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Abstract: Fall risk increases with age, and one-third of adults over 65 years old experience a fall
annually. Due to the aging population, the number of falls and related medical costs will progressively
increase. Correct prediction of who will fall in the future is necessary to timely intervene in order to
prevent falls. Therefore, the aim of this scoping review is to determine the predictive value of fall risk
assessments in community-dwelling older adults using prospective studies. A total of 37 studies were
included that evaluated clinical assessments (questionnaires, physical assessments, or a combination),
sensor-based clinical assessments, or sensor- based daily life assessments using prospective study
designs. The posttest probability of falling or not falling was calculated. In general, fallers were
better classified than non-fallers. Questionnaires had a lower predictive capability compared to
the other assessment types. Contrary to conclusions drawn in reviews that include retrospective
studies, the predictive value of physical tests evaluated in prospective studies varies largely, with only
smaller-sampled studies showing good predictive capabilities. Sensor-based fall risk assessments are
promising and improve with task complexity, although they have only been evaluated in relatively
small samples. In conclusion, fall risk prediction using sensor data seems to outperform conventional
tests, but the method’s validity needs to be confirmed by large prospective studies.

Keywords: fall risk assessment; aging population; community dwelling older adults; sensor

1. Introduction

One-third of people above 65 years of age experience a fall annually, and in more than
50% of the cases, medical assistance is needed [1–3]. In addition to direct injuries, older
adults who experience a fall often suffer from fear of falling [4], reduced activity [5,6], and a
lower quality of life [5]. Due to the rapidly aging population, fall prevalence and associated
medical costs will progressively increase in the next decades.

The risk of falling increases due to extrinsic and intrinsic factors [7–9]. Extrinsic factors
are external to the individual and include poor lighting, unsafe stairs, slippery floors, a
loose carpet, or unsafe footwear [7,10]. Intrinsic factors can be divided into age-related
physiological changes, pathological predisposing factors [9], and drugs [11]. To maintain
balance, multiple physiological systems need to work in synergy, such as the sensory
system, central nervous system, and motor system [12]. Most falls in older adults are a
consequence of age-related reduction in the capacity of these neuromuscular systems [11].

Identification of older adults with increased risk of falling due to intrinsic factors
is important to enable timely prescription of fall prevention programs and assistive de-
vices, [13,14]. For this purpose, clinical fall risk assessments have been used for decades
and include questionnaires (e.g., the Falls Efficacy Scale-international (FES-i) [15] and the
Activity-specific Balance Confidence Scale (ABC-scale) [16]) or physical tests (e.g., the
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Tinetti Performance-Oriented Mobility Assessment (POMA) [17] and the Timed Up and Go
test (TUG) [18]).

In the last decade, sensor-based fall risk assessments have gained more interest, as they
have become more easily accessible by using wearable or portable sensors, provide more
data, and may be a less time-consuming approach [19,20]. Sensor data can be collected
during clinical fall-risk assessments [21,22], or during daily life activities [23,24].

Although fall prediction with sensor-based data is promising, recent reviews conclude
that such predictions are often validated against fall risk classification based on clinical tests
or fall history [25–29]. As sensor-based data are noisy, and signals of older adults may be even
more complex, external validation using prospective study designs is especially important
with sensor-based approaches in this population. Hence, reviews analyzing both prospective
and retrospective fallers may not accurately describe the predictive capability of sensor-based
approaches for future falls. Furthermore, currently, no overview of the predictive value of both
clinical tests and sensor-based approaches exists, which makes it difficult to put the predictive
value of sensor-based approaches in perspective [30]. Therefore, in this scoping review an
overview of the predictive capability of clinical and sensor-based fall risk assessment for
future falls in community-dwelling older adults is provided.

2. Methods
2.1. Search Strategy

In December 2021 the databases of Scopus, PubMed, IEEE Xplore, and Web of Science
were searched using the following search string: (fall risk predict* OR fall risk assess* OR
fall risk classif* OR fall risk measur*) AND (”older adult” OR aged OR elder* OR senior*
OR geriatric) in the title, abstract, or keywords, and all fields were searched for (accura* OR
sensitiv* OR specific*). An update of the search was performed in July 2023. Results were
exported to EndNote (EndNote X9.3.3, Philadelphia, PA, USA) for further analysis.

