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Abstract: Unmanned vehicles frequently encounter the challenge of navigating through complex
mountainous terrains, which are characterized by numerous unknown continuous curves. Drones,
with their wide field of view and ability to vertically displace, offer a potential solution to compensate
for the limited field of view of ground vehicles. However, the conventional approach of path extrac-
tion solely provides pixel-level positional information. Consequently, when drones guide ground
unmanned vehicles using visual cues, the road fitting accuracy is compromised, resulting in reduced
speed. Addressing these limitations with existing methods has proven to be a formidable task. In this
study, we propose an innovative approach for guiding the visual movement of unmanned ground
vehicles using an air–ground collaborative vectorized curved road representation and trajectory
planning method. Our method offers several advantages over traditional road fitting techniques.
Firstly, it incorporates a road star points ordering method based on the K-Means clustering algorithm,
which simplifies the complex process of road fitting. Additionally, we introduce a road vectorization
model based on the piecewise GA-Bézier algorithm, enabling the identification of the optimal frame
from the initial frame to the current frame in the video stream. This significantly improves the road
fitting effect (EV) and reduces the model running time (T—model). Furthermore, we employ smooth
trajectory planning along the “route-plane” to maximize speed at turning points, thereby minimizing
travel time (T—travel). To validate the efficiency and accuracy of our proposed method, we con-
ducted extensive simulation experiments and performed actual comparison experiments. The results
demonstrate the superior performance of our approach in terms of both efficiency and accuracy.

Keywords: vectorized curvedroad representation; GA-Bézie algorithm; route-plane; trajectory
planning

1. Introduction

Real-time vision sharing between drones and unmanned ground vehicles is a critical
technology for enabling collaborative tasks in heterogeneous multi-domain unmanned
systems, particularly in scenarios where GPS and other commercial communication net-
works are unavailable. Examples of such scenarios include passable area detection for
polar scientific research and field ecological monitoring. In recent years, advancements in
intelligent driving, road extraction, and trajectory planning technologies have expanded
the scope of research in trajectory planning for ground-based mobile robots. Unmanned
ground vehicles frequently encounter the challenge of traversing mountainous terrains
characterized by numerous unknown continuous curves. The intricate nature of these
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paths, combined with overgrown vegetation that obscures road boundaries and obstructed
field of vision due to trees, results in an unstructured path.

These problems can be effectively addressed through the collaborative efforts of
multiple robots operating in open spaces. Under the guidance of aerial vision, unmanned
vehicles can accomplish tasks with enhanced efficiency. The wide viewing angles and
vertical displacement capabilities of aerial robots [1,2] offer a viable solution to compensate
for the limited field of view inherent in ground vehicles [3].

Gaining a comprehensive understanding of the feasible travel area is an essential
prerequisite in various applications [4]. The establishment of an environment model is
a fundamental requirement for optimizing time and energy consumption in trajectory
planning. Ground vehicles face limitations in their field of view, which affects their ability
to plan trajectories. To ensure safety in visual blind spots, they need to reduce their
velocity. In contrast, aerial vehicles can provide a broader field of view, enabling ground
vehicles to anticipate road conditions in advance. Owing to the inherently rigid nature of
smart vehicles, their motion needs to be constrained to ensure a continuous and smooth
trajectory. Once the road area is detected, it is essential to extract and fit the road lines into
an appropriate mathematical model. This model, when combined with motion constraints,
can determine a suitable reference trajectory for the vehicle.

Ground vehicles inherently suffer from a restricted field of view, which poses chal-
lenges in their ability to perceive and navigate their surroundings effectively. Moreover,
conventional road line extraction methods solely provide pixel-level positional informa-
tion, limiting their utility in trajectory planning. Simultaneously, when unmanned aerial
vehicles guide unmanned ground vehicles through the transmission of image sequences,
the processing time and accuracy of image analysis and road fitting are often suboptimal.
To address these limitations, we propose a visually guided trajectory planning method for
unmanned ground vehicles that incorporates a road route fitting approach. As shown in
Figure 1, the primary objective of this study is to utilize drones or other aerial vehicles to
acquire information about the drivable area for ground vehicles. Subsequently, an algo-
rithm is employed to identify road surfaces and extract road lines, which are represented as
segmented Bézier curves. By incorporating road parameters, including length, curvature,
and corners, along with the principles of instantaneous center theory in rigid body motion,
the trajectory planning for the ground vehicle is determined. The key contributions of this
research can be summarized as follows:

Figure 1. Using aerial vehicles to visually guide the trajectory of unmanned ground vehicles on
unknown curved roads. The aerial images are used to extract and model roads, which are then used
to plan trajectories that satisfy the constraints of a continuous tangent and continuous curvature.
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1. We propose a novel sorting model based on the K-Means clustering algorithm, as well
as a road vectorization model based on the piecewise GA-Bézier algorithm. These
models offer significant improvements in fit quality and run time, enabling the real-
ization of continuous tangents and continuous curvatures in the road representation.

2. We propose an advanced trajectory planning algorithm that operates along the “route-
plane” to optimize the travel time of the ground vehicle. This algorithm takes into
account various constraints, including velocity and acceleration limitations, to ensure
the feasibility and safety of the planned trajectory. By optimizing the travel time while
adhering to these constraints, our algorithm aims to enhance the overall efficiency
and effectiveness of the ground vehicle’s movement.

