Compressed Sensing Data with Performing Audio Signal Reconstruction for the Intelligent Classification of Chronic Respiratory Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Audio Cleaning and Normalization
- Thresholding;
- Signal smoothing;
- Detrending;
- Audio loudness normalization;
- Normalization.
2.2. Wavelet Transform
2.3. Compressed Sensing
- Incoherence;
- Sparsity.
2.4. Dictionary Learning
2.5. Singular Value Decomposition
2.6. Signal Reconstruction Metrics
2.6.1. Summary of Extracted Features
2.6.2. Signal Reconstruction Results
2.6.3. Summary of Signal Reconstruction
2.7. Classification
Classification Metrics
3. Results
3.1. Healthy and COPD Classification Results
3.2. Healthy, COPD, and Pneumonia Classification Results
3.3. Summary of Classification Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pauwels, R.A.; Rabe, K.F. Burden and Clinical Features of Chronic Obstructive Pulmonary Disease (COPD). Lancet 2004, 364, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Viniol, C.; Vogelmeier, C.F. Exacerbations of COPD. Eur. Respir. Rev. 2018, 27, 170103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Chronic Obstructive Pulmonary Disease (COPD). 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 10 October 2021).
- Rabe, K.F.; Hurst, J.R.; Suissa, S. Cardiovascular Disease and COPD: Dangerous Liaisons? Eur. Respir. Rev. 2018, 27, 180057. [Google Scholar] [CrossRef]
- Min, X.; Yu, B.; Wang, F. Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD. Sci. Rep. 2019, 9, 2362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- British Lung Foundation. The battle for breath—The economic burden of lung disease—British Lung Foundation. British Lung Foundation. 2021. Available online: https://www.blf.org.uk/policy/economic-burden (accessed on 18 November 2021).
- Perna, D.; Tagarelli, A. Deep Auscultation: Predicting Respiratory Anomalies and Diseases via Recurrent Neural Networks. In Proceedings of the 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), Cordoba, Spain, 5–7 June 2019; pp. 50–55. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.; Madabhavi, I.; Niranjan, N.; Dogra, M. Auscultation of the Respiratory System. Ann. Thorac. Med. 2015, 10, 158–168. [Google Scholar] [CrossRef]
- Grønnesby, M.; Solis, J.C.A.; Holsbø, E.; Melbye, H.; Bongo, L.A. Feature Extraction for Machine Learning Based Crackle De-tection in Lung Sounds from a Health Survey. arXiv 2017, arXiv:1706.00005. [Google Scholar]
- Khan, S.I.; Pachori, R.B. Automated Classification of Lung Sound Signals Based on Empirical Mode Decomposition. Expert Syst. Appl. 2021, 184, 115456. [Google Scholar] [CrossRef]
- Serbes, G.; Ulukaya, S.; Kahya, Y.P. Precision Medicine Powered by pHealth and Connected Health. IFMBE Proc. 2017, 66, 45–49. [Google Scholar] [CrossRef]
- Kandaswamy, A.; Kumar, C.S.; Ramanathan, R.P.; Jayaraman, S.; Malmurugan, N. Neural Classification of Lung Sounds Using Wavelet Coefficients. Comput. Biol. Med. 2004, 34, 523–537. [Google Scholar] [CrossRef]
- Oletic, D.; Bilas, V. Asthmatic Wheeze Detection from Compressively Sensed Respiratory Sound Spectra. IEEE J. Biomed. Health 2018, 22, 1406–1414. [Google Scholar] [CrossRef]
- Charleston-Villalobos, S.; González-Camarena, R.; Chi-Lem, G.; Aljama-Corrales, T. Crackle Sounds Analysis by Empirical Mode Decomposition. IEEE Eng. Med. Biol. 2007, 26, 40–47. [Google Scholar] [CrossRef]
- Stankovi, L.; Mandi, D.; Dakovi, M.; Brajovi, M. Time-Frequency Decomposition of Multivariate Multicomponent Signals. Signal Process. 2018, 142, 468–479. [Google Scholar] [CrossRef]
- Chen, X.; Du, Z.; Li, J.; Li, X.; Zhang, H. Compressed Sensing Based on Dictionary Learning for Extracting Impulse Components. Signal Process. 2014, 96, 94–109. [Google Scholar] [CrossRef]
- Rocha, B.M.; Filos, D.; Mendes, L.; Vogiatzis, I.; Perantoni, E.; Kaimakamis, E.; Natsiavas, P.; Oliveira, A.; Jácome, C.; Marques, A.; et al. Precision Medicine Powered by pHealth and Connected Health. In Proceedings of the ICBHI 2017, Thessaloniki, Greece, 18–21 November 2017; pp. 33–37. [Google Scholar] [CrossRef]
- Tariq, Z.; Shah, S.K.; Lee, Y. Lung Disease Classification using Deep Convolutional Neural Network. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; Available online: https://ieeexplore.ieee.org/document/8983071 (accessed on 29 September 2022).