2.2. Selection Criteria

Duplicates, conference proceedings, books, and serials were removed from the results.
The search included 57 high-quality review articles on fall prediction published between
1988 and 2020. Therefore, the selection of high-quality studies was performed by one
author (CK) searching the references from these recently published reviews using the
following inclusion criteria: (i) inclusion of community-dwelling people with an age >60,
or the mean age minus the standard deviation being 60; (ii) use of prospective methods for
the categorization of fallers/non-fallers or low/high fall risk to avoid recall bias [31,32];
(iii) data are prescribed (or could be determined) on the number of fallers who were positive
or negative for a fall risk assessment or summary statistics (sensitivity, specificity, or area
under the curve (AUC)); and (iv) written in English or Dutch. Studies were excluded if (i)
assistance by another person was allowed during the assessment, or (ii) the focus was only
on the detection of (near) falls instead of predicting falls.

2.3. Data Extraction

Articles were categorized based on the type of fall risk assessment: clinical (without sen-
sors) or sensor-based (during clinical or ADL assessments). The following data were extracted:
number of participants, number of fallers and fall criteria, follow-up time, percentage female,
mean age (SD), and sensitivity/specificity or positive/negative likelihood ratio.

For clinical assessments, studies that reported a predictive value in multivariate
analysis and that reported validity measures were included. The specific assessment and
cut-off score were extracted. For the sensor-based assessments, sensor type, sensor location,
type of assessment, cut-off score, and validity measures were extracted.

2.4. Analysis

To compare results, we calculated the posttest probability (PoTP) for each study based
on the sensitivity/specificity or positive/negative likelihood ratio. The PoTP defines how
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much fall risk has shifted compared to the pretest probability (PrTP) [31]. For example, falls
have a prevalence of 30% in the population of older adults, so the chance of falling is 30%.
If a fall risk assessment has a +PoTP of 60%, then a person with a positive assessment has a
60% chance of falling, while the PrTP was 30%. On the other hand, if the −PoTP is 20%,
then the chance someone with a negative assessment will fall reduces from 30% to 20%.
Ideally, an assessment would have a high +PoTP and a low −PoTP, which indicates that
people with a positive assessment experience a fall, and those with a negative assessment
do not fall. The PrTP in this study is set at 30%, based on the fall risk of older adults in the
general population [1,2,33]. The PoTP is calculated based on the available measures [33].
The +PoTP is calculated as: true positives/(true positives + false positives). The −PoTP is
calculated as: 1 − (false negatives/(false negatives + true negatives)).

3. Results
3.1. Study Selection

The combination of the results from IEEE Xplore (n = 91), PubMed (n = 152), Scopus
(n = 1168), and Web of Science (n = 256) resulted in 1667 articles. After removing 437 dupli-
cates, 1230 articles were left, of which 1127 were journal articles. After scanning the titles
and abstracts, 57 reviews were included for full-text screening, from which 178 articles
were extracted. After the full-text screening of these articles, 41 prospective studies were
included. In Figure 1 the flow chart of the study selection has been displayed. Thirty
articles focused on clinical assessments, based on questionnaires or physical tests, while
two focused on sensor-based ADL assessments, and eight focused on sensor-based clinical
assessments. The results regarding the +PoTP and −PoTP are shown in Figure 2.

3.2. Clinical Assessments without Sensors

Thirty articles focused on clinical assessments without sensors and were published
between 2000 and 2018. Study characteristics are displayed in the Supplementary Material. In
total, the studies included 12,406 participants, of whom 3084 were classified as fallers based
on prospective data. The follow-up period varied from six months to three years [34–43].
The most used fall criterion was “at least one fall during follow-up” [32–36,38–42,44–56]. The
30 studies used a total of 39 different clinical assessments without sensors. These assessments
can be classified as questionnaires, questionnaires combined with physical performance, and
only physical performance.

3.3. Questionnaires

The predictive value of questionnaires was evaluated by a total of five studies evaluating
four questionnaires: the fall-risk screening test [43], the Fall Risk for Older People in the
Community Screen (FROP-Com) [53,54], the Geriatric Depression Scale (GDS) [47], and the
combination of the history of falls and independent bathing [57]. The best performance for
classification of fallers (+PoTP) based on questionnaires was found for the fall-risk screening
test (+PoTP: 52%) [43]. This test was evaluated in one study (n = 1285) with a 3-year follow-
up. It demonstrated classification of non-fallers (−PoTP) of 20% [43]. The FROP-Com
was evaluated in two studies with a 12-month follow-up and had a slightly lower +PoTP
but a slightly better −PoTP: (+PoTP: 46%, −PoTP: 17%) (n = 344) [53] and (+PoTP: 44%,
−PoTP: 18%) (n = 192) [54]. The +PoTP of the GDS was slightly better than that of the
FROP-Com (48%), yet the −PoTP was worse (24%) (n = 260) [47]. The combination of the
history of falls and independent bathing was studied by one study for one fall in 12 months
and classified non-fallers (−PoTP: 13%) better than fallers (+PoTP: 39%) (n = 192) [57].
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Figure 1. Flowchart of study selection. 