3. We propose three evaluation indices to assess the performance of our method: the
road fitting effect (EV), the model running time (T—model), and the travel time
(T—travel). These indices serve as quantitative measures to evaluate the effectiveness,
efficiency, and accuracy of our proposed method. To validate the performance of
our approach, we conducted extensive simulations and practical experiments. The
results of these experiments demonstrate the efficiency and accuracy of our proposed
method, further affirming its effectiveness in real-world scenarios.

This paper serves as an extension of our previously published conference paper [5],
aiming to further enhance the optimization of planned trajectories for ground vehicles. The
rest of this paper is organized as follows. Section 2 provides an overview of the related
work in the field. Section 3 formulates the problem and evaluation metrics. Section 4
introduces the road extraction and star points sorting method employed to accurately
identify and represent road surfaces. Section 5 presents the traditional road geometric
parameter model. Section 6 presents the piecewise GA-Bézier road vectorization model,
which enables the efficient representation of road lines. Section 7 details the trajectory
planning method, incorporating road parameters and the principles of instantaneous center
theory to optimize the ground vehicle’s trajectory. Section 8 describes the experimental
verification conducted to evaluate the proposed approach. Finally, Section 9 concludes the
paper, summarizing the key findings and discussing potential avenues for future research.

2. Related Work

Numerous research studies have employed onboard cameras to effectively identify the
unobstructed road ahead of a vehicle, a crucial requirement for intelligent assisted driving
systems. While the approach of extracting road information using a local field of view
significantly differs from that of utilizing a global field of view, there are certain shared
characteristics between the two methodologies. Road extraction techniques often rely on
color and texture analysis [6,7]. However, in complex and unstructured environments, the
wide range of texture and color characteristics poses challenges in accurately differentiating
roads from their surroundings. The variability in road colors further complicates the
task, making it impractical to assign a fixed color for road representation. Alternatively,
detecting road boundaries and fitting them to a model is another approach [8]. Nonetheless,
this method proves inadequate when dealing with ambiguous boundaries, as is often
the case with unstructured roads. A third avenue for road detection involves leveraging
vanishing points [9,10]. However, this approach proves ineffective in scenarios where a
clear vanishing point is absent or when dealing with curved road boundaries. To address
the challenges posed by abrupt variations in road conditions, certain researchers have
advocated for the integration of prior information with road detection techniques. For
instance, Alvarez et al. proposed a methodology that combines prior information derived
from a geographic information system (GIS) with the estimated road derived from the
current image, thereby achieving robust road segmentation [11,12]. Nevertheless, it is
worth noting that the efficacy of their approach is contingent upon the availability of a GIS
database. In the absence of such a database, their method may encounter limitations.

The aforementioned road detection methods primarily revolve around pixel classifica-
tion to distinguish between road and non-road regions. Once the road area is successfully
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identified, the subsequent step involves extracting the road lines to establish a reference for
the roadbed. Road line detection and centerline extraction are the two prevailing techniques
employed for directly obtaining the centerline of a road from a global image [10,13–15].

Song and Civco [16] introduced a two-step approach for road centerline extraction.
Their method employs a support vector machine (SVM) to differentiate the road from the
background, followed by utilizing a shape index to detect road lines. Gamba et al. [17] pro-
posed a comprehensive algorithm specifically designed for urban areas, which incorporates
adaptive filtering to determine the primary direction of a road. Subsequently, a perceptual
grouping algorithm is employed to eliminate redundant road segments and bridge any ex-
isting gaps. By examining road intersections and standardizing the overall pattern, the road
network topology can be identified. Huang et al. [18] presented a road centerline extraction
technique that combines multiscale information with SVM. The structural characteristics
of the mixed spectrum are analyzed using an SVM classifier, and the classification results
from multiple scales are merged. Finally, a morphological refinement algorithm is applied
to accurately detect the road centerline.

The road detection data obtained through multi-agent cooperation are derived from
aerial and satellite imagery [19]. Tan et al. [20] introduced an iterative graph exploration
scheme for automatic road network map extraction from aerial maps. This approach incor-
porates adaptive step size and leverages road segmentation results as prior information to
guide the expansion of road network maps. Addressing the limitations of path extraction
based on deep learning, such as the reliance on multiple convolution operators, challenges
in accurately predicting contextual spatial relationships, inadequately labeled data, and lim-
ited model portability, Zhu et al. [21] proposed a novel road extraction framework known
as GCB-Net (Global Context-aware and Batch-independent Network). GCB-Net enhances
the encoder–decoder structure by incorporating a global context awareness (GCA) block,
which effectively integrates global context features. To enhance the original basic network,
the Filter Response Normalization (FRN) layer is employed, eliminating batch dependence,
accelerating the learning process, and further enhancing the model’s robustness.

While the aforementioned methods excel in accurately extracting road lines based
on pixel positions, they fall short in providing sufficient information to support ground
vehicle trajectory planning. Representing the road line solely by the width of a single
pixel lacks the necessary details for formulating a comprehensive mathematical model that
adheres to constraints such as continuous curvature for the lines. Therefore, additional
processing steps are required to enhance the extracted road lines, enabling the formulation
of a mathematical model that satisfies the aforementioned constraints.