- Ko, T.; Peddinti, V.; Povey, D.; Khudanpur, S. Audio Augmentation for Speech Recognition. Interspeech 2015, 2015, 3586–3589. [Google Scholar] [CrossRef]
- Salamon, J.; Bello, J.P. Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification. IEEE Signal. Proc. Lett. 2016, 24, 279–283. [Google Scholar] [CrossRef]
- Tariq, Z.; Shah, S.K.; Lee, Y. Multimodal Lung Disease Classification Using Deep Convolutional Neural Network. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 1 September 2020; pp. 2530–2537. [Google Scholar] [CrossRef]
- Haider, N.S.; Periyasamy, R.; Joshi, D.; Singh, B.K. Savitzky-Golay Filter for Denoising Lung Sound. Braz. Arch. Biol. Technol. 2018, 61, e18180203. [Google Scholar] [CrossRef]
- Cohen, M.X. Fundamentals of Time-Frequency Analyses in Matlab/Octave; Kindle Edition; Amazon.co.uk: London, UK, 2014; p. 47. [Google Scholar]
- Shiryaev, A.D.; Korenbaum, V.I. Frequency Characteristics of Air-Structural and Structural Sound Transmission in Human Lungs. Acoust Phys+ 2013, 59, 709–716. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Candes, E.J.; Wakin, M.B. An Introduction to Compressive Sampling. IEEE Signal. Proc. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Brunton, S.; Kutz, N. Data-Driven Science and Engineering Machine Learning, Dynamic Systems, And Control Systems, 1st ed.; Cambridge University Press: Cambridge, UK, 2019; p. 90. [Google Scholar]
- Tosic, I.; Frossard, P. Dictionary Learning. IEEE Signal. Proc. Mag. 2011, 28, 27–38. [Google Scholar] [CrossRef]
- Junge, M.; Lee, K. Generalized Notions of Sparsity and Restricted Isometry Property. Part I: A Unified Framework. Inf. Inference J. IMA 2019, 9, 157–193. [Google Scholar] [CrossRef]
- Gangannawar, S.A.; Siddmal, S.V. Compressed Sensing Reconstruction of an Audio Signal Using OMP—ProQuest. Int. J. Adv. Comput. Res. 2015, 5, 75–79. [Google Scholar]
- Zheng, Y.; Guo, X.; Jiang, H.; Zhou, B. An Innovative Multi-Level Singular Value Decomposition and Compressed Sensing Based Framework for Noise Removal from Heart Sounds. Biomed. Signal. Process. 2017, 38, 34–43. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016. [Google Scholar]
- Sun, Z.; Wang, G.; Su, X.; Liang, X.; Liu, L. Similarity and Delay between Two Non-Narrow-Band Time Signals. arXiv 2020, arXiv:2005.02579. [Google Scholar]
- Scikit-Learn Developers. 2.1. Gaussian Mixture Models; [Online] Scikit-Learn. 2021. Available online: https://scikit-learn.org/stable/modules/mixture.html (accessed on 10 October 2021).