Figure 1. Flowchart of study selection.

3.4. Physical Performance

Assessments that use a stand-alone physical performance test are the alternate step
test [58], adjusted maximum step length [49], Berg Balance Scale (BBS) [37,50,56], Dynamic
Gait Index (DGI) [42], Functional Gait Assessment (FGA) [42], five-times sit-to-stand test
(FTSS) [59,60], Zur balance scale [56], getting up from lying on the floor [61], one-leg balance
(OLB) [60], Tinetti Performance-Oriented Mobility Assessment (POMA) [21,41,52,55], risk
assessment [60], stair ascent [62], test battery [48], timed gait [55,62], TUG [34,36–42,59],
and walking while talking test (WWT) [55]. The TUG had the highest predictive value,
but the +PoTP varied from 31% to 91% and the −PoTP from 7% to 29% between the nine
articles, all but one of which had a follow-up of 6 months (Supplementary Material Table
S1). The best scores (+PoTP: 91%, −PoTP: 7%) are from a small study (n = 35), where the
average of three TUG tests was used [42]. The next best results for the TUG had +PoTPs
of 55% and 48% and −PoTPs of 25% and 15% using larger sample sizes (n = 259 and
n = 60, respectively) [34,36]. The studies with the largest sample sizes for the TUG eval-
uation (n = 621 and n = 868) (2 falls) had even lower +PoTP values of 42% and 37%, and
−PoTP values of 29% and 28%, respectively [37,60].

The second-best predictor of fall risk in fallers with a physical test only was the WWT
(complex: +PoTP: 79%, −PoTP: 22%; simple:+PoTP: 65%, −PoTP: 21%) [55]. This test
was however evaluated in a single prospective study with a relatively small sample size
(n = 59), and the results should therefore be interpreted with caution. These same limitations
(n = 94) hold for the studies on the Zur balance scale (+PoTP: 74%, −PoTP: 16%) [56], FGA
(FGA) (+PoTP: 71%, −PoTP: 0.00%) [42], the DGI (+PoTP: 64%, −PoTP: 0.00%) [42], the
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classification tree (+PoTP: 53%, −PoTP: 15%) [39], and the test battery (+PoTP: 27%, −PoTP:
33%) [48]. The POMA was verified in four studies, but in distinct forms: the complete short
assessment (full POMA) [21,41], the balance part of the short assessment only (14-item
balance assessments) [21,55], and the balance part of the long assessment only (nine-task
balance part) [52]. The different forms have comparable posttest probabilities: The full
POMA (n = 180 +PoTP: 50%, −PoTP: 27% [41], n = 131 +PoTP: 63%, −PoTP: 15% [21]),
14-item balance assessments (n = 225 +PoTP: 38%,−PoTP: 20% [55], n = 131 +PoTP: 65%,
−PoTP: 20% [21]) and the nine-task balance part (n = 59 +PoTP: 48%,−PoTP: 18%) [52].

The risk model for recurrent falls [61], performance-based FRAT (6) (+PoTP: 62%,
−PoTP: 23%) (n = 362) [58], and getting up from lying on the floor (+PoTP: 55%, −PoTP:
25%) (n = 307) [62] demonstrated good predictive value in large cohort studies. Tiedemann
et al. (2010) compared several cut-off scores for the performance-based FRAT (0–1, 2–3, 4–5,
6) and reported the best posttest probabilities with a cut-off of 6 [58]. Timed gait was used
in different tasks. In the study of Verghese et al. (2002) (n = 59), the duration of a participant
walking 6 m, turning, and returning at a normal walking speed was measured [55], while
Tiedemann et al. (2008) (n = 347) timed a 6 m straight walk at a normal pace [63]. The timed
gait with turn showed a slightly better predictive value (+PoTP: 52%, −PoTP: 24%) [52]
than the test without the turn (+PoTP: 40%, −PoTP: 24%) [60].