3. Problem Formulation and Evaluation Index
3.1. Assumptions

Consider a scenario where a gimbal camera mounted on a quadrotor drone is used to
photograph an image containing road and non-road areas. We assume the following:

1. The pan-tilt (PT) camera has been pre-calibrated, and radial distortion is eliminated.
2. The orientation of the PT camera is controlled by the gimbal stabilizer, so ground

images can be captured steadily and reliably.
3. The road has several feature points that can be captured by the camera and used to

convert the camera coordinate system to the global coordinate system.

3.2. Problem Statement

The objective of this study was to use aerial vision to take pictures of unknown roads,
use image processing algorithms to extract and detect road lines, and use a predesigned
mathematical model called a piecewise GA-Bézier curve for road fitting. After the road
model parameters are optimized, they are mapped to the global coordinate system, and
the trajectory is planned according to the kinematic model and constraints of the ground
vehicle so that it can pass over the road quickly, efficiently, and safely.
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Definition 1. The piecewise GA-Bézier curve is a segmented Bézier curve using a genetic algorithm
that stitches piecewise according to the constraints on the ending point. Each ending point should
meet the constraints of a continuous position, continuous tangent, and continuous curvature.

Given a set of aerial images Img, an image detection algorithm can be used to extract
the road surface as the discrete point set S. The objective of trajectory fitting and planning
is given by

min J(S)
min T(P(t))
s.t. g(S, P(t))

(1)

where P(t) is the road model (i.e., piecewise GA-Bézier curve) fitted to the scattered point
set S. The task is to minimize the fitting error J and travel time T of the ground vehicle while
satisfying the relevant constraints g(S, P(t)). The detailed formulation of the objectives
and constraints is given in the following sections.

Definition 2. By establishing reference points and camera parameters within the world coordinate
system, the image can be effectively rectified through the application of perspective and affine
transformations.

This process involves directly transforming the coordinate system based on the cor-
respondence between reference points in the image and their corresponding positions in
the world coordinate system. Such an approach ensures accurate correction of the image,
enhancing its visual representation and aligning it with the desired perspective. During the
practical experimentation phase, the measurements are conducted within the designated
range of the world coordinate system. To facilitate accurate correction, reference points
are strategically positioned at the initiation and termination points of the road, which are
situated at diagonally opposite corners of the aforementioned rectangular area. By applying
rotation and translation transformations, the original image data can be effectively rectified
and aligned with the world coordinate system. This process ensures the preservation of
spatial accuracy and facilitates meaningful analysis and interpretation of the corrected data.

3.3. Evaluation Index

Three evaluation indices were devised to assess the performance of the proposed
road fitting method. The first index, denoted as EV, was employed to evaluate the road
error. The second index, referred to as T—model, was utilized to evaluate the efficiency
achieved by the road fitting method. Additionally, the driving time of the unmanned
vehicle, obtained through the proposed trajectory planning method, was evaluated using
the third index, denoted as T—travel.

EV = max
i

(
min

m
(‖Si − P(m)‖)

)
(2)

In Equation (2), let i represent the count of sorted road stars, m denote the number of
Bessel curve points, and Si represent the star point data in paragraph i, which are obtained
through stepwise sorting after the initial road stars are acquired via image processing.
Furthermore, P(m) represents the coordinates of the point on the fitted Bézier curve.

The term T—model refers to the time required by both the proposed method and the
traditional method for the task of road star extraction and fitting, assuming an identical
computer configuration.

t(s) =
∫ s

0
1

v(S)dS (3)

The variable T—travel represents the travel time of the driverless car, which is deter-
mined by integrating the velocity associated with each point along the Bézier curve.
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4. Road Extraction and Star Points Sorting

In outdoor environments, the road surface typically exhibits a relatively flat profile
compared to its surroundings. When captured from an aerial perspective, the road surface
tends to display a lower degree of diffuse reflection, a higher degree of specular reflection,
increased brightness, and enhanced flatness in comparison to the surrounding areas. These
characteristics contribute to a smoother texture appearance. Figure 2 illustrates our devised
approach for extracting discrete points, referred to as “star points”, from a captured image,
specifically targeting the road surface.

Figure 2. Method of extracting star points from an image of a road: brightness thresholding, mor-
phological opening operation filtering, obtaining the ROI contour, extracting the ROI area, Laplacian
texture sharpening, sharpening image binarization, and obtaining the star points.

As shown in Figure 3a, the star points, which are directly extracted from the image,
follow a trajectory that aligns with the lines present in the photograph. To potentially
optimize the fitting accuracy and improve computational efficiency, we have devised a
stepwise sorting method based on the K-Means clustering algorithm. The fundamental
concept behind the K-Means algorithm is to iteratively determine a partition scheme
consisting of K clusters, aiming to minimize the corresponding loss function. This loss
function is defined as the sum of squared errors, which quantifies the distance between
each sample and the centroid of the cluster to which it belongs.

J(c, µ) = ∑M
i=1 ‖xi − µci‖

2 (4)

where xi stands for sample i, ci is the cluster to which xi belongs, µci represents the center
of the cluster, and M is the total number of samples.