- Written, I.; Frank, E.; Hall, M.; Pal, C. Data Mining, Practical Machine Learning Tools and Techniques, 4th ed.; Kindle Edition; Elsevier: Montreal, QC, Canada, 2017. [Google Scholar]
- Bruce, P.; Bruce, A.; Gedeck, P. Practical Statistics for Data Scientists, 2nd ed.; Kindle Edition; O’Reilly: Farnham, UK, 2020. [Google Scholar]
- Chambres, G.; Hanna, P.; Desainte-Catherine, M. Automatic Detection of Patient with Respiratory Diseases Using Lung Sound Analysis. In Proceedings of the 2018 International Conference on Content-Based Multimedia Indexing (CBMI), La Rochelle, France, 4–6 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bohadana, A.; Izbicki, G.; Kraman, S.S. Fundamentals of Lung Auscultation. N. Engl. J. Med. 2014, 370, 2052–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, U.; Bhosale, S.; Chakraborty, R.; Kopparapu, S.K. Deeplung Auscultation Using Acoustic Biomarkers for Abnormal Respiratory Sound Event Detection. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 1305–1309. [Google Scholar] [CrossRef]
- Hazra, R.; Majhi, S. Detecting Respiratory Diseases from Recorded Lung Sounds by 2D CNN. In Proceedings of the 2020 5th International Conference on Computing, Communication and Security (ICCCS), Patna, India, 14–16 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
Conditions | Number of Recordings | Biological Sex (Count) | Age Range (Years) | ||
---|---|---|---|---|---|
Male | Female | Min | Max | ||
COPD | 793 | 512 | 266 | 45 | 93 |
Healthy | 35 | 15 | 20 | 0.25 | 16 |
Pneumonia | 37 | 30 | 7 | 4 | 81 |
Stats | MSE | Correlation Coefficient |
---|---|---|
count | 2268 | 2268 |
mean | 0.030668 | 0.576079 |
std | 0.012137 | 0.150377 |
min | 0.005188 | 0.014053 |
0.25 | 0.022598 | 0.488954 |
0.5 | 0.029151 | 0.582712 |
0.75 | 0.036262 | 0.682031 |
max | 0.142799 | 0.924803 |
Classification Details | Classification Model | F1-Score | Accuracy |
---|---|---|---|
SVD U, Real | RFC, d = 500, e = 280 | 78.5 | 80 |
GMM, components = 2 | 33.5 | 44 | |
DTC | 69.5 | 70 | |
SVC, C = 3000 | 68.5 | 69 | |
SVD Vt, Real | RFC, d = 500, e = 280 | 71 | 72 |
GMM, components = 2 | 35 | 47 | |
DTC | 59 | 59 | |
SVC, C = 3000 | 53.5 | 54 | |
SVD S, Real | RFC, d = 500, e = 280 | 71 | 71 |
GMM, components = 2 | 35.5 | 38 | |
DTC | 60 | 60 | |
SVC, C = 3000 | 35 | 54 | |
SVD U, Imag | RFC, d = 500, e = 280 | 78.5 | 79 |
GMM, components = 2 | 37 | 53 | |
DTC | 69 | 69 | |
SVC, C = 3000 | 70 | 70 | |
SVD Vt, Imag | RFC, d = 500, e = 280 | 71 | 72 |
GMM, components = 2 | 47.5 | 48 | |
DTC | 59 | 59 | |
SVC | 53.5 | 54 | |
SVD S Imag | RFC, d = 500, e = 280 | 71 | 72 |
GMM, components = 2 | 35 | 54 | |
DTC | 63 | 64 | |
SVC, C = 3000 | 35 | 54 |
Classification Details | Classification Model | Macro F1-Score | Accuracy | CV Score | CV Std | CI 95% |
---|---|---|---|---|---|---|
SVD U, Real | RFC, d = 25, e = 390 | 78.5 | 79 | 76 | 5 | 73–78 |