3.5. Sensor-Based Clinical Assessments

The performance of identification of fallers using sensor-based clinical assessment
is dependent on the task, the sensor location, feature extraction, and the classification
method. The tasks used in the prospective sensor-based studies were standardized walking
tests [21,64–68], of which five only used data from straight walking, one used straight
walking and turns during a 6 min walk test (6MWT) [64], one used a five-times sit-to-stand
test [69], and several used TUG tests [70] (Table 1). Sensors were worn on various locations
of the body, namely the sternum (2×), at L3 on the back (2×), and on the lower back in
combination with a shank (4×), of which two studies also placed an accelerometer on the
head. Only the study of Atrsaei classified more than 50 people as fallers [69].

The study of Drover et al. analyzing both straight walking and turning concluded that
analyzing turning (+PoTP: 59%, −PoTP: 17%) and turning and straight walking (+PoTP: 58%,
−PoTP: 18%) had a higher predictive value than straight walking alone (+PoTP: 33%, −PoTP:
26%) [65]. For analysis, the maximum, mean, and SD of acceleration in all directions of the
three axes, acceleration frequency, and ratio of even/odd harmonics from sensors on the
shank were used in combination with a random forest classifier. That turns are important is in
agreement with the results are of Bet et al. [70], who used the TUG test, which also includes a
turn (+PoTP: 56%, −PoTP: 14%). On the contrary, Artsaei et al. [69], which used a sit-to-stand
test, was by far the largest study using a sensor-based approach (n = 458) and had a lower
predictive value (+PoTP: 44%, −PoTP: 21%). Howcroft, Koftmann, and Lemaire (2017 and
2018) compared sensor locations for optimal classification of prospective falls [66,67]. They
analyzed single-task (ST) and dual-task (DT) walking with sensors on the head, pelvis, ankles,
and with a pressure insole [66,67] using a vector machine (SVM) and neural networks. Based
on their prospective study results, they conclude that in DT the pelvis accelerometer had
the best single-sensor predictive capability, while in ST the head location performed better.
Overall, their conclusion was that multi-location sensors outperformed the single-sensor
approach. Bizovska et al. (2018) used sensors on the trunk and shanks and found that the
sensors on the shanks did not contribute to a distinction between fallers and non-fallers [21].
In this study the trunk medial–lateral (ML) acceleration in the short term (slopes of mean
log divergence curve between 0 and 0.5 stride) and Lyapunov exponents (stLE) had the best
predictive power during a 25 m straight walk (+PoTP: 60%, −PoTP: 19%). Doi et al. found
that the harmonic rate in the vertical direction of the sensor on the upper trunk was the
discriminating factor for a 15 m straight walk (+PoTP: 65%, −PoTP: 14%) [64].
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Table 1. Overview study characteristics and results of sensor-based assessments.

Author Total
(n)

Female
(%)

Mean Age
(SD) Fallers Fall

Criteria
Follow-Up Time

(Months)
Type of
Sensor Sensor Position Assessment Analyzed +PoTP −PoTP

Atrsaei,
2021 [69] 458 57 74.9 (1.4) 108

>=2 or >=1
injury due

to fall

12, fall calendar
report monthly

1 3D
accelerometer

1 3D gyroscope
Sternum 5xSTS 44% 21%

Bet, 2022
[70] 73 56 70.2 (6.7) 15 >=1

12, fall journal
contacted every 3

months

1 3D
accelerometer Waist, L3 TUG,

TUG-DT 56% 14%

Bizovska,
2018 [21] 131 NR

NF: 70.5
(6.4)

MF: 71.2
(5.3)

SF: 35
MF: 15 >=2

12, every 14 days
called to report

3 3D
accelerometers

Trunk (near L5)
Left and right shank

(15 cm above malleolus)
25 m walking

Trunk stLE ML 60% 19%

Tinetti balance score, trunk stLE ML 47% 20%

Tinetti total score, trunk stLE ML 57% 7%

Tinetti balance score,
Tinetti total score,

trunk stLE ML
55% 11%

Doi, 2013
[64] 73 78.1 80.3 SF: 16 >=1 12, self-reporting

weekly collection
2 3D

accelerometers
Upper trunk (C7)
Lower trunk (L3) 15 m walking 65% 14%

Drover,
2017 [65] 71 NR 74.15 (7.0) SF: 28 >=1

6, fall occurrence
survey after 6

months
3 accelerometers

Lower back
Left and right lateral shank

Acc: posterior head
6MWT 57% 18%

Howcroft,
2017 [66] 19 58.7 75.2 (6.6) SF: 7 >=1

6, fall calendar
report monthly

1 accelerometer,
1 pressure sensor

Lower back
Lateral shank just above the

ankle Pressure insole: plantar
H-RS H-P-LS

Acc: posterior head

7.62 m
walking (ST,

DT
and 6MWT

(ST)