By incorporating the K-Means clustering algorithm prior to the sorting algorithm,
the number of samples is effectively reduced, resulting in improved operational efficiency.
This is in accordance with Equation (4). The stepwise sorting method, which utilizes the
K-Means clustering algorithm, facilitates the systematic arrangement of star points along
the road line. The algorithm initiates from the first star point and identifies the closest
remaining star point as the target. This target star point is then appended to the sorted
list, becoming the new current star point, and the search continues through the unsorted
list. As there may be multiple target star points equidistant to the current star point in
the unsorted list, any missed star points are subsequently revisited during the sorting
process. To ensure efficient sorting, a threshold value is established. If the distance between
the target and current star points exceeds this threshold, the sorting process terminates
promptly. Although the sorting algorithm may overlook certain star points, the overall
impact is negligible. Figure 3c visually depicts the sorted star points, which accurately
align with the road line.
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(a) (b)

(c) (d)

Figure 3. Star point order. (a,b) The top images show the default order. (c,d) The bottom images
show the sorted order.

To establish the universality of the road extraction and star point sorting methods,
we conducted a series of experiments encompassing various scenarios. The final column
in Figure 4 showcases the sorted star points, which exhibit a remarkable alignment with
the road.

Figure 4. Road extraction results. The sub-images in each column show the original image, brightness
thresholding result, morphological processing result, ROI contour, the ROI area, texture sharpening
map, sharpening image binarization result, and road star point sorting result.

5. Traditional Road Geometric Parameter Model

The traditional road geometric parameter model divides the structured road into i
road units, and each unit is composed of all or part of the elements in the straight line Li,
the cyclograph Ci1, the cyclograph Ci2, and the arc Si, namely “Li + Ci1 + Si + Ci2”. A con-
tinuous free curve is created by seamlessly connecting multiple route units. Subsequently,
the transverse direction of the free curve is fixed to generate a fixed-width road model. The
data storage format for each unit can be represented by the following Equation (5):

Ui = {i, li, θCi1 , Ri, θsi , θCi2 ,±1} (5)

where i represents the route unit, which is the i unit of the entire route, li represents the
length of the straight line element Li, Ri represents the radius of the arc element Si, ±1
represents the entire unit’s deflection direction, where +1 represents the clockwise deflection
and −1 represents the counterclockwise deflection, θCi1 represents the deflection angle of
cyclotron Ci1, θsi represents the deflection angle of arc element Si, and θCi2 represents the
deflection angle of cyclotron Ci2. Figure 5 shows a route unit model.
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图 2.15 道路线单元模型 

 道路模型参数拟合 

前文中将一个完整的路线单元分为直线、回旋线、圆弧三部分，在所有的

元素中，直线是最容易找到的部分。所以从离散数据到几何参数的拟合先从直
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得到直线的位置，虽然这条直线并不一定是符合拟合离散数据的最优直线段，

但是仍可以确定此位置符合直线模型，后续利用最小二乘原理得到该线段范围

内根据离散数据拟合得到的最优直线，就确定了直线元素的位置，但其长度要

根据后续元素来共同确定，因为要确保整个道路单元最优。但其长度不会超过

该线段，因为长度之外明显不是直线的。 

图 2.16红色线段部分是道路骨架图利用霍夫变换原理得到直线线段。图 2.17

是映射到离散数据中并进行了拟合，为了便于观察，进行了两端延长。证明此

位置处的离散数据符合道路线单元模型的直线线段。 

Figure 5. Route unit model.

Once the road skeleton diagram is obtained, the line positions can be determined using
the Hough transformation principle. By analyzing the line elements, it becomes evident
that there are two cyclotron lines and an arc between them. Additionally, the outermost
boundary may consist of one or more of the aforementioned elements. To establish the
boundary, a cubic function curve is fitted to each segment of discrete data, with a straight
line connecting the infinite curvature radius at the center of symmetry and one end of the
circular arc. The fitting process ensures that the coefficient of the cubic function maintains
the curvature continuity of the entire curve, specifically at the point of contact with the
circular arc, where the curvature radius matches the radius of the arc precisely.

Drawing upon Sichuan road images as a case study, road fitting is conducted utilizing
the conventional road geometric parameter model. The fitting results are visually depicted
in Figure 6, wherein the green curve represents a cyclotron, the black curve represents
an arc, and the red line segment represents a straight line. The corresponding geometric
parameters extracted from this image are presented in Table 1, providing a comprehensive
overview of the road’s spatial characteristics and enabling further quantitative analysis
and evaluation.

Table 1. Road geometry parameters.

i L/(m) θc1/(°) R/(°) θs/(°) θc2/(°) ±1

1 0 17.88 143.43 32.19 42.22 −1.00
2 33.85 64.95 54.02 45.06 52.97 1.00
3 112.77 66.74 0 0 0 −1.00
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6. Piecewise GA-Bézier Road Vectorization Model

Each road unit is modeled as a fifth-order Bézier curve P(m) for which P0, P1, P2, P3,
P4, and P5 are the control points represented by coordinating column vectors. Let m be an
increasing variable in the interval [0, 1]. The matrix equation for calculating the trajectory
according to the control points and m is given by Equation (6), where the control points
Pcs =

[
P0 P1 P2 P3 P4 P5

]
and the constant C = diag(

[
1 5 10 10 5 1

]
).

R(m) is a six-dimensional column vector of the combined power of m, which means that
R(m)i = mi(1−m)5−i, (i = 0, 1, 2, 3, 4, 5).

