Validation of an Ear-Worn Wearable Gait Analysis Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Parameters
2.4. Procedures
2.5. Data Process
2.6. Statistical Analysis
3. Results
3.1. Participants
3.2. Validity
3.3. Agreement and Heteroscedasticity Test
4. Discussion
4.1. Potential Application of Ear-Worn Wearable Device
4.2. Comparison with Other Wearable Devices
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IVLR | Instantaneous vertical loading rate |
VO | Vertical oscillation |
3D | Three-dimensional |
GRF | Ground reaction force |
ICC | Intra-class correlation coefficient |
CI | Confidence interval |
LOA | Limits of agreement |
References
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef]
- Rosso, A.L.; Studenski, S.A.; Chen, W.G.; Aizenstein, H.J.; Alexander, N.B.; Bennett, D.A.; Black, S.E.; Camicioli, R.; Carlson, M.C.; Ferrucci, L. Aging, the central nervous system, and mobility. J. Gerontol. Ser. A 2013, 68, 1379–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVita, P.; Hortobagyi, T.; Allen, J.L.; Franz, J.R.; Mani, D.; Almuklass, A.M.; Hamilton, L.D.; Vieira, T.M.; Botter, A.; Enoka, R.M.; et al. Age causes a redistribution of joint torques and powers during gait. J. Appl. Physiol. 2000, 88, 1804–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerrigan, D.; Todd, M.K.; Della Croce, U.; Lipsitz, L.A.; Collins, J.J. Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments. Arch. Phys. Med. Rehabil. 1998, 79, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ramírez, A.; Martinikorena, I.; Gómez, M.; Lecumberri, P.; Millor, N.; Rodriguez-Mañas, L.; García, F.J.G.; Izquierdo, M. Frailty assessment based on trunk kinematic parameters during walking. J. NeuroEngineering Rehabil. 2015, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Ebersbach, G.; Sojer, M.; Valldeoriola, F.; Wissel, J.; Müller, J.; Tolosa, E.; Poewe, W. Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain 1999, 122, 1349–1355. [Google Scholar] [CrossRef] [Green Version]
- Egerton, T.; Williams, D.R.; Iansek, R. Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults. BMC Neurol. 2012, 12, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napier, C.; Cochrane, C.K.; Taunton, J.E.; Hunt, M.A. Gait modifications to change lower extremity gait biomechanics in runners: A systematic review. Br. J. Sports Med. 2015, 49, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Moore, I.S. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy. Sports Med. 2016, 46, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Chuter, V.H.; de Jonge, X.A.K.J. Proximal and distal contributions to lower extremity injury: A review of the literature. Gait Posture 2012, 36, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Noehren, B.; Davis, I.; Hamill, J. ASB Clinical Biomechanics Award Winner 2006: Prospective study of the biomechanical factors associated with iliotibial band syndrome. Clin. Biomech. 2007, 22, 951–956. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Nikooyan, A.A. The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clin. Biomech. 2011, 26, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Luedke, L.E.; Heiderscheit, B.C.; Williams, D.S.B.; Rauh, M.J. Influence of Step Rate on Shin Injury and Anterior Knee Pain in High School Runners. Med. Sci. Sports Exerc. 2016, 48, 1244–1250. [Google Scholar] [CrossRef]
- Quinn, T.J.; Dempsey, S.L.; LaRoche, D.P.; Mackenzie, A.M.; Cook, S.B. Step Frequency Training Improves Running Economy in Well-Trained Female Runners. J. Strength Cond. Res. 2021, 35, 2511–2517. [Google Scholar] [CrossRef]
- Simon, S.R. Quantification of human motion: Gait analysis—Benefits and limitations to its application to clinical problems. J. Biomech. 2004, 37, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait Posture 2018, 63, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Głowiński, S.; Błażejewski, A.; Królikowski, T.; Knitter, R. Gait Recognition: A Challenging Task for MEMS Signal Identification. In Sustainable Design and Manufacturing 2019; Ball, P., Huatuco, L.H., Howlett, R., Setchi, R., Eds.; Springer: Singapore, 2019; pp. 473–483. [Google Scholar] [CrossRef]
- Fusca, M.; Negrini, F.; Perego, P.; Magoni, L.; Molteni, F.; Andreoni, G. Validation of a Wearable IMU System for Gait Analysis: Protocol and Application to a New System. Appl. Sci. 2018, 8, 1167. [Google Scholar] [CrossRef] [Green Version]