SVC, C = 2265.8 | 68.5 | 69 | ||||
SVD Vt, Real | RFC, d = 20, e = 400 | 72.5 | 73 | 68 | 5 | 65–70 |
SVC, C = 17,911.6 | 53.5 | 54 | ||||
SVD S, Real | RFC, d = 25, e = 390 | 72 | 72 | 73 | 6 | 70–75 |
SVC, C = 1251.9 | 35 | 54 | ||||
SVD U, Imag | RFC, d = 30, e = 390 | 79.5 | 80 | 76 | 5 | 74–79 |
SVC, C = 80,190.1 | 70 | 70 | ||||
SVD Vt, Imag | RFC, d = 20, e = 400 | 79.5 | 80 | 76 | 5 | 74–79 |
SVC, C = 58,523.6 | 70 | 70 | ||||
SVD S Imag | RFC, d = 30, e = 400 | 71 | 72 | 73 | 5 | 70–74 |
SVC, C = 2764.8 | 35 | 54 |
Details | Classification Model | Macro F1-Score | Accuracy |
---|---|---|---|
SVD U, Real | RFC, d = 500, e = 280 | 59.7 | 51 |
GMM, components = 2 | 30.3 | 37 | |
DTC | 50.7 | 60 | |
SVC, C = 3000 | 45 | 46 | |
SVD Vt, Real | RFC, d = 500, e = 280 | 59.3 | 60 |
GMM, components = 2 | 31 | 32 | |
DTC | 46 | 46 | |
SVC, C = 3000 | 44.7 | 45 | |
SVD S, Real | RFC, d = 500, e = 280 | 69.7 | 70 |
GMM, components = 2 | 22 | 40 | |
DTC | 55.3 | 56 | |
SVC, C = 3000 | 19 | 39 | |
SVD U, Imag | RFC, d = 500, e = 280 | 60.3 | 61 |
GMM, components = 2 | 48 | 50 | |
DTC | 52 | 52 | |
SVC, C = 3000 | 46.3 | 47 | |
SVD Vt, Imag | RFC, d = 500, e = 280 | 62.3 | 62 |
GMM, components = 2 | 32.7 | 32 | |
DTC | 49 | 50 | |
SVC, C = 3000 | 44.3 | 45 | |
SVD S Imag | RFC, d = 500, e = 280 | 67.3 | 67 |
GMM, components = 2 | 20.7 | 39 | |
DTC | 58.7 | 59 | |
SVC, C = 3000 | 19 | 39 |
Classification Details | Classification Model | Macro F1-Score | Accuracy | CV Score | CV Std | CI 95% |
---|---|---|---|---|---|---|
SVD U, Real | RFC, d = 20, e = 300 | 58.7 | 59 | 58 | 3 | 56–59 |
SVC, C = 1143.9 | 43.7 | 45 | ||||
SVD Vt, Real | RFC, d = 40, e = 500 | 60.3 | 61 | 59 | 4 | 57–61 |
SVC, C = 1839.8 | 46.7 | 47 | ||||
SVD S, Real | RFC, d = 20, e = 400 | 70 | 70 | 68 | 4.5 | 66–70 |
SVC, C = 1536.9 | 21 | |||||
SVD U, Imag | RFC, d = 30, e = 500 | 60.3 | 61 | 58 | 4.9 | 56–61 |
SVC, C = 1536.9 | 46 | 47 | ||||
SVD Vt, Imag | RFC, d = 20, e = 400 | 62.3 | 63 | 59 | 3.8 | 57–61 |
SVC, C = 1536.9 | 49 | 50 | ||||
SVD S Imag | RFC, d = 20, e = 300 | 67.7 | 68 | 68 | 4.2 | 65–70 |
SVC, C = 1536.9 | 19.7 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albiges, T.; Sabeur, Z.; Arbab-Zavar, B. Compressed Sensing Data with Performing Audio Signal Reconstruction for the Intelligent Classification of Chronic Respiratory Diseases. Sensors 2023, 23, 1439. https://doi.org/10.3390/s23031439
Albiges T, Sabeur Z, Arbab-Zavar B. Compressed Sensing Data with Performing Audio Signal Reconstruction for the Intelligent Classification of Chronic Respiratory Diseases. Sensors. 2023; 23(3):1439. https://doi.org/10.3390/s23031439
Chicago/Turabian StyleAlbiges, Timothy, Zoheir Sabeur, and Banafshe Arbab-Zavar. 2023. "Compressed Sensing Data with Performing Audio Signal Reconstruction for the Intelligent Classification of Chronic Respiratory Diseases" Sensors 23, no. 3: 1439. https://doi.org/10.3390/s23031439