P(m) = Pcs ∗ C ∗ R(m) (6)

When the control points align in a collinear manner, the fifth-order Bézier curve
undergoes degeneration, resulting in segmented curves. In this degenerate state, the radius
of curvature becomes infinite, and the curvature itself becomes zero. This characteristic
aligns with the behavior of straight line segments, where the curvature is inherently absent.

P′(m) = Pcs ∗ C ∗ R′(m)
P′′(m) = Pcs ∗ C ∗ R′′(m)

K(m) =
||P′(m)× P′′(m)||
||P′(m)||3

(7)

In order to satisfy the condition of continuous curvature, it is necessary for the bending
curvature of the preceding road unit to be equal to the initial curvature of the subsequent
road unit at their junction point. This ensures a smooth transition between the two road
units, maintaining a seamless curvature profile throughout the road network. The curvature
of the fifth-order Bézier curve K(m) is calculated using Equation (7).

The road line is expanded along the positive and negative normal directions of each
point to form a road. If the free variable Pf (m) is the tangent direction, it can be turned
counterclockwise 90° to obtain the negative normal direction Nn(m) and turned clockwise
90° to obtain the positive normal direction Np(m). The rotation matrix method T(θ) in
Equation (8) is used for the calculation.

Pf (m) =
P′(m)

||P′(m)|| T(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
Nn(m) = T(

π

2
) ∗ Pf (m) Np(m) = T(−π

2
) ∗ Pf (m)

(8)

If the width of the road is W(m), the coordinates of the positive side of the road
are Pp(m), and the coordinates of the negative side of the road are Pn(m), the calculation
formula is as follows:

Pn(m) = P(m) + 0.5 ·W(m) · Nn(m)
Pp(m) = P(m) + 0.5 ·W(m) · Np(m)

(9)

Suppose that the starting point of a certain road unit is Ps, the ending point is Pe, the
initial curvature is Ks, and the ending curvature is Ke. Then,

P(0) = Ps = P0 P(1) = Pe = P5

Ks =
||P′(0)× P′′(0)||
||P′(0)||3 Ke =

||P′(1)× P′′(1)||
||P′(1)||3

(10)

When Ks is infinite, then P0 and P1 are equal, and P2 becomes a free variable. Similarly,
when Ke is infinite, then P4 and P5 are equal, and P3 becomes a free variable.

As shown in Figure 7, given a set of specific parameters, several road units can be
grown to form a complete road.
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Figure 7. Piecewise road vectorization model. Road units are added according to the constraints of a
continuous tangent and continuous curvature at junctions to obtain the overall road.

Due to the inherent complexity of road structures, achieving satisfactory results
through the fitting of Bézier curves can be challenging. To address this issue, a se-
quential division approach is employed, wherein the n star points are divided into N
segments. Each segment is then individually fitted to a fifth-order Bézier curve. This
method allows for a more accurate representation of the intricate road geometry, en-
hancing the overall quality of the curve fitting process. The threshold Re is set to de-
termine the beginning and end of each segment. The initial demarcation point is taken
as the

[
1 n/N 2n/N 3n/N · · · n

]
star point. Then, a circle is drawn with the

initial demarcation point as the center and Re as the radius. Then, the average of the
star point coordinates within the circle is taken to determine the standard demarcation
point. The starting and ending points of each segment of the road line are given by[ 0X 1X 2X 3X · · · N X

]
. The initial demarcation point does not necessarily corre-

spond to the average of the number of star points. Instead, the demarcation parameters
can be preconfigured to obtain non-uniform points. To establish the standard demarcation
point, a circle with a radius of Re is employed, derived from the initial demarcation point.

Consider a specific segment of a segmented road for illustration purposes. The process
of Bézier curve fitting can be conceptualized as an optimization problem, which can be
mathematically represented by the following Equation (11). In practice, if the kth road has
nk star points and the corresponding control variables for the Bézier curve are divided into
lk parts, the distance cost matrix D can be constructed as given in Equation (12).

min
P(·)

J = max
i

(min
m

(||Si − P(m)||))

+ max
m

(min
i
(||Si − P(m)||))

(11)

where i represents sorted road star points, m represents Bessel curve points, Si represents
the star point data in paragraph i obtained by stepwise sorting after obtaining the original
road star points through image processing, and P(m) are the coordinates of the points on
the fitted Bézier curve.

D =


||S1 − P(m1)|| · · · ||Snk − P(m1)||
||S1 − P(m2)|| · · · ||Snk − P(m2)||

· · · · · · · · ·
||S1 − P(mlk )|| · · · ||Snk − P(mlk )||

 (12)

In the distance cost matrix D, the minimum value of each column is taken to obtain
a row vector. Then the largest element in the row vector is designated as Ms. Then the
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minimum value from each row of the matrix D is taken to obtain a column vector, and the
largest element in the column vector is designated as Mp. The sum of Ms and Mp is the
performance metric J. The purpose of this setup is to minimize the distance between the
star point and curve and to minimize the occurrence of local self-intersections for the curve.

The parameter matrix of road units is given
by kPcs =

[ kP0
kP1

kP2
kP3

kP4
kP5

]
. It is necessary to ensure a continuous tan-

gent and continuous curvature at each junction.
For the first road unit k = 1, the starting point is 0X, and the ending point is 1X.