- Brodie, M.A.D.; Coppens, M.; Lord, S.R.; Lovell, N.; Gschwind, Y.J.; Redmond, S.J.; Del Rosario, M.; Wang, K.; Sturnieks, D.L.; Persiani, M.; et al. Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different. Med. Biol. Eng. Comput. 2015, 54, 663–674. [Google Scholar] [CrossRef]
- Wahab, Y.; Bakar, N.A. Gait Analysis Measurement for Sport Application Based on Ultrasonic System. In Proceedings of the 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), Singapore, 14–17 June 2011; pp. 20–24. [Google Scholar]
- Norris, M.; Anderson, R.; Kenny, I.C. Method analysis of accelerometers and gyroscopes in running gait: A systematic review. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2013, 228, 3–15. [Google Scholar] [CrossRef]
- Zeagler, C. Where to wear it: Functional, technical, and social considerations in on-body location for wearable technology 20 years of designing for wearability. In Proceedings of the 2017 ACM International Symposium on Wearable Computers (ISWC 2017), Maui, HI, USA, 11–15 September 2017; pp. 150–157. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Pinillos, F.; Latorre-Román, P.; Soto-Hermoso, V.M.; Párraga-Montilla, J.A.; Pantoja-Vallejo, A.; Ramírez-Campillo, R.; Roche-Seruendo, L.E. Agreement between the spatiotemporal gait parameters from two different wearable devices and high-speed video analysis. PLoS ONE 2019, 14, e0222872. [Google Scholar] [CrossRef] [Green Version]
- Cicchetti, D.V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Xu, J.K.; Lee, U.H.; Bao, T.; Huang, Y.J.; Sienko, K.H.; Shull, P.B.; IEEE. Wearable sensing and haptic feedback research platform for gait retraining. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks, Eindhoven, The Netherlands, 9–12 May 2017; pp. 125–128. [Google Scholar]
- Milner, C.E.; Davis, I.S.; Hamill, J. Free moment as a predictor of tibial stress fracture in distance runners. J. Biomech. 2006, 39, 2819–2825. [Google Scholar] [CrossRef] [PubMed]
- Zifchock, R.A.; Davis, I.; Hamill, J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 2006, 39, 2792–2797. [Google Scholar] [CrossRef] [PubMed]
- Clansey, A.C.; Hanlon, M.; Wallace, E.; Nevill, A.; Lake, M.J. Influence of Tibial Shock Feedback Training on Impact Loading and Running Economy. Med. Sci. Sports Exerc. 2014, 46, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Chan, Z.Y.; Zhang, J.H.; Au, I.P.; An, W.W.; Shum, G.L.; Ng, G.Y.; Cheung, R.T.H. Gait Retraining for the Reduction of Injury Occurrence in Novice Distance Runners: 1-Year Follow-up of a Randomized Controlled Trial. Am. J. Sports Med. 2017, 46, 388–395. [Google Scholar] [CrossRef]
- Drużbicki, M.; Przysada, G.; Guzik, A.; Brzozowska-Magoń, A.; Kołodziej, K.; Nieroda, A.W.; Majewska, J.; Kwolek, A. The Efficacy of Gait Training Using a Body Weight Support Treadmill and Visual Biofeedback in Patients with Subacute Stroke: A Randomized Controlled Trial. BioMed Res. Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agresta, C.; Hall, J. Gait Retraining for Injured and Healthy Runners using Augmented Feedback: A Systematic Literature Review. J. Orthop. Sport. Phys. Ther. 2015, 45, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Chamorro-Moriana, G.; Moreno, A.J.; Sevillano, J.L. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review. Sensors 2018, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- van Gelder, L.M.; Barnes, A.; Wheat, J.S.; Heller, B.W. The use of biofeedback for gait retraining: A mapping review. Clin. Biomech. 2018, 59, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.; Pozzi, F.; Carroll, A.; Rombach, A.; Zeni, J. Validity and Reliability of a Commercial Fitness Watch for Measuring Running Dynamics. J. Orthop. Sports Phys. Ther. 2016, 46, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.; Skovsgaard, N.M. Reliability and Validity of Garmin Forerunner 735XT for Measuring Running Dynamics in-Filed. Sport Science Technology. Semester Thesis, Aalborg University, Aalborg, Denmark, June 2017. [Google Scholar]
- Gindre, C.; Lussiana, T.; Hebert-Losier, K.; Morin, J.-B. Reliability and validity of the Myotest for measuring running stride kinematics. J. Sports Sci. 2015, 34, 664–670. [Google Scholar] [CrossRef]
- Sensixa EARL1 Ear Worn Activity Recognition Sensor User Manual. Available online: https://usermanual.wiki/Sensixa/EARL1/html (accessed on 7 January 2023).
