012, 27, 957–968. [Google Scholar] [CrossRef]
- Tischendorf, L. Modelling individual movements in heterogeneous landscapes: Potentials of a new approach. Ecol. Model. 1997, 103, 33–42. [Google Scholar] [CrossRef]
- Muhsin, Z.F.; Rehman, A.; Altameem, A.; Saba, T.; Uddin, M. Improved quadtree image segmentation approach to region information. Imaging Sci. J. 2014, 62, 56–62. [Google Scholar] [CrossRef]
- Nakahara, Y.; Matsushima, T. A Stochastic Model for Block Segmentation of Images Based on the Quadtree and the Bayes Code for It. Entropy 2021, 23, 991. [Google Scholar] [CrossRef]
- Perrolas, G.; Niknejad, M.; Ribeiro, R.; Bernardino, A. Scalable Fire and Smoke Segmentation from Aerial Images Using Convolutional Neural Networks and Quad-Tree Search. Sensors 2022, 22, 1701. [Google Scholar] [CrossRef]
- Zalhaf, A.S.; Elboshy, B.; Kotb, K.M.; Han, Y.; Almaliki, A.H.; Aly, R.M.H.; Elkadeem, M.R. A High-Resolution Wind Farms Suitability Mapping Using GIS and Fuzzy AHP Approach: A National-Level Case Study in Sudan. Sustainability 2022, 14, 358. [Google Scholar] [CrossRef]
- Karimi, A.R.; Mehrdadi, N.; Hashemian, S.J.; Nabi Bidhendi, G.R.; Tavakkoli Moghaddam, R. Selection of wastewater treatment process based on the analytical hierarchy process and fuzzy analytical hierarchy process methods. Int. J. Environ. Sci. 2011, 8, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Shumon, M.R.H.; Ahmed, S.; Ahmed, S. Fuzzy analytical hierarchy process extent analysis for selection of end of life electronic products collection system in a reverse supply chain. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2016, 230, 157–168. [Google Scholar] [CrossRef]
Basic Dijkstra Algorithm Based on SRG | Basic Dijkstra Algorithm Based on ARG | Improved Dijkstra Algorithm Based on ARG | |
---|---|---|---|
Running time (s) | 641 | 281 | 87 |
Line length (m) | 7061 | 6975 | 6812 |
Value of cost | 61,817.89 | 65,024.72 | 60,521.75 |
Number of inflection points | 14 | 14 | 10 |
SRG | ARG | |
---|---|---|
Number of grids | 67,920 | 31,845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, G.; Liu, Z.; Du, H.; Zhu, W.; Xu, S. Transmission Line-Planning Method Based on Adaptive Resolution Grid and Improved Dijkstra Algorithm. Sensors 2023, 23, 6214. https://doi.org/10.3390/s23136214
Nan G, Liu Z, Du H, Zhu W, Xu S. Transmission Line-Planning Method Based on Adaptive Resolution Grid and Improved Dijkstra Algorithm. Sensors. 2023; 23(13):6214. https://doi.org/10.3390/s23136214
Chicago/Turabian StyleNan, Guojun, Zhuo Liu, Haibo Du, Wenwu Zhu, and Shuiqing Xu. 2023. "Transmission Line-Planning Method Based on Adaptive Resolution Grid and Improved Dijkstra Algorithm" Sensors 23, no. 13: 6214. https://doi.org/10.3390/s23136214