Let 1P0 = 0X and 1P5 = 1X, then 1Pf =
[ 1P1

1P2
1P3

1P4
]

becomes the free
variable, and it can be optimized by a genetic algorithm according to the performance index
1 J. Due to the inherent limitations of genetic algorithms in locating the global optimal
solution and the potential occurrence of curve self-intersections during the fitting process, it
becomes imperative to appropriately configure the genetic variables of individuals within
the population to mitigate such occurrences. This measure aims to minimize the likelihood
of encountering self-crossing curves and enhance the overall effectiveness of the genetic
algorithm in achieving optimal solutions.

As shown in Figure 8, the four intermediate control points are characterized by chord
lengths and angles in relation to the initial and terminal points. This representation
method enables a more precise and structured depiction of the control points, facilitating a
comprehensive understanding of their spatial arrangement and geometric properties.

0P

1P

2P

3P

4P

5P

01L

12L

34L
45L

01

12

4534

Figure 8. Fitting scheme for the first road unit. Because only the positions of the starting and ending
points are constrained, the chord length and angle between adjacent control points can be used as
optimization variables to solve. Then, the coordinates of the control points can be calculated.

The genetic variables MLθ are set to the elements in the matrix as follows:

MLθ =

[
L01 L12 L34 L45
θ01 θ12 θ34 θ45

]
(13)

The parameters LD and θD are used to set the initial search range of genetic variables
so that a control point moves as far as possible along with the star point:

LD = ||P5 − P0||
θD = atan2(P5y − P0y, P5x − P0x)

(14)

In the utilized genetic algorithm, consecutive decision variables are encoded using
arithmetic scales and Gray code, guaranteeing precision up to six decimal places. For
binary chromosomes, a two-point crossover is employed, with the selection process being
based on random sampling. The mutation probability is determined as the reciprocal
of the chromosome length, while the crossover probability is set to 0.9. This particular
genetic algorithm incorporates elitist reservations, thus earning it the designation of Elitist
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Reservation GA. By incorporating these techniques and strategies, the algorithm aims to
enhance the accuracy, efficiency, and effectiveness of the optimization process.

After the optimal solution is obtained, the tangent direction 1V and curvature 1K at
the ending point are calculated according to Equation (7).

k−1V//(kP1 − kP0)

k−1K =
||kP′(0)× kP′′(0)||
||kP′(0)||3

(15)

For the following road units, k = 2, 3, · · ·, N, the starting point is k−1X, and the ending
point is kX. Let kP0 = k−1X and kP5 = kX. When the requirements for the junction
between the starting point of the current road unit and ending point of the previous
road unit are combined with Equation (7), the constraint conditions can be formulated as
Equation (15).

Simplification shows that the constraints in Equation (15) involve
[ kP1

kP2
]

but
not

[ kP3
kP4

]
. Given two scalars of kL01 and kP2x,

[ kP1
kP2

]
can be solved using

a linear equation. Therefore, when the auxiliary variable kP12 =
[ kL01

kP2x
]T is con-

structed,
[ kP12

1P3
1P4

]
becomes a free variable, and it can be optimized using a

genetic algorithm based on the performance index k J.
Due to the constraints imposed by the initial curvature and initial tangent, expressing

the chord length and angle of the first road unit would result in a significant number of
NaN (not a number) values during iterative calculations. To overcome this limitation, we
introduced auxiliary variables based on Cartesian coordinates. The Elitist Reservation
GA is still employed, with the encoding method, variation method, variation probability,
and crossover probability parameters set in a similar manner to those used for the first
road unit.

After the optimal solution is obtained, the tangent direction kV and curvature kK at
the ending point are calculated according to Equation (7).

The overall fitting is shown in Algorithm 1. Heuristic algorithms such as the genetic
algorithm are often unable to obtain the global optimal solution directly. Thus, each frame
of the aerial video stream is actually processed by the algorithm several times to select
multiple local optimal solutions and approximate the global optimal solution.

After the algorithm is used to fit the road line segments to a Bézier curve, the road
width W is calculated using Equation (16), where λ is the road coefficient.

W = λ ·max
i

(min
m

(||Si − P(m)||)) (16)

Equation (9) can be used to extend the road lines on both sides. Figure 9 shows the road
fitting results. The road extraction and fitting results matched the actual road and can be
projected to the global coordinate system as the road model.

Figure 9. Road line fitting results. The thick solid line represents the centerline of the road, and
different colors are used to distinguish different road units. The large colored circles represent the
control points of each road unit.
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Algorithm 1: Fitting Road Line Segments

Input: N, sortStars =
[

S1 S2 · · · Sn
]

Output:
[ 1Pcs 2Pcs 3Pcs · · · N Pcs

]
[ 0XT n

]
[ 1XT n1

]
· · ·[ N XT nN

]

← divParts(sortStars, N) ;

1P0 ← 0X ;
1P5 ← 1X ;[ 1P1

1P2
1P3

1P4
]
← BézierFitGA(S1:n1 ) ;

1Pcs←
[ 1P0

1P1
1P2

1P3
1P4

1P5
]

;
1V ← 1P1−1P0 ;

1K← ||
1P′(0)× 1P′′(0)||
||1P′(0)||3 ;

for each k in
[

2 3 · · · N
]

do
is ← 1 + ∑k−1

i=1 nk ;
ie ← ∑k

i=1 nk ;
kPcs← BFitGA(k−1V, k−1K, k−1X, kX, Sis :ie ) ;
kV ← kP1−kP0 ;

kK← ||
kP′(0)× kP′′(0)||
||kP′(0)||3

;

return
[ 1Pcs 2Pcs 3Pcs · · · N Pcs

]
;