single-task walking
dual-task walking 34% 27%

single-task walking 33% 28%

dual-task walking 36% 27%

Howcroft,
2018 [67] 19 58.7 75.2 (6.6) SF: 7 >=1 6, fall calendar

report monthly
1 accelerometer,

1 pressure sensor

Lower back
Lateral shank just above the

ankle Pressure insole: plantar
ST Walking 20% 65%

Ihlen, 2018
[23] 303 SF: 51

ME: 48.8

SF:76 (6.8)
MF: 75.9

(6.7)

SF: 58
MF: 46

>=1
>=2

12, monthly
phone calls

1 3D
accelerometer Lower back 1-week ADL

PGME 60% 13%

Conventional
gait and

demographic
variables

52% 18%

Fall history 38% 25%

All combined 62% 12%

PGME 74% 14%

Conventional
gait and

demographic
variables

59% 11%

Fall history 40% 23%
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Table 1. Cont.

Author Total
(n)

Female
(%)

Mean Age
(SD) Fallers Fall

Criteria
Follow-Up Time

(Months)
Type of
Sensor Sensor Position Assessment Analyzed +PoTP −PoTP

Lockhart
2021 [68] 44 NR 73.0 (8.0) SF: 9 >=1 6, self-report 1 3D

accelerometer Sternum 10 m walk 65% 7%

Weiss, 2013
[24] 71 65 78.36 (4.71) MF: 12 >=2 6

1 3D
accelerometer

1 3D gyroscope
Lower back 3-day ADL

All combined 64% 8%

Dynamic gait index (without sensors) 87% 23%

DGI (without sensors) + 3-day
acceleration-derived 100% 10%

6MWT: 6 min walk test, Accel: accelerometer, ADL: activities of daily living, DGI: Dynamic Gait Index, DT: dual-task, INF: infinity, MF: multi-faller, PGME: phase-dependent generalized
multiscale entropy, SF: single faller, ST: single-task, stLE ML: short-term Lyapunox exponents, TUG: Timed-Up and Go. +PoTP = positive posttest probability. −PoTP = negative posttest
probability.
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3.6. Sensor-Based ADL Assessments

Two studies used sensors in daily living, one for three days [24] and one for a week [23].
Both studies used a fall criterion of two falls in 6 months and made use of accelerometer
data from the lower back (lumbar spine). Weiss et al. combined the 3-day measurements
with the Dynamic Gait Index (DGI) in 71 participants, of whom 12 were fallers. Fallers and
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non-fallers could be classified by the total activity duration, DGI, and the anterior–posterior
acceleration range and width, extracted from the frequency in the power spectral density [24].
The combination of DGI and 3-day ADL had a sublime result of a +PoTP of 100% and a
−PoTP of 10% [24]. Ihlen et al. used phase-dependent generalized multiscale entropy (PGME)
to define time series irregularities in 303 participants. They investigated the high-frequency
intra-step modulation of trunk acceleration signals of walking [23] and found a +PoTP of 74%
and a −PoTP of 14% [23]. Combining the fall history, conventional gait, and demographic
variables with the sensor data resulted in a worse +PoTP (64%) and a better −PoTP (8%).

4. Discussion

The aim of this scoping review was to provide an overview of the predictive capability
of clinical fall assessment tools and sensor-based approaches in community-dwelling older
adults. In general, all assessment tools classified fallers better than non-fallers. Across
the different clinically used tools, questionnaires had a lower predictive value compared
to physical tests. Sensor-based assessment seems to outperform clinical tests when using
complex tasks such as turning, although the reliability of these results is limited due to the
studies’ small sample sizes.