- Atallah, L.; Wiik, A.; Jones, G.G.; Lo, B.; Cobb, J.P.; Amis, A.; Yang, G.-Z. Validation of an ear-worn sensor for gait monitoring using a force-plate instrumented treadmill. Gait Posture 2012, 35, 674–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, Y.; Ma, Y.; Xu, D.; Chen, W.; Wang, Y. A novel gait parameter estimation method for healthy adults and postoperative patients with an ear-worn sensor. Physiol. Meas. 2020, 41, 05NT01. [Google Scholar] [CrossRef] [PubMed]
Parameter | Definition | Unit | |
---|---|---|---|
Running | Cadence | Number of steps taken per minute | steps/min |
Stance time | Time duration that one foot is in contact with the ground | s | |
Flight time | Time duration that neither foot is in contact with the ground | s | |
Peak force | Peak value of vertical ground reaction force | G | |
IVLR | The steepest slope of vertical ground reaction force | G/s | |
Vertical oscillation | Vertical displacement of center of mass between steps | m | |
Walking | Cadence | Number of steps taken per minute | steps/min |
Single support time | Time duration that either one foot is in contact with the ground | s | |
Double support time | Time duration that both feet are in contact with the ground | s | |
IVLR | The steepest slope of vertical ground reaction force | G/s | |
Vertical oscillation | Vertical displacement of center of mass between steps | m |
n | Age, Years | Height, cm | Weight, kg | |
---|---|---|---|---|
Male | 10 | 25.2 ± 2.6 (25.5) | 172.4 ± 8.0 (173.2) | 68.4 ± 12.3 (75.3) |
Female | 10 | 27.2 ± 3.0 (27.0) | 162.4 ± 6.4 (160.0) | 55.6 ± 6.7 (53.1) |
Parameter | ICC | Lower CI | Upper CI | p | |
---|---|---|---|---|---|
Running | Cadence (steps/min) | 1.000 | 1.000 | 1.000 | <0.001 |
Stance time (s) | 0.958 | 0.930 | 0.975 | <0.001 | |
Flight time (s) | 0.960 | 0.933 | 0.976 | <0.001 | |
Peak force (G) | 0.975 | 0.959 | 0.985 | <0.001 | |
IVLR (G/s) | 0.928 | 0.879 | 0.957 | <0.001 | |
Vertical oscillation (m) | 0.937 | 0.870 | 0.966 | <0.001 | |
Walking | Cadence (steps/min) | 1.000 | 1.000 | 1.000 | <0.001 |
Single support time (s) | 0.979 | 0.962 | 0.988 | <0.001 | |
Double support time (s) | 0.969 | 0.945 | 0.982 | <0.001 | |
IVLR (G/s) | 0.953 | 0.920 | 0.972 | <0.001 | |
Vertical oscillation (m) | 0.986 | 0.976 | 0.991 | <0.001 |
Parameter | Mean Difference | Relative Mean Difference (%) | Lower LOA | Upper LOA | r2 | |
---|---|---|---|---|---|---|
Running | Cadence (steps/min) | −0.029 | −0.02 | −0.468 | 0.411 | 0.004 |
Stance time (s) | −0.001 | −0.37 | −0.024 | 0.022 | 0.050 | |
Flight time (s) | 0.001 | 1.11 | −0.022 | 0.024 | 0.000 | |
Peak force (G) | 0.012 | 0.54 | −0.133 | 0.157 | 0.022 | |
IVLR (G/s) | 0.183 | 0.22 | −28.146 | 28.512 | 0.076 | |
Vertical oscillation (m) | −0.003 | −3.68 | −0.017 | 0.010 | 0.062 | |
Walking | Cadence (steps/min) | −0.002 | 0.00 | −0.491 | 0.486 | 0.055 |
Single support time (s) | 0.004 | 1.08 | −0.021 | 0.030 | 0.068 | |
Double support time (s) | −0.004 | −3.27 | −0.030 | 0.021 | 0.267 | |
IVLR (G/s) | 0.752 | 4.31 | −4.635 | 6.139 | 0.009 | |
Vertical oscillation (m) | 0.000 | 0.37 | −0.006 | 0.006 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, C.K.; Kim, J.; Rhim, H.C. Validation of an Ear-Worn Wearable Gait Analysis Device. Sensors 2023, 23, 1244. https://doi.org/10.3390/s23031244
Jung CK, Kim J, Rhim HC. Validation of an Ear-Worn Wearable Gait Analysis Device. Sensors. 2023; 23(3):1244. https://doi.org/10.3390/s23031244
Chicago/Turabian StyleJung, Chang Keun, Jinkyuk Kim, and Hye Chang Rhim. 2023. "Validation of an Ear-Worn Wearable Gait Analysis Device" Sensors 23, no. 3: 1244. https://doi.org/10.3390/s23031244
APA StyleJung, C. K., Kim, J., & Rhim, H. C. (2023). Validation of an Ear-Worn Wearable Gait Analysis Device. Sensors, 23(3), 1244. https://doi.org/10.3390/s23031244