7. Trajectory Planning

In order to ensure the stable operation of the robot, it is imperative to maintain a
constant speed during the robot’s traversal along a curved arc. Specifically, the robot
should neither experience acceleration nor deceleration while passing through the arc.
However, the robot can be subjected to acceleration or deceleration when navigating along
a straight rotation line. This approach ensures optimal performance and maneuverability
of the robot during its operation. Therefore, in the context of trajectory planning for ground
vehicles, it is crucial to consider the performance and road limitations. Specifically, it
is imperative to ensure that the velocity of the vehicle does not surpass the predefined
maximum velocity, denoted as vM, and the maximum turning velocity, denoted as vm,
when the turning radius is r. By adhering to these constraints, we can guarantee the safe
and efficient operation of the vehicle while navigating curves.

For trajectory planning, several fundamental requirements must be met. Firstly, the
initial velocity at the starting point should be zero, and the velocity should decrease to
zero at the ending point. Additionally, the velocity should exhibit continuous changes
throughout the entire route, while ensuring that both the velocity and acceleration remain
within predefined safety limits. Moreover, the maximum speed of the vehicle should not
surpass the predefined threshold denoted as vM. When the vehicle encounters a turn,
it is crucial to adhere to a maximum speed limit denoted as vm. The primary objective
of trajectory planning is to obtain a trajectory that minimizes the overall travel time.
Given that the velocity vector is always aligned with the tangent of the road, it suffices
to plan the linear velocity at each point along the trajectory. By focusing on the linear
velocity, we can effectively address the key aspects of trajectory planning while simplifying
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the computational complexity associated with considering the full velocity vector. This
approach strikes a balance between accuracy and efficiency in trajectory planning.

P(u) =


Pcs1 ∗ C ∗ R(u− 1) u ∈ [1, 2]
Pcs2 ∗ C ∗ R(u− 2) u ∈ [2, 3]

· · · · ··
PcsN ∗ C ∗ R(u− N) u ∈ [N, N + 1]

(17)

Equation (17) shows the segmented road line model based on a fitted Bézier curve
consisting of N segments where u is the extended control variable; it represents the control
variable m for each segment of the curve, and is mapped to each point on the road line
sequentially. Because each section of the road line meets the requirements of a continuous
tangent and continuous curvature, the turning radius r at each point and the cumulative
path length S can be calculated as follows:

r(u) =
||P′(u)||3

||P′(u)× P′′(u)|| (18)

S(u) =
∫ u

1
||P′(z)||dz (19)

We can calculate the velocity limit vp at each point according to the following rules: |R|
stands for radius of curvature. When 0 < |R| < 100 m, the value of vp remains unchanged.
If 100 m < |R| < 200 m, the upper limit is vm. If the value exceeds 200 m, the value is vm.
When |R| > 200 m, the further away the fitted curve is from the bending point, the speed
of the unmanned vehicle takes vM as its upper limit, and anything exceeding vM is set to
vM. After the vp is integrated, the running time of the vehicle can be obtained. We can take
the cumulative path length S as the abscissa and the squared velocity v2 of each point as
the ordinate to construct the route-plane. For any two points (SA, v2

pA
) and (SB, v2

pB
) on the

v2
p − S curve, if the acceleration is uniform, then the movement from A to B is given by

v2
pB
− v2

pA
= 2a(SB − SA).

When lim SA − SC → 0− and lim SB − SC → 0+, this means that A and B are
infinitely close to the same point C from both sides. Then, the slope of point C on the v2

p − S
curve is 2a. To meet the constraints of the ground vehicle, the condition 2ax− ≤ 2a ≤ 2ax+
must be guaranteed.

Algorithm 2 presents the overall workflow of the route-plane trajectory planning.
The basic idea is to maximize the velocity without violating the velocity and acceleration
limits at each point, which will accordingly minimize the total travel time. First, the slope
suppression function LinePress is defined to ensure that the squared velocity is suppressed
below a set value from the starting point to satisfy the upper and lower limits on the
acceleration. Then, the starting point, ending point, point where the acceleration exceeds
the upper limit, and point where the acceleration exceeds the lower limit are processed
separately so that the linear velocity is maximized while neither the velocity nor the
acceleration violates their limits at each point.

After the squared velocity v2 is calculated for each point on the road line, the time

stamp t of each point is calculated according to t(s) =
∫ s

0
1

v(S)
dS. The lateral acceleration as

of each point is calculated according to as =
dv
dt

=
1
2
· d(v2)

dS
. The longitudinal acceleration

an is calculated according to an =
v2

r
. The trajectory planning is then complete.
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Algorithm 2: Route-plane Trajectory Planning

Input: v2
p(u), S(u), ax+, ax−

Output: v2(u)
———————————————————————————————————–;
Function Y = LinePress(Y, X, y, Xi, K) ;
if K > 0 then

[Yj, Xj]← FindNexts(Y == K · (X− Xi) + y) ;
Yi:j ← K · (Xi:j − Xi) + y ;

else
[Yj, Xj]← FindPre(Y == K · (X− Xi) + y) ;
Yj:i ← K · (Xj:i − Xi) + y ;