In this scoping review, we defined the predictive capability using the posttest probabil-
ity, where a higher +PoTP means falls can be more accurately predicted. As approximately
30% of older adults fall each year [1,2,33], we define a cut-off above a correct prediction of
fallers of 55%. This means 25% more falls are predicted than could be expected based on
chance. Questionnaires had a lower predictive capability than the other assessment types,
as no study evaluating questionnaires found a +PoTP value above 52%. The predictive
value was improved by combining questionnaires with physical performance tests and/or
including specific questions about fall history or medication use. However, taking fall
history into account has its limitations, as it cannot be used to predict who is at risk of falling
for the first time. Therefore, although easy to administer, the usability of questionnaires to
predict future falls is currently limited.

Physical clinical fall assessment tools such as TUG, BBS, and FTSS have been evaluated
by multiple studies but do not show high predictive capability for prospective falls in larger
trials. All studies using the TUG, except for one (+PoTP of 91%) which only included six
fallers [42], showed a +PoTP of 55% or lower, indicating that falls cannot be accurately
predicted. The same holds true for the FTSS and BBS, where only a relatively small-sampled
study [54] was promising, while the larger studies showed insufficient predictive capability,
with +PoTP scores of <48% [37,50]. Newer clinical tests such as the risk model for recurrent
falls, performance-based FRAT, and getting up from lying on the floor showed promising
predictive values (+PoTP > 55%) in studies with moderate sample sizes (N between 145–303).
However, given that larger studies tend to have a lower predictive capability, and that the
predictive value depends largely on the cut-off score used [58], it is too early to conclude
that these tests perform better. The relatively low predictive capability of physical tests is
in contrast with the review of Lusardi et al. (2017), who concluded that the BBS, TUG, and
FTSS are currently the most evidence-supported functional measures to determine individual
fall risk. However, this review included retrospective studies [33], for which much better
associations between TUG, BBS, and FTSS and falls have been reported, as demonstrated by
Beauchet et al. (2011) [30].

Sensor-based assessments demonstrate promising predictive capability in relatively
small samples, although the predictive capability depends on the task complexity, the
location of the sensor, and feature extraction. The current studies mainly used 3D ac-
celerometers placed on the back or sternum and analyzed sensor data of standardized
tests, both due to convenience. Potentially, other sensor locations, such as the head, are
more suitable to detect changes in movement, as human motor control aims to stabilize
head positioning. This is supported by the findings of Howcraft et al. [65–67], where the
head was the best predictor during straight walking. However, during a double task, the
pelvis sensor performed better, indicating that the best location may be task-specific. Fur-
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thermore, even with a head sensor, straight walking does not yield enough discriminative
information to predict fallers, as the +PoTP was below 40%. More complex tasks such as
turning during walking [65], multiple TUG tests [70], or dual-task walking [66] showed
better predictability, which is also in line with the previous review of Bayot et al. (2020) [71].
This indicates that to be able to discriminate future fallers from non-fallers, more complex
tasks than straight walking need to be performed.

A potential advantage of sensor-based approaches is the ability to conduct measure-
ments in daily life, where complex tasks are performed constantly. In our scope, we
identified only two studies collecting sensor data in daily life, both showing good pre-
dictive capability (+PoTP > 74%) [23,24]. The sensor was placed on the lower back in
both studies, which might not be the most sensitive location for detection of movement
alterations. A disadvantage of measuring in daily life is the complexity of data processing
due to the variation in tasks and environments. Consequently, collecting sensor data during
a complex standardized task might be more easily implemented.

5. Limitations and Future Work

In this work, we aimed to provide an overview of the existing evidence of both
traditional clinical fall assessment tools and sensor-based approaches. By using a scoping
method, we are confident that we have included the majority of the relevant literature,
although, as no systematic approach was used, we may have missed relevant studies. A
strength is the inclusion of only prospective studies, as inclusion of studies classifying
fallers based on retrospective falls can lead to an overestimation of the predictive value
of a method. Furthermore, we recalculated the fall prediction of each study to a posttest
probability, meaning direct comparison between studies was possible. Our scope suggests
that sensor-based fall risk assessment potentially outperforms traditional assessments,
which warrants large, high-quality prospective studies to assure the reliability of the sensor-
based approaches. Future research should aim to determine the best location of the sensors
and the proper task to perform with the sensors in use.

6. Conclusions

The use of sensors during clinical tests or daily life has the potential to improve pre-
diction of future falls compared to standardized clinical tests. However, large prospective
studies to better determine the predictive capability and select the most suitable sensor
location and tasks are warranted to fulfill this potential.
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