———————————————————————————————————–;
v2 ← v2

p ;
v2 ← LinePress(v2, S, 0, 0, 2ax+) ;
v2 ← LinePress(v2, S, 0, Send, 2ax−) ;
Is← FindIs(dv2

I−/dS < 2ax+ < dv2
I+/dS) ;

while not isempty(Is) do
I ← Is(1) ;
v2 ← LinePress(v2, S, v2

I , SI , 2ax+) ;
Is← FindIs(dv2

I−/dS < 2ax+ < dv2
I+/dS) ;

Is← FindIs(dv2
I−/dS < 2ax− < dv2

I+/dS) ;
for each I in Is do

v2 ← LinePress(v2, S, v2
I , SI , 2ax−) ;

return v2 ;

8. Experiments

For our practical experiments, we carefully chose a specific location in Jinnan District,
Tianjin, China, which spanned an area measuring 80 m in length and 60 m in width in
Figure 10a. To extract precise data pertaining to the road surface, we leveraged the pixel
information derived from aerial images. These data were subsequently processed to ob-
tain discrete values, which were then fitted to form a road line comprising segmented
Bézier curves. The trajectory planning was meticulously executed, taking into considera-
tion the operational capabilities of a real-world ground vehicle. This approach ensured a
comprehensive and accurate representation of the road environment during our experi-
mental endeavors.

In this particular instance, we establish the initial point of the road as the origin of
our data. We then proceed with a translation operation, followed by a rotation process
based on the disparity between the image coordinate system and the world coordinate
system. Additionally, we scale down the image coordinate data and external references
to ensure compatibility. Figure 10b illustrates the original data as black discrete points,
while the red discrete points represent the corrected data. Moving forward, in Figure 10c,
we observe the successful transfer of data from the image coordinate system to the world
coordinate system. At this stage, the road information contained within the image is
effectively extracted and transformed into discrete points representing the road surface
within the world coordinate system. This meticulous process ensures accurate alignment
and facilitates meaningful analysis of the road information within the broader context of
the world coordinate system.
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Figure 10. (a) Nankai road. (b) Discrete point data correction. (c) Discrete points in the world
coordinate system. (d) Route fitting based on the traditional method. (e) Route fitting based on the
proposed method. (f) Route extraction effect map.

Figure 10d presents the outcomes of road simulation utilizing the conventional road
geometric parameter model. This model, widely employed in road engineering, encom-
passes various geometric parameters that define the road’s shape and layout. As shown
in Figure 10e, we measured several road boundary points in the global coordinate system
and plotted them with the star points and road model. It can be seen from Table 2 that the
piecewise Bézier road fitting model based on the genetic algorithm proposed in this paper
is superior to the traditional method in terms of fitting effect and running speed.

Table 2. Comparison of road fitting performance based on two methods.

Road Fitting Method EV /(m) T—Model/(s)

Traditional 21.36 1.37
Proposed 19.04 0.13
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To achieve enhanced precision in parameter fitting, we employed a method wherein
we captured streaming video footage while the aerial vehicle remained stationary, thereby
obtaining multiple frames of an identical scene. Subsequently, we subjected these multi-
ple video frames to iterative processing using the road extraction and fitting algorithm.
Through this iterative approach, we were able to evaluate the performance metrics of each
frame and select the one that exhibited the most favorable outcomes as the final result.
This meticulous process ensured that the chosen frame accurately represented the road
environment, thereby contributing to the overall reliability and validity of our experimental
findings. Figure 10f shows the results for a frame with the best fitting performance index.

To comply with the performance requirements of unmanned ground vehicles, we se-
lected the following constraints on the velocity and acceleration: vM = 2 m/s, vm = 1.5 m/s,
ax+ = 1 m/s2, ax− = −0.8 m/s2, fymax /M = 0.02 m/s2.

We used Algorithm 2 for planning, and the resulting trajectory is shown in Figure 11.
Figure 11a shows the route-plane trajectory, and Figure 11b shows the resulting curve in the
t− S−V space. The v− t, v− S, and S− t curves were obtained for the observation planes
along the three coordinate axes. Figure 11c shows the curve in the t− S− as space. The
as − t, as − S, and S− t curves were obtained along the three coordinate axes. Figure 11d
shows the S− t curve. The total path length was 104.3 m, the travel time T—travel was
125.1 s, and the average velocity was 0.834 m/s.

(a) (b)

(c) (d)

Figure 11. (a) Results of the route-plane trajectory planning. (b) The planning results in the velocity
space. (c) The planning results in the acceleration space. (d) The last image shows which waypoints
should be reached at each timestamp.

9. Conclusions

We propose a sorting method based on the K-Means clustering algorithm and a
piecewise road vectorization based on the GA-Bézier algorithm to extract and fit roads
from aerial images. The road model can then be used with a dynamic model of the ground
vehicle for route-plane trajectory planning to minimize the travel time by maximizing
the velocity of the ground vehicle during turns. Practical experiments were performed to
verify the effectiveness of the method. Future work will involve incorporating the height
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information into the road extraction and using 3D reconstruction technology and machine
learning technology [22] to obtain the road in 3D space and match the actual scene more
closely. At the same time, real-time detection of drones is also a very important link. IoT
robots with artificial intelligence can be applied to various surveillance fields [23]. In the
design and implementation direction of real-time obstacle detection and obstacle-avoiding
mobile robots [24], the Internet of Things and machine learning can give us great